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Abstract: Flavonoids from plants play an important role in our diet. Watercress is a special plant
that is rich in flavonoids. In this study, four important watercress varieties were compared with non-
heading Chinese cabbage by ultra-high-performance liquid chromatography-electrospray ionization-
tandem mass spectrometry (UHPLC-ESI-MS/MS). A total of 132 flavonoid metabolites (including
8 anthocyanins, 2 dihydroflavone, 3 dihydroflavonol, 1 flavanols, 22 flavones, 11 flavonoid carbono-
sides, 82 flavonols, and 3 isoflavones) were detected. Flavonoid metabolites varied widely in different
samples. Both the non-heading Chinese cabbage and the variety of watercress from Guangdong,
China, had their own unique metabolites. This work is helpful to better understand flavonoid
metabolites between the non-heading Chinese cabbage and the other four watercress varieties, and
to provide a reliable reference value for further research.

Keywords: Nasturtium officinale R. Br.; Brassica rapa ssp. chinensis cv. Aijiaohuang; flavonoid metabo-
lites; PCA; OPLS-DA; UHPLC-ESI-MS/MS

1. Introduction

Jennifer Di Noia defined powerhouse fruits and vegetables in 2014. Of 47 foods
studied, the nutrient density score of watercress is the highest, followed by Chinese cab-
bage [1]. Watercress is rich in flavonols [2] and vitamins B1, B2, and E [1,3]. Increased
vegetable intake, particularly of Brassicaceae vegetables such as watercress, cabbage, broc-
coli, cauliflower, mustard greens, and brussel sprouts, has been linked to a reduced risk of
several types of cancer in human population studies [4–10]. Watercress has been shown
in many past studies to have beneficial effects in humans, such as treating inflammation,
chemopreventive benefits, and so on. Several studies have shown that watercress extract
can inhibit the growth and metastasis of cancer cells in vitro [11–15]. Brassicaceae vegetables,
particularly cauliflower, broccoli, cabbage, and watercress, have been shown to reduce
oxidative DNA damage in in vitro experimentation in human cells [16].

Metabolomics is the comprehensive qualitative and quantitative analysis of all small
molecules in a cell, tissue, or organism to study the interaction of internal and external
factors. As a bridge between plant genotype and phenotype, metabolites play an important
role in plant growth and development [17]. The most common analytical methods were
used for multiple chemical compounds’ determination in plants such as gas chromatog-
raphy (GC) coupled with MS/MS (GC–MS), high-performance liquid chromatography
(HPLC) coupled with fluorescence detection or ultraviolet (UV), and immunological ap-
proaches (ELISA) [18,19]. However, these methods showed many shortcomings and
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technical defects, such as time-consuming sample running, peak interferences, poor sensi-
tivity, and shortness of strong chromophores. In recent years, widely targeted metabolites
based on UHPLC-ESI-MS/MS have been widely used owing to its high throughput, super
sensitivity, wide coverage, and qualitative and quantitative accuracy [20,21]. Compared
with traditional HPLC, UHPLC-MS has the advantages of high separation efficiency, short
analysis time, and less solvent consumption. In addition, it can obtain a more comprehen-
sive chemical profile and quantification by utilizing different ion modes and having higher
sensitivity. Based on the previously constructed MS2T library and the widely targeted
profiling method, we are able to screen a large number of samples for the quantitation of
metabolites [22]. Further, it is now a very powerful tool to gain a thorough understanding
of plant metabolism.

In this study, the UHPLC-ESI-MS/MS metabolomics method was used to evaluate
the difference of metabolites between the non-heading Chinese cabbage and watercress.
This is the first attempt to study the metabolomics between non-heading Chinese cabbage
and watercress and between different varieties of watercress. In this study, five Brassicaceae
cultivars, including four watercress varieties (MG, WH, GD, and YD) and one non-heading
Chinese cabbage (AJH), were selected as experimental materials. The purpose of this
experiment was to study the differences of flavonoid metabolites between watercress and
Chinese cabbage as well as those among different cultivars of watercress. This study
provides a theoretical basis for further study of flavonoid metabolites between the non-
heading Chinese cabbage and four watercress varieties and provides a reference for making
full use of them in the future.

