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Abstract: Despite the knowledge of the main mechanisms involved in facioscapulohumeral muscular
dystrophy (FSHD), the high heterogeneity and variable penetrance of the disease complicate the
diagnosis, characterization and genotype–phenotype correlation of patients and families, raising
the need for further research and data. Thus, the present review provides an update of the main
molecular aspects underlying the complex architecture of FSHD, including the genetic factors (related
to D4Z4 repeated units and FSHD-associated genes), epigenetic elements (D4Z4 methylation status,
non-coding RNAs and high-order chromatin interactions) and gene expression profiles (FSHD
transcriptome signatures both at bulk tissue and single-cell level). In addition, the review will also
describe the methods currently available for investigating the above-mentioned features and how
the resulting data may be combined with artificial-intelligence-based pipelines, with the purpose of
developing a multifunctional tool tailored to enhancing the knowledge of disease pathophysiology
and progression and fostering the research for novel treatment strategies, as well as clinically useful
biomarkers. In conclusion, the present review highlights how FSHD should be regarded as a
disease characterized by a molecular spectrum of genetic and epigenetic factors, whose alteration
plays a differential role in DUX4 repression and, subsequently, contributes to determining the
FSHD phenotype.

Keywords: FSHD; DUX4; muscular distrophy; genomics; transcriptomics; (epi)genetics; nc-RNA;
single-cell RNA-seq; NGS; artificial intelligence; machine learning

1. Introduction

Facioscapulohumeral muscular dystrophy (FSHD) represents the third most common
dystrophy, affecting 1:8333 individuals worldwide. The disease is generally characterized
by a progressive weakness involving the muscles of the face and the upper and lower
extremities [1–3], although a wide range of mild-to-severe phenotypes are observed [4].
Moreover, extra-muscular phenotypes are known, such as hearing loss and retinal vascular
pathologies. The onset of FSHD is usually between the second and third decade of life,
although infantile or late-onset cases can also occur [5]. The main mechanisms underlying
FSHD (Figure 1) refer to the epigenetic derepression of the Repeated Units (RU) that form
the D4Z4 macroarray (4q35), which, in turn, are responsible for the aberrant expression
of DUX4.

Over the D4Z4, similar macroarrays have been reported in other chromosomes. In
particular, the 10q26 region harbors an array that shares 98% of the D4Z4 sequence of
the 4q35, though the latter is the only one associated with the disease pathogenesis [6].
Notably, the DUX4 gene is located within each RU of the D4Z4 and encodes a transcription
factor involved in the genome activation of zygotes at the very early stage of organism
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development. However, its expression in adult differentiated muscle cells was found to
cause the dysregulation of gene expression, leading to apoptosis, the induction of oxidative
stress and inflammatory pathways [2,3,5]. Intriguingly, DUX4 was reported to induce
apoptosis by a p53-dependent mechanism in murine and zebrafish models [7], although
other studies found that the p53 activity was not relevant in both mice and cells induced to
express DUX4 [8,9].
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Figure 1. The main disease mechanisms and molecular determinants involved in FSHD 
etiopathogenesis. The figure illustrates how the FSHD phenotype results from the muscle dystrophy 
and dysfunction, which, in turn, are due to altered biological mechanisms such as cell death, 
inflammation and oxidative stress. The dysregulation of such pathways has been associated with 
DUX4 toxic expression. In presence of a 4qA permissive allele, DUX4 activation depends on the 
chromatin relaxation of the D4Z4 array that can result from the partial deletion of the D4Z4 repeated 
units, the occurrence of pathogenic variants within SMCHD1, LRIF1 and DNMT3B genes and the 
concomitant DNA hypomethylation. DRA: D4Z4 reduced allele; ROS: reactive oxygen species. 
Created with Biorender.com, accessed on 15 July 2022. 
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diagnosis, as well as the genotype–phenotype correlation. To date, the molecular 
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Figure 1. The main disease mechanisms and molecular determinants involved in FSHD etiopatho-
genesis. The figure illustrates how the FSHD phenotype results from the muscle dystrophy and
dysfunction, which, in turn, are due to altered biological mechanisms such as cell death, inflammation
and oxidative stress. The dysregulation of such pathways has been associated with DUX4 toxic
expression. In presence of a 4qA permissive allele, DUX4 activation depends on the chromatin
relaxation of the D4Z4 array that can result from the partial deletion of the D4Z4 repeated units, the
occurrence of pathogenic variants within SMCHD1, LRIF1 and DNMT3B genes and the concomitant
DNA hypomethylation. DRA: D4Z4 reduced allele; ROS: reactive oxygen species. Created with
Biorender.com, accessed on 15 July 2022.

Considering that the disease is mainly related to the toxic expression of DUX4, the epi-
genetic machinery (including DNA methylation, histone post-translational modifications,
chromatin conformation and post-transcriptional regulators) has also been investigated
as a contributing factor to the disease development. Despite this knowledge, the disease
mechanisms are still not fully understood. In fact, the high heterogeneity of symptoms
and the variable penetrance of the known alterations further complicate the diagnosis, as
well as the genotype–phenotype correlation. To date, the molecular diagnosis is essentially
based on (i) the D4Z4 sizing by means of linear and/or pulsed-field gel electrophore-
sis (LGE/PFGE) and Southern blotting followed by hybridization with specific probes,
and (ii) the research for pathogenic mutations within known associated genes by direct
resequencing or NGS [5,10].

However, the molecular diagnosis still needs to be improved in terms of precision,
accuracy and required times and costs. Indeed, the D4Z4 sizing is labor-intensive and
the targeted sequencing can limit the power of diagnosis. Therefore, novel biomarkers
and methodologies that can be applied to the clinical practice are needed to enable a
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cost-effective and more accurate profiling of FSHD phenotype. On this subject, the identifi-
cation of disease-specific transcriptome signatures could provide useful markers of disease
that are able to improve the characterization and, eventually, support the diagnosis and
treatment. Indeed, genetic and molecular analyses performed on easy-to-access samples
(such as blood and saliva) could provide valuable information that can be used for clinical
purposes, decreasing the cost of tests while maintaining a high informative power. In
this regard, advanced computational methods of analysis could be used to better evaluate
genetic, epigenetic and transcriptomic data as potential biomarkers for diagnosis and prog-
nosis. For instance, it has been shown how machine learning (ML) approaches can predict
a patient’s disease status from molecular data, providing clinicians with computational
assistance based on artificial intelligence (AI) [11]. For this purpose, the present review will
discuss the molecular aspects (genetic factors, epigenetic elements and gene expression
profiles) and methods that can be exploited for clinical purposes and that may be com-
bined with AI-based pipelines to provide a better characterization of FSHD by means of
multifunctional tools.

2. Genetic Aspects of FSHD

Two genetic forms of FSHD have been traditionally described, namely FSHD1 and
FSHD2. Both of them are characterized by an autosomal dominant transmission and over-
lapping clinical features. The first form is caused by the partial loss of RU within the D4Z4,
at least in one 4q35 chromosome [6,9,10]. As a matter of fact, healthy individuals have been
reported to harbor a number of Rus, ranging from 11 to 100, whereas subjects affected by
FSHD1 display 1 to 10 RUs at the D4Z4 locus (Figure 1). In particular, the reduced number
of RUs is generally accompanied by the loss of repressive epigenetic features, which result
in the relaxation of chromatin conformation, DNA hypomethylation and histone modifi-
cations. Altogether, such alterations are indicative of a transcriptionally active genomic
region [3,12–14]. The D4Z4 contraction, together with the presence of the permissive 4qA
allele (within a 10 kb sequence in the distal part of subtelomere), leads to the stabilization
and expression of the full length DUX4 transcript (DUX4-FL) [6,15]. Notably, the last copy
of DUX4 is localized close to the subtelomeric region and, unlike the copies located within
each of the D4Z4 RUs, the third exon of the last copy harbors a polyadenilation signal (PAS)
in the presence of 4qA, which is fundamental for the stabilization of the DUX4-related
mRNA and its subsequent maturation and translation. Beside the presence of PAS, the 4qA
haplotype displays simple sequence length polymorphisms (SSLPs) in the proximity of
the D4Z4 repeat that allow for distinguishing different 4qA subtypes. Of these, the SSLPs
4A161, 4A159 and 4A168 have been found in FSHD1 patients [6]. The contraction of the
D4Z4 array to 1–10 RU, together with permissive 4qA haplotypes, has been reported to
account for approximately 95% of all FSHD patients [16].

Given these premises, the “first level” of FSHD diagnosis is currently represented by
the detection of a 1–10 RUs contraction at the D4Z4 locus (referred to as D4Z4 reduced allele,
DRA) and a permissive 4qA subtelomeric haplotype [12,15,17,18]. For this purpose, most
laboratories proceed with the digestion of the genomic DNA by the EcoRI enzyme, PFGE,
Southern-blot-based analyses and hybridization with a P13-E11 probe. However, such
strategies have some limitations, which are mainly due to the fact that Southern blotting
is a semi-quantitative method. Therefore, molecular combing (MC) and single-molecule
optical mapping (SMOM) have been introduced as alternative methods for FSHD diagnosis.
In particular, the MC technique allows for mapping genetic elements such as the D4Z4
sequence by the direct visualization of multiple DNA molecules at an estimated resolution
of 1 kb [19–21]. This approach has been reported to be more sensitive and precise than
Southern blotting. In particular, it has been able to correctly analyze samples with undeter-
mined results when using the traditional method and to detect rearrangements in a cohort
of 87 FSHD subjects [22]. Concerning SMOM, it allows for mapping single DNA molecules
by means of fluorescence imaging [23]. This approach has been shown to provide a more
precise quantification of the RU number and to detect the presence of mosaicism with
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respect to the traditional method [24]. Altogether, MC and SMOM represent feasible tech-
niques that are able to improve the precision of D4Z4 sizing, although further validation on
larger cohorts and on patients with complex rearrangements and mosaicism are required.