2. Materials and Methods
2.1. Experimental Materials and Methods

Non-heading Chinese cabbage (Brassica rapa ssp. chinensis cv. Aijiaohuang) (AJH) and
four common watercress varieties were selected as experimental varieties. Seeds of the
non-heading Chinese cabbage were soaked for germination and grown in pots containing
a soil/sand mixture (3:1) in a controlled artificial climatic chamber (16 h light/8 h dark
photoperiod at 22 ◦C/18 ◦C) at Nanjing Agricultural University. Four varieties of watercress
were from United States (MG), Wuhan China (WH), Guangdong China (GD), and Yangzhou
China (YD), respectively. They were also grown in a growth chamber under the same
conditions. After 40 days of cutting planting, the leaves were collected from plants. The
sample was then placed into liquid nitrogen immediately after collection.

2.2. Determination of Total Flavonoids Content

Approximately 2.0 g of leaves of each variety was taken and dried at 65 °C for 3 days
to a constant weight. Then, it was ground into powder and 0.02 g was taken to be measured.
Total flavonoids content was determined according to the protocol of Plant Flavonoids Test
kit (Suzhou Comin Biotechnology Co., Ltd., Suzhou, China).

2.3. Extraction Process

The freeze-dried samples were crushed by a mixed mill (MM 400, Retsch) with zirconia
beads at 30 Hz for 1.5 min. Further, 100 mg powder was weighed and extracted overnight
at 4 °C with 1.2 ml 70% aqueous methanol. Before UHPLC-MS/MS analysis, 12,000 rpm
was centrifuged for 10 min for filtration. Further, the list of reagents with purities and
manufacturers is shown in Table S1.

2.4. Chromatographic and Mass Spectrometry of Analysis Conditions

Ultra-high-performance liquid chromatography (UHPLC) (SHIMADZU Nexera X2,
https://www.shimadzu.com.cn (accessed on 10 January 2020)) and tandem mass spectrom-
etry (MS/MS) (Applied Biosystems 4500 QTRAP, http://www.appliedbiosystems.com.cn/
(accessed on 10 January 2020)) were the main systems used in the detection. The analysis
conditions are shown in Table 1. Then, the effluent was alternatively connected to an

https://www.shimadzu.com.cn
https://www.shimadzu.com.cn
http://www.appliedbiosystems.com.cn/
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ESI-triple quadrupole-linear ion trap (QTRAP)-MS. The main contents of mass spectrum
conditions are shown in Table 2. In triple quadrupole (QQQ), each ion pair is scanned
and detected according to the optimized declustering potential (DP) and collision energy
(CE) [22].

Table 1. Analytical conditions of UHPLC.

UHPLC Conditions Parameters

The chromatographic columns Agilent SB-C18 1.8 µm, 2.1 mm × 100 mm

Mobile phase Phase A: ultra-pure water (0.1% formic acid was added)
phase B: acetonitrile (0.1% formic acid was added)

Gradient program

0 min 95:5 (v:v)
9.0 min 5:95 (v:v)

10.0 min 5:95 (v:v)
11.0 min 95:5 (v:v)
14.0 min 95:5 (v:v)

Flow rate 0.40 mL/min
Temperature 40 ◦C

Injection volume 5 µL

Table 2. Analytical conditions of mass spectrometry.

Mass Spectrometry Condition Parameters

Ion source Turbo spray
Source temperature 550 ◦C
Ion spray voltage 5500 V

Ion source
Gas I 55 psi
Gas II 60 psi

Curtain gas 25 psi

Collision gas High

2.5. Qualitative and Quantitative Principles of Metabolites

According to the self-built database MWDB (Metware Biotechnology Co., Ltd. Wuhan,
China), the qualitative analysis of the secondary spectrum information data was performed.
Isotopic signals; duplicate signals containing K+, Na+, and NH4+ ions; and fragments
of other larger molecular weight substances were removed from the analysis. Multiple
reaction monitoring (MRM) analysis of QQQ mass spectrometry was used to perform the
quantitative analysis of metabolites. After obtaining the metabolite spectrum analysis data
of different samples, the peak area integral was performed for all mass spectra, and the
peak of the same metabolite in different samples was integrated and corrected.

2.6. Statistical Analysis

R (http://www.r-project.org/ (accessed on 10 February 2020)) was used for cluster
analysis, as well as PCA and OPLS-DA in accordance with previously described meth-
ods [23]. Differential metabolism interacts in the organism and forms different pathways.
Differential metabolites were annotated and demonstrated using the Kyoto Encyclopedia
of Genes and Genomes (KEGG) database.