Over D4Z4 contraction, FSHD has also been associated with the occurrence of detri-
mental variants within the sequences of Structural Maintenance of Chromosomes flexible
Hinge Domain–containing protein 1 (SMCHD1, 18p11.32) and DNA Methyltransferase 3 Beta
(DNMT3B, 20q11.21) Ligand Dependent Nuclear Receptor Interacting Factor 1 (LRIF1, 1p13.3)
genes. The activity of these genes is crucial for maintaining the epigenetic repression of
the locus in the presence of 4qA permissive subtelomeres [25–29]. Most of the pathogenic
variants associated with FSHD occur within SMCHD1. The gene encodes an epigenetic reg-
ulator that physiologically promotes and maintains the heterochromatin status at the D4Z4
locus [12,28,29]. DNMT3B is a de novo DNA methyltransferase and rare variants within
this gene have been reported to be associated with FSHD manifestation and penetrance [25].
Recently, LRIF1 (which codes for a direct interactor of SMCHD1 protein) has been described
as a novel disease gene responsible for FSHD [26]. Intriguingly, LRIF1 biallelic variants
have been detected in FSHD-affected subjects. This finding may be in line with a possible
autosomal recessive pattern, which is in contrast with the expected autosomal dominant
pattern of FSHD. However, such a homozygous variant was detected in a patient born from
a consanguineous marriage who also displayed a permissive 4qA haplotype and a D4Z4
array of 13 RUs. Indeed, this genetic makeup is consistent with other patients carrying
pathogenic variants that segregate by an autosomal dominant pattern [25,29,30]. The study
does not report any specific data concerning the clinical presentation of parents, except for
the mother of the proband, who was reported as healthy [26]. Although the detected LRIF1
variant has been clearly associated with FSHD, its pattern of inheritance remains elusive
because of the lack of sufficient data to determine it. Nevertheless, this issue strongly
highlights that even the molecular mechanisms underlying FSHD transmission could be
heterogeneous and still need to be fully understood.

Overall, the presence of pathogenic variants in SMCHD1, DNMT3B and LRIF1 have
been found to be responsible for FSHD in the absence of a contraction of the D4Z4 array to
1–10 RUs (i.e., DRA). However, pathogenic variants in SMCHD1 have also been found to act
as disease modifiers in the presence of DRA, thus highlighting the existence of a digenic in-
heritance pattern and of a disease continuum between FSHD1 and FSHD2 [24,27–29,31,32].
The above-mentioned information suggests that analyzing the genetic architecture of D4Z4
together with the mutational landscape of genes involved in the chromatin regulation of
this locus could provide a better characterization and a more accurate genotype–phenotype
correlation in patients and families with FSHD. For this purpose, the use of NGS ap-
proaches represents a powerful tool for sequencing the known genes while simultaneously
having the opportunity of identifying variants in novel genes, whose alteration could be
responsible for FSHD development and severity.

3. Epigenetic Features of FSHD

Epigenetic elements have been investigated for their potential contribution to the
pathogenesis of FSHD, as well as to the clinical variability and expressivity of disease. As
a matter of fact, the derepression of DUX4 is allowed by an open chromatin conforma-
tion, which is marked by the occurrence of specific epigenetic events, including a local
hypomethylated status and histone acetylation markers.

3.1. DNA Methylation Status of D4Z4 Array

The DNA methylation status related to the 4q35 locus has been extensively studied
and investigated for its contribution to the FSHD expression and severity [12]. On this
subject, low methylation levels were found to correlate with the severity of symptoms
in 49 symptomatic FSHD individuals carrying SMCHD1 pathogenic variants [33]. From
this point on, the hypomethylation at the D4Z4 locus in FSHD has been investigated as
a potential biomarker able to support the molecular diagnosis [14,34–41]. However, the
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heterogeneity in terms of methods and cohorts led to controversial results [42,43]. Moreover,
different regions across the D4Z4 array have been studied with the purpose of providing
a comprehensive methylation profile that was representative of the entire locus [43]. In
particular, the most employed method is represented by bisulfite sequencing (BSS), which
allows for the detection of methylated and unmethylated cytosines by sequencing analyses
performed after a sodium bisulfite-based treatment on genomic DNA that only converts
unmethylated cytosines into uracyles [35,37,39,42,44]. The BSS methods have been used to
measure the percentage of methylated CpG sites within each D4Z4 RU, including the 5′ of
DUX4-ORF and the distal subtelomeric 4q35 region.

Moreover, techniques based on the methylation-sensitive restriction enzyme (MSRE)
take advantage of the presence of methylation-sensitive restriction sites for calculating
the methylation levels of the D4Z4 [33,38,44]. In particular, this technique is based on the
analysis of restriction fragments obtained by enzyme digestion and followed by Southern
blotting and p13E11-probe hybridization. To this purpose, BsaAI, FseI and CpoI have been
used as methylation-sensitive enzymes [42]. In particular, the most utilized MSRE is FseI
because its restriction site (localized upstream of the DUX4-ORF within each RU of the
D4Z4 array) was considered highly informative for the D4Z4 methylation status [33,38,43].

Another approach for the DNA methylation assessment is based on the utiliza-
tion of antibodies that specifically bind methylated cytosines. This technique, known
as methylated DNA immunoprecipitation (MeDIP), led to the establishment of methyl
DNA-antibody complexes that can be purified. As a result, the immunoprecipitated DNA
fraction is enriched with the methylated fragments in order to identify differential DNA
methylation regions by means of targeted sequence analysis [45]. In particular, this ap-
proach has been used to assess the methylation levels related to the 5′ and 3′ of each D4Z4
RU as well as to a central region harboring the DUX4 promoter [42].

Despite FSHD patients generally displaying lower DNA methylation levels than con-
trol subjects, the correlation of these levels with the magnitude of RU reduction and with
the disease severity remains controversial. This aspect may also be due to the different
methodologies, cohorts and regions/CpG sites that have been investigated. In fact, certain
studies have evaluated the methylation levels of several CpG sites within the RU [33,35],
whereas others have highlighted the relevance of the distal sequence, especially of a single
CpG located near the PAS, known as CpG6. Indeed, this site was proposed as a discriminat-
ing biomarker for FSHD [39]. Moreover, some studies have suggested the use of the D4Z4
methylation status to distinguish FSHD2 patients from FSHD1. In particular, regions at the
5′ of DUX4-ORF have shown significantly lower methylation levels in FSHD2 cases [36,37].
Intriguingly, it has been postulated that epigenetic factors regulating chromatin condensa-
tion may bind these sequences in order to exert their repressive function [36]. In fact, the
known FSHD-associated genes (SMCHD1, LRIF1 and DNMT3B) act as chromatin repres-
sors and, thus, directly or indirectly enhance the local DNA methylation status. Therefore,
a marked local lower methylation could reflect their loss of function. On this subject, a
segment within the 5′ of the DUX4-ORF, namely the DR1 region (containing 29 CpG sites),
has been reported to display very low methylation levels in FSHD2 cases [36]. Given
these data, the DR1 region represents a candidate biomarker for providing an in-depth
characterization of FSHD patients.

3.2. Additional Factors Involved in the Epigenetic Changes at the D4Z4 Array

Among the epigenetic elements able to act on the D4Z4 array, long non-coding RNAs
(lnc-RNA) have been investigated for their potential effect on the D4Z4 transcriptional
status. In particular, DBE-T, whose gene is localized near the D4Z4 array, can be considered
the better-known chromatin-associated lnc-RNA involved in the topological reorganization
of the D4Z4 array. The lnc-RNA DBE-T was detected in FSHD primary muscle cells
and biopsies, and it was found to contribute to the local transcriptional derepression by
recruiting chromatin activators [46,47].
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Moreover, different studies focused on the histone modifications potentially involved
in determining chromatin relaxation and aberrant DUX4-FL expression [48–50]. Notably,
Balog et al. 2012 investigated the correlation between the epigenetic status of the DUX4
promoter with clinical severity and muscle impairment in fibroblasts and myoblasts de-
rived from 15 FSHD patients. In particular, they assessed the ratio between the levels
of trimethylation at the lysine 9 of histone 3 (H3K9me3, which is associated with tran-
scriptional repression) and those related to dimethylation at lysine 4 of the same histone
(H3K4me2, which is a marker of active chromatin). The authors considered this ratio to be
related to the degree of chromatin compaction (chromatin compaction score, ChCS). As
a result, this ratio was found to be significantly decreased in patients’ samples (p < 0.01)
with respect to those derived from five controls, thus highlighting the presence of a more
relaxed chromatin at the disease locus in FSHD subjects. Concerning the correlation with
the clinical parameters, the ChCS was only found to be negatively associated with the
clinical score in fibroblasts, although it failed to reach the statistical significance (p = 0.062)
and raised the need for further investigation [48].