3. Results
3.1. Determination of Total Flavonoid Content

The content of total flavonoids from four watercress cultivars and a non-heading
Chinese cabbage cultivar was determined in the study, including the watercress cultivars
from the United States (MG), Wuhan China (WH), Guangdong China (GD), Yangzhou

http://www.r-project.org/
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China (YD), and the non-heading Chinese cabbage (Brassica rapa ssp. chinensis cv. Aijiao-
huang). The flavonoid content of GD was the highest at 14.0 mg/g (Figure 1). The flavonoid
contents of all four watercress varieties were higher than that of the non-heading Chinese
cabbage.
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Figure 1. Total flavonoid contents of all the samples in the experiment.

3.2. Qualitative and Quantitative Analyses of Metabolites and Quality Control (QC) Analysis
of Samples

The typical total ions current (TIC) plot represents a continuous map obtained by
adding the intensity of all ions in the mass spectrum at each time point. Figure 2A shows a
typical TIC plot of one QC sample. The metabolites detected were analyzed qualitatively
and quantitatively based on the local metabolic database. Figure 2B shows the multi-peak
diagram of metabolite detection in the MRM model. This result shows what can be detected
in the sample, with different color mass spectrum peaks representing different metabolites.
The x-coordinate represents the retention time (RT) of the metabolites and the y-coordinate
represents the ion current intensity of ion detection.

A total of 132 flavonoid metabolites were identified, including 8 anthocyanins, 2 di-
hydroflavone, 3 dihydroflavonol, 1 flavanols, 22 flavones, 11 flavonoid carbonosides,
82 flavonols, and 3 isoflavones. Details of each metabolite are shown in Table S2, such as
the metabolite name, number, and peak integral value.

The QC sample is a mixture of sample extracts to analyze the repeatability of the sam-
ple under the same treatment method. During instrumental analysis, one quality control
sample was inserted into every 10 test and analysis samples to monitor the repeatability
of the analysis process. The reproducibility of metabolite extraction and detection could
be determined by overlapping display and analysis of the TIC diagrams of different QC
samples with essential spectrum detection and analysis.

Figure S1 showed an overlay of the TIC plots, and the results show that the peak
diagram of metabolites has a high degree of overlap. The repeatability of metabolite
extraction and detection can be determined by the consistency of retention time and peak
strength.
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3.3. Principal Component Analysis (PCA) for the Different Varieties

Through PCA of samples, the differences of total metabolism between samples of each
group and the degree of variation among samples within the group can be preliminarily
understood. In this study, PC1 and PC2 were extracted, which were 48.43% and 24.33%,
respectively. The cumulative contribution rate reached 72.76%. The PCA score plot showed
that AJH, MG, WH, YD, and GD were clearly separated, and the repeated samples were
compactly collected together (Figure 3). The results indicated the repeatability and reliabil-
ity of the experiment. In the PCA 3D map (Figure S2), the separation and aggregation of
samples can be seen more intuitively. Three principal components were analyzed to find
the difference of metabolites between and within groups.
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3.4. Orthogonal Projections to Latent Structure-Discriminant Analysis (OPLS-DA)

The principal component analysis (PCA) described above is effective in extracting ma-
jor information, but it is insensitive to variables with small correlation, which can be solved
by partial least squares-discriminant analysis (PLS-DA). PLS-DA is a multivariate statistical
analysis method with supervised pattern recognition. Specifically, the components in the
independent variable X and dependent variable Y are extracted, respectively, and then
the correlation between the components is calculated. Orthogonal projections to latent
structure-discriminant analysis (OPLS-DA) [24] combine the orthogonal signal correction
(OSC) and PLS-DA methods, which can decompose the information of the X matrix into
two kinds of information related to Y and unrelated to Y, and screen the difference variables
by removing the unrelated differences. The metabolome data were analyzed according to
the OPLS-DA model, and scores of each group (Figure S3) were drawn to further display
the differences among each group. Significant differences between the groups could be
seen. Figure 4 is the verification of the above model. R2X, R2Y, and Q2 are the prediction
parameters of the evaluation model, where R2X and R2Y represent the interpretation rate of
the established model to the X and Y matrix, respectively, and Q2 represents the prediction
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ability of the model. The closer these three values are to 1, the more stable and reliable the
model. When Q2 is greater than 0.5, it can be considered an effective model, and when
Q2 is greater than 0.9, it is an excellent model. The validation diagram of the OPLS-DA
model between different comparison groups is shown in Figure 4. One can clearly see the
difference between AJH and MG (R2X = 0.919, R2Y = 1, Q2 = 0.998), between AJH and WH
(R2X = 0.889, R2Y = 1, Q2 = 0.999), between AJH and YD (R2X = 0.929, R2Y = 1, Q2 = 0.999),
and between AJH and GD (R2X = 0.918, R2Y = 1, Q2 = 0.998). These results demonstrate the
stability and reliability of the models. Thus, the models could be used for further screening
and identification of flavonoid metabolites.
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3.5. Screening and Kegg Analysis of Flavonoid Differential Metabolites