Indeed, the loss of H3K9me3 at the D4Z4 array has been widely considered as a
mechanism closely involved in the FSHD pathogenesis. Interestingly, a study by Zeng et al.
performed chromatin immunoprecipitation (ChIP)-based experiments to reveal that the
SUV39H1-dependent H3K9me3 is required for the recruitment of HP1γ/cohesin [49]. In
particular, HP1γ plays an important role in transcriptional silencing [51,52]. Zeng et al.
noted that SUV39H1-mediated H3K9me3, and the subsequent binding of the HP1γ/cohesin
complex, was lost in FSHD. Interestingly, this loss was detected not only at the contracted
4q-D4Z4 allele but also in the remaining intact D4Z4 alleles on both chromosomes 4q
and 10q. Moreover, the loss of H3K9me3 was detected in different cell types (myoblasts,
fibroblasts and lymphoblasts) from FSHD patients only, suggesting that this alteration
could represent a general marker of FSHD that can be detected in different biological
sources over muscle tissue. Overall, the authors proposed that the loss of H3K9me3 and the
related absence of HP1γ/cohesion complex activity at the locus resulted in a detrimental
effect on chromatin organization, thereby leading to muscular dystrophy [49]. Intriguingly,
the 4q/10q-D4Z4 specificity of the loss of H3K9me3 was verified in a further study [50]. In
fact, this epigenetic alteration was not detected at the other D4Z4 homologous regions in
FSHD myoblasts and fibroblasts. Moreover, they found that the experimental suppression
of H3K9me3 was able to impair the binding of SMCHD1 at the D4Z4 locus, and this was
found to enhance the derepression of D4Z4 with the subsequent increased DUX4 expression
in FSHD-derived myoblasts [50]. Therefore, further research on FSHD primary cells will
be useful to better clarify the physiological role of the H3K9me3 on the recruitment of
epigenetic regulators at the D4Z4 array.

Altogether, these data support the relevance of assessing the conformation of D4Z4
and its three-dimensional changes to better elucidate the mechanisms leading to FSHD
development. As a matter of fact, long-range chromatin contacts or high-order spatial
genomic interactions have been postulated to change and modulate the expression of the
D4Z4 locus too. Intriguingly, a study on FSHD1 patient-derived myoblasts reported that
the presence of DRA could lead to the activation of myogenic factors by changing the
spatial organization of these genes within the nucleus [53]. Despite this evidence, the
role of such interactions in the pathogenesis and their potential usefulness for the disease
characterization deserves to be fully elucidated.

Indeed, the DNA methylation patterns at D4Z4 could also be influenced by the above-
mentioned high-order interactions. For instance, a binding site for CTCF protein is located
near the DR1 sequence. CTCF is a known insulator able to shape the three-dimensional
conformation of the chromatin in order to limit genomic domains in which genetic and
epigenetic elements can tightly interact to regulate the expression of local genes [54]. Of
note, the role of CTCF in determining the insulation of the D4Z4 array has been postulated,
but the effect of CTCF activity (and dysfunction) on the transcriptional status of DUX4
remains to be elucidated [55,56].
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Overall, it could be very interesting to study if the methylation patterns related to
D4Z4 might reflect alterations of complex spatial genomic interactions and/or the alteration
of the function of CTCF and other insulator complexes (such as cohesin) or epigenetic
regulators that may potentially contribute to the disease development. On this subject,
two studies identified different proteins involved in the epigenetic regulation of the D4Z4
array [57,58]. By comparing seven human myoblast cell lines with two controls and
exploiting an approach that combines ChIP, CRISPR-Cas9 and mass spectrometry (MS),
Campbell et al. identified 261 proteins, including known-D4Z4-associated factors, cohesin
complex components [29,49] and other molecular interactors. Notably, CHD4, HDAC2,
MTA2 and RBBP4, which include many of the components of the nucleosome remodeling
deacetylase (NuRD) complex, were among the isolated proteins. The authors reported that
NuRD and CAF-1 complexes repressed DUX4 expression and that these factors were found
to be necessary for maintaining DUX4 transcriptionally inactive in skeletal-muscle-derived
cells and induced pluripotent stem cells [57]. Moreover, Goossens et al. investigated novel
SMCHD1 interacting proteins in two FSHD cell lines and assessed their functionality in
the D4Z4 repression. This study identified 28 nuclear proteins that potentially interact
with SMCHD1 [58]. In particular, the loss of these SMCHD1 interacting proteins, such as
RuvB-like 1 (RUVBL1), was found to further derepress DUX4 in FSHD myocytes. RUVBL1
participates in several protein complexes involved in transcriptional control and chromatin
maintenance. Of note, 12 out of 28 proteins (namely, SMCHD1, RUVBL1, HIST1H1C, COIL,
HNRNPA1, RAD50, RAD21, HNRNPA0, PRPF8, ALYREF, PRPF19 and MYO1C) are in
common with the D4Z4 chromatin components identified by Campbell et al. (2018) [58].

Such studies investigated the protein interactome occurring at the D4Z4 array, as it
may be useful for identifying novel factors potentially involved in FSHD etiopathogenesis.
Furthermore, the identification of multiprotein complexes that regulate DUX4 expression
and of additional epigenetic factors linked to FSHD may provide new candidate targets
for therapeutic strategies. With this aim, Campbell et al. (2017) focused on signalling
pathways and epigenetic machinery that directly or indirectly influence DUX4 expression in
FSHD muscle. They showed that BET (bromodomain and extra-terminal domain proteins,
consisting of BRD2, BRD3 and BRD4) inhibitors (BETi) may represent small molecules able
to prevent DUX4 expression in FSHD muscle cells. These data also suggest a possible
involvement for the protein BRD4 (and possibly BRD2) in the regulation of the D4Z4
array [59].

3.3. Altered miRNAs in FSHD

Concerning the post-transcriptional regulation, several miRNAs have been studied for
their potential alteration in the context of FSHD. On this subject, a study employed murine
FSHD models to detect potential miRNA signatures. In this way, an overexpression of
miR-31-5p and miR-206 was detected [60]. Instead, a study performed on human FSHD my-
oblasts observed an overexpression of miR-411 and reported that this miRNA could target a
portion of factors involved in the myogenic differentiation [61]. Another study on the same
cell type reported 29 miRNAs as dysregulated in FSHD. Notably, the altered expression of
miRNAs (such as miR-1, miR-133a, miR-133b and miR-206) involved in muscle homeostasis
and differentiation was reported [62]. Furthermore, miRNAs signatures were investigated
during an in vitro differentiation process in FSHD primary myoblasts by means of NGS
approaches. This study unveiled the dysregulation of 38 miRNAs, a proportion of which
were involved in relevant molecular pathways for the muscle homeostasis and function.
Interestingly, a lower number of miRNAs were found to be modulated during myogenesis
in FSHD compared to control cells, suggesting that an overall dysregulation of miRNAs
expression could characterize FSHD [63].

Overall, it is clear that different sources, differentiation stages and methodologies
led to different outcomes. Nevertheless, these data support the analysis of non-coding
RNAs signatures and of their effect as a powerful source of biomarkers that may be useful
for improving the knowledge of FSHD, as well as the research of therapeutic targets. On
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this subject, a recent study proposed miR-675 as a druggable target to be exploited for
counteracting DUX4 toxic effects. In particular, its induced overexpression appeared to
suppress DUX4 and the expression of its related-targets in FSHD-derived myotubes [64].

4. Transcriptome Profiling and Single-Cell Approaches in FSHD
4.1. DUX4 Signatures and Transcriptome Analyses

FSHD pathogenesis is strongly linked to the toxic expression of the DUX4 gene,
which is considered to be a fundamental hallmark of disease. However, the detection of its
expression in muscle tissue has been challenging due to its variegated and burst-like pattern
of expression, which occurs in a small number of muscle cells [65,66]. Of note, it has been
estimated that the DUX4 transcript could be detected in a fraction of cultured myoblasts
and myotubes ranging from 1/5000–1/1000 and 1/200, respectively [67–69]. Despite this
low concentration, the aberrant expression of DUX4 in skeletal muscle has been found
to lead to the dysregulation of tissue homeostasis [7,70]. On this subject, induced high
levels of DUX4 in both immortalized and primary myoblasts, as well as in animal models,
were found to be responsible for the activation of transcription of several target genes
mainly involved in RNA metabolism and apoptosis [7,70]. Given the low levels of DUX4 in
human FSHD muscle, these data and the related mechanisms had to be verified. In this
regard, a study developed a murine model able to recapitulate the peculiar DUX4 pattern of
expression. As a result, low levels of DUX4 were shown to induce the damage and necrosis
of muscle fibers, the infiltration of inflammatory cells and the increased deposition of the
extracellular matrix, which have also been reported for FSHD muscles [71]. Considering
this information, the dissection of these pathogenetic mechanisms at the molecular level
may be relevant for clinical and therapeutical purposes.

Indeed, many research efforts have been focused on identifying DUX4 target genes
by inducing its overexpression. On this subject, different studies on myoblasts showed
hundreds of genes dysregulated by DUX4 [67,72–75]. Overall, several of these genes were
found to be involved in the early programming of the embryo cleavage stage, immunity,
inflammation and regulation of retroelements [67,72–75]. Therefore, the aberrant expression
of DUX4 has been proposed to trigger toxicity by reactivating the early embryonic program
in the adult differentiated muscle tissue [75–77]. On this subject, it has been found that
DUX4 shares the ability of activating germ line genes with the mouse ortholog Dux. This
physiological function is maintained across these species, although DUX4 and Dux were
found to display different DNA binding motifs within the homeodomains. Indeed, this di-
vergence was found to lead to the transcription of different retroelements [72]. Importantly,
the conserved embryonic functions highlight the relevance of DUX4 in the early develop-
ment. This observation, together with the results of the above-mentioned studies [67,72–74],
further supports the investigation of the effects of DUX4 on the reactivation programming
in adult muscles. Besides the data concerning the function of identified target genes, these
studies showed a high discrepancy. In fact, Banerji and Zammit, 2021 estimated that only
eight targets, namely ZSCAN4, TRIM43, RFPL1, RFPL2, RFPL4B, PRAMEF1, PRAMEF2
and PRAMEF12, have been commonly detected by these studies. Moreover, the silencing
of genes targeted by PAX7 (due to DUX4 activation) has been proposed as a pathological
hallmark of muscle degeneration in FSHD [68,78].