Based on the results of OPLS-DA, flavonoid metabolites for each comparison group
were screened by combining fold change as well as variable importance in project (VIP)
values. In the study, the comparison of metabolites among five varieties identified 132
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differential flavonoid metabolites. The difference in the expression level of metabolites in
two group samples and the statistical significance of the difference was quickly identified
by volcano plot (Figure 5A–D). The Venn diagram (Figure 5E,F) shows the relationship
between different metabolites in each comparison group. A total of 88 significantly differ-
ent flavonoid metabolites were screened between AJH and MG (43 less accumulated, 45
more accumulated), 90 between AJH and WH (40 less accumulated, 50 more accumulated),
88 between AJH and YD (less accumulated, 51 more accumulated), and 98 between AJH
and GD (32 less accumulated, 66 more accumulated). In addition, 68 common differential
metabolites were observed in the Venn diagram (Figure 5E) where each comparison group
intersected, and each comparison group had its own unique differential metabolites. There-
fore, differential metabolites could clearly distinguish AJH from other watercress varieties.
Furthermore, we took an intersection of each comparison group among four watercress va-
rieties without AJH in a Venn diagram (Figure S4). The differences in flavonoid metabolites
made the four different watercress varieties distinguishable from each other.
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The differential flavonoid metabolites between the five cultivars were mapped to the
KEGG database. The KEGG classification results and enrichment analysis (Figure 6A–D)
showed that the different flavonoid metabolites in the comparison group were involved in
metabolic pathways, flavonoid biosynthesis, flavone and flavonol biosynthesis, biosynthe-
sis of secondary metabolites, and anthocyanin biosynthesis.
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4. Discussion

Past studies have shown that isoflavones are mostly found in legumes, such as soy-
beans. Consuming isoflavones can reduce the risks of breast cancer in women [25]. In addi-
tion, soy isoflavones are associated with bone in the human body and prevent osteoporosis-
related bone loss [26]. In the present study, three isoflavones were detected in watercress
and non-heading Chinese cabbage, all of which are genistein and its derivatives. Genistein
helps prevent many chronic diseases (including solid tumors) by inhibiting new blood
vessels [27]. Furthermore, genistein has a variety of inhibitory effects on breast cancer and
can be used as an anticancer drug with great application prospects [28]. We found that
there was only one isoflavone in AJH, while the GD had two isoflavones with the most
varieties. Moreover, 22 flavones were detected in all the samples. Further, there are most
kinds of flavones in GD. As one of the flavones, 6-C-MethylKaempferol-3-glucoside had
not been studied before. Anthocyanin is a kind of natural pigment widely existing in plants
and is related to the color of plants. In addition, studies have shown that anthocyanins are
the main antioxidant activity contributors to protection of plants from adverse environ-
mental impacts [29,30]. A total of eight anthocyanins were found in the tested samples.
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Interestingly, all anthocyanin levels in watercress were lower than those in AJH. In the
present study, it was found that only one cyanidin-based anthocyanin was found in the MG
group, while four cyanidin-based anthocyanins and two delphinium-based anthocyanins
were found in the GD group. Moreover, anthocyanin was not detected in the WH and YD
group. In addition, there are two anthocyanins that have not been reported in previous
studies, namely delphinidin-3,5,3′-Tri-O-glucoside and cyanidin-3-O-(6”-O-p-coumaroyl)
sophoroside-7-O-glucoside.