The identification of FSHD-related gene expression profiles may be important for
clinical purposes. In fact, genes targeted by DUX4 may represent signatures able to differ-
entiate FSHD-affected patients from other subjects, as well as potential markers of disease
activity and progression. Moreover, these signatures may represent therapeutic targets
to be exploited for counteracting DUX4 toxic effects and for evaluating the response to
drugs. Therefore, research studies have been conducted on muscle biopsies from FSHD
patients to validate the dysregulation of DUX4-induced factors and, more generally, to
identify gene expression patterns related to FSHD. However, the analysis of a bulk tissue
has often led to the detection of spurious profiles reflecting the average of heterogeneous
cellular populations. In fact, only a proportion of cells are able to express the stable form
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of DUX4-mRNA (namely, the DUX4-FL) in FSHD-affected muscles. This pattern of ex-
pression leads to the establishment of a mixture of DUX4-positive and negative cells with
distinct epigenomic, genetic and transcriptomic features. Interestingly, all of these cells can
also display other FSHD-associated markers (such as the PAX7 signature), independently
from the positivity to the DUX4 expression [79,80]. Supporting this data, the presence of
FSHD-related gene expression profiles was assessed in patients’ muscle tissue by means of
microarray-based technologies, reporting a globally low differential gene expression (fold
change < 1.5) [81]. Similarly, Yao et al. (2014) performed RNA-seq on DUX4-overexpressing
myoblasts and myotubes [73], as well as on muscle biopsies from 15 FSHD individuals and
9 controls. In particular, they detected 90 and 348 potentially upregulated target genes in
myoblasts and myotube cells, respectively. However, the authors reported that the DUX4
target genes were not found among the differentially expressed genes (DEGs) in six FSHD
biopsies. Moreover, they highlighted that moderately expressed targets may have not been
detected as DEGs due to the presence of cells not prone to DUX4 expression. In addition,
the difficulty in detecting such targets in the myoblast and myotube cells could also be due
to a contamination of a control sample with a DUX4-induced RNA sample, as illustrated in
the study by Young et al. (2013) [72,73].

Interestingly, gene expression profiles were investigated to assess their utility for as-
sessing the disease activity and the prognosis. In particular, a study performed on biopsies
from 36 FSHD patients found that DUX4 signatures were significantly upregulated in mus-
cles positive to short tau inversion recovery (STIR+, which is a marker of muscle pathology)
compared to normal muscles subjected to MRI assessment (p < 0.001). Interestingly, the
authors reported that 10 biopsies (characterized by histological marks of mild/moderate
pathology) did not show DUX4 signature dysregulation, although they displayed altered
factors involved in immunity and extracellular matrix organization, which are actually
known as DUX4 targets. Given these data, the DUX4 signatures may not be easily detectable
in the early phase of FSHD activity [82].

The usefulness of FSHD-associated transcriptome signatures as biomarkers of disease
progression has been evaluated monitoring the muscles of the previously mentioned
36 patients over 1 year [83,84]. In particular, Wong et al. did not find significant differences
in muscle pathology and gene expression profiles over 1 year. In addition, this work further
validated the relation between DUX4 signatures and advanced disease activity. In fact, it
reported 164 differentially expressed genes in 17 mild FSHD-affected muscles compared to
8 controls (p < 0.05). Of them, 52 genes were able to effectively discriminate mildly affected
muscles (AUC-ROC: 0.9) [83]. Banerji., 2020 exploited 26 of the 36 above-mentioned human
samples to evaluate the PAX7 signature, which was previously found [78] as a prognostic
marker for FSHD. In this study, a significant difference (p = 0.038) was found concerning
the levels of PAX7-repressed genes between 2-year and 1-year muscles. Interestingly,
this study proposed the PAX7 signature as a marker of short-term progression, given its
ability to reflect low-level alterations and subtle molecular changes associated with disease
activity [84].

Overall, these studies found that transcriptome signatures may reflect alterations of
muscle homeostasis and pointed out the importance of finely characterizing gene expres-
sion alterations at early times of disease activity in order to draw a trajectory of disease.
On this subject, it may be useful to investigate if higher resolution approaches, such as
single-cell transcriptome analyses, may provide a more sensitive detection of the subtle
molecular changes, as well as facilitate the identification of the specific cell types displaying
such alterations.

4.2. Single-Cell and Single-Nucleus Transcriptome Analyses

Based on the illustrated data, it is clear that the complex molecular background, as well
as the peculiar genetic defects and epigenetic changes underlying FSHD, raised the need
for better characterizing the global transcriptional landscape at a single-cell-level [85,86].
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Overall, several efforts have been made concerning the development of technologies
that provide large-scale molecular characterization at a single-cell resolution [87–90]. This
approach could help to tackle the cellular heterogeneity of the pathological tissue, in terms
of differences at the level of DNA, RNA, proteins and metabolites [91–95].

Single-cell RNA-sequencing (scRNA-seq) combines the investigation of the whole
transcriptional profile with comprehensive bioinformatic and computational approaches
to explore the molecular signatures and gene regulatory networks for specific cell types
in the context of a tissue [96]. Firstly, the scRNAseq workflow requires the isolation of
single cells that can be performed by means of manual fluorescence-activated cell sorting
(FACS) or by using microfluidics-based systems. The next steps of RNA extraction, cDNA
amplification, library preparation and sequencing are in common with the bulk RNA-seq
methods. Secondly, the analysis of data obtained from scRNA-seq is a crucial step and
needs appropriate computational and statistical methods to ensure a reliable and proper
interpretation [97].

The application of the scRNA-seq approach could provide novel and more accurate
insights into the disease pathogenesis, as well as new perspectives for understanding
the genotype–phenotype correlations, allowing for the identification of specific FSHD
cellular subtypes affected by certain genetic signatures [96]. On this subject, different
studies showed the utility of scRNA-seq in studying FSHD etiopathogenesis and provided
interesting results [79,80,86,98].

Starting from tissue-cultured human primary myocytes from four FSHD patients
(two FSHD1 and two FSHD2) and two healthy controls, van den Heuvel et al. (2019)
reported differences among the FSHD and control tissues and profiled transcriptome
signatures in the DUX4 expressing and non-expressing FSHD cells, revealing more than
1300 DEGs [79]. Interestingly, only 231 were in common with the genes previously identified
by Yao et al., 2014 [73] and Rickard et al., 2015 [66]. This discrepancy may be due to the
above-mentioned difficulties in detecting DUX4-target genes or the major resolution given
by the single-cell analysis. Moreover, authors selected a restricted set of 49 genes to generate
a “pseudotime” trajectory model with the aim of evaluating the progression of FSHD at
transcriptome level. This analysis is based on specific algorithms able to process data
collected at multiple time points with the aim of studying the alteration of physiological
processes (such as cell differentiation and proliferation) and the pathogenetic changes over
time at a single-cell resolution level [99,100].

Furthermore, another study by Jiang et al., 2020 performed a single-nucleus RNA-seq on
muscle from a FSHD2 patient and a healthy control in order to study the DUX4-expression
effects in the muscular syncytia, highlighting how affected nuclei are quite different from
each other in terms of transcriptional profiles. In particular, this study highlighted that
a very exiguous number of nuclei within the same myotube was characterized by the
expression of DUX4 [86].

Intriguingly, Banerji and Zammit, 2019 focused the attention on the PAX7 signature
and reported it as a powerful classifier for FSHD samples based on the sc-RNAseq data
published by Van den Heuvel et al., 2019 [79,80].

Recently, a study aimed at evaluating human induced pluripotent stem cells (hIPSCs)-derived
myoblasts as disease-representative models for neuromuscular conditions obtained such
cells from three FSHD1 individuals. By performing sc-RNAseq during the differentiation
process from myoblast to myotubes on both FSHD and control-derived cells, a proportion
of DUX4 targets (MBD3L2, TRIM43, LEUTX and ZSCAN4) were detected as overexpressed
in FSHD subjects [98].

Sc-RNA-seq and Sn-RNA-seq studies may overall lead to the identification of
disease-associated gene expression profiles that could also be exploited for clinical pur-
poses, enabling the identification of candidate biomarkers for diagnosis and/or disease
staging, as well as druggable targets. Nevertheless, considering that different pipelines for
scRNA-seq are available nowadays, a standardization of the available analytical methods
should be recommended [101].
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Moreover, despite the high informativeness and specificity of these analyses performed
on muscular tissue, the invasiveness of clinical biopsy raises the need for employing an
easy-to-access biological source that could facilitate the clinical application. Indeed, a
FSHD-specific lymphoblast signature of 237 up-regulated genes (of which, 10 were DUX4
target genes) was identified on immortalized B-lymphoblastoid cell lines obtained from the
whole blood of three FSHD patients and three family controls. In particular, this signature
was confirmed in muscle biopsies and was found to be associated with DUX4 activation
and the early tissue infiltration of immune cells. These data support the occurrence of the
FSHD transcriptome signature in blood and intriguingly shed light on a potential driver
role of inflammatory/immune cells in the etiopathogenesis on FSHD [102].

In addition, a study that performed RNAseq on whole blood samples from 54 FSHD
patients and 29 healthy controls observed the absence of significant DEGs, including
DUX4- and PAX7-related signatures, between the two groups. Indeed, authors reported
that a proportion of 34 genes with a nominal association failed the multiple correction
tests [103]. Altogether, these data highlight the need for performing finer analyses to evalu-
ate the presence of specific FSHD transcriptome signatures in blood. Thus, research efforts
addressed at finely defining DUX4-mediated cascades and identifying FSHD-associated
transcriptome signatures may benefit from single-cell approaches applied to an accessible
biological source.

5. Machine