Flavanols, as bioactive compounds, are found in cocoa, red wine, green tea, red grapes,
berries, and apples. Flavanols are also powerful antioxidants that scavenge free radicals
both in vivo and in vitro. In this report, flavanol (naringenin-7-O-glucoside) was detected
in watercress, and Han et al. found that naringenin-7-O-glucoside had a protective effect
on oxidative stress of H9c2 cardiomyocytes induced by Adriamycin [31]. Eleven flavonoid
carbonosides were detected in the study. Six flavonoid carbonosides were detected in
the seeds of E. ferox [32]. The accumulation of flavonoid and flavonoid carbonoside in
yellow passion fruit was significantly higher than that in purple fruit [33]. There are not
many other studies on flavonoid carbonoside. Flavonols are a specific class of phenolics
that are widely distributed in plants, where they function as antioxidants, antimi, crobials,
photoreceptors, visual attractors, feeding repellants, and light screeners. 3 dihydroflavonol
were detected in this study, one of which (Hesperetin-5-O-glucoside) had not been reported
in previous studies.

A total of 132 flavonoid metabolites were detected in this experiment. There were six
unique metabolites in AJH (Figure 5F). They were Genistein-7-O-galactoside, Naringenin-
7-O-glucoside (Prunin), Luteolin-6-C-glucoside-7-O-glucoside, Luteolin-6,8-di-C-glucoside,
Cyanidin-3-O-(6”-O-p-coumaroyl) sophoroside-7-O-glucoside, and Kaempferol-3-O-
sophorotrioside-7-O-glucoside. Studies have shown that naringenin-7-O-glucoside has a
protective effect on doxorubicin-induced apoptosis, and may be helpful for the treatment
or prevention of doxorubicin-related cardiomyopathy [31]. There were 13 unique metabo-
lites in GD (Figure 5F). They were Kaempferide (3,5,7-Trihydroxy-4′-methoxyflavone),
Rhamnetin, Azaleatin (5-O-Methylquercetin), Chrysoeriol-7-O-glucoside, 6-C-Methyl
Kaempferol-3-glucoside, Apigenin-6-C-(2”-xylosyl)glucoside, Isosaponarin (Isovitexin-
4′-O-glucoside), Quercetin-3-O-xylosyl(1→2)glucoside, Quercetin-3-O-(2”-O-rhamnosyl)
galactoside, 2′-Hydoxy,5-methoxyGenistein-4′,7-O-diglucoside, Luteolin-6-C-glucoside-
7-O-(6”-p-coumaroyl)glucoside, Quercetin-3-O-rutinoside-7-O-glucoside, and Luteolin-
6-C-glucoside-7-O-(6”-feruloyl)glucoside. As a kind of natural flavonoid, Kaempferide
(3,5,7-Trihydroxy-4′-methoxyflavone) has strong anticancer activity in many human tumor
cells [34]. Studies have shown that Rhamnetin can be used as a promising radiosensi-
tizer to improve the efficacy of radiotherapy in humans [35]. Quercetin-3-O-rutinoside-
7-O-glucoside was found in L. chinense leaves, and it has potential applications in the
nutraceutical field [36]. Metabolites unique to GD variety may play a greater role in human
health.

The UHPLC-ESI-MS/MS method used in this experiment cannot accurately distin-
guish isomers. All isomers are indicated by asterisks in Table S2. Isomers are shown
because the signal of substances can be detected by mass spectrometry and such sub-
stances exist. The substance information detected matches the substance information in the
database, but it is not clear which isomer it is. Mass spectrometry is not able to determine
the structure of a compound. Metabonomics based on mass spectrometry is of significance
in high sensitivity and wide screening.

5. Conclusions

In this study, the UHPLC-ESI-MS/MS metabolomics method was used to evaluate
the difference of metabolites between non-heading Chinese cabbage and watercress. This
is the first attempt to study the metabolomics between non-heading Chinese cabbage
and watercress and between different varieties of watercress. A total of 132 flavonoid
metabolites (including 8 anthocyanins, 2 dihydroflavone, 3 dihydroflavonol, 1 flavanols,
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22 flavones, 11 flavonoid carbonosides, 82 flavonols, and 3 isoflavones) were detected.
Flavonoid metabolites varied widely in different samples. Both the non-heading Chinese
cabbage and the variety of watercress from Guangdong, China, had their own unique
metabolites.

Supplementary Materials: The following are available online. Figure S1. Total ions current overlaps
of the three quality control samples by mass spectrometry detection, Figure S2. Differential flavonoid
metabolite analysis on the basis of principal component (PCA) 3D plot, Figure S3. Summary of
OPLS-DA model. The abscissa represents the predicted principal component; The ordinate represents
the orthogonal principal component, Figure S4. Venn diagram shows the overlapping and unique
differential metabolites amongst the comparison groups. Table S1. Information on standards and
reagents, Table S2. A list of the 132 metabolites detected in this study.
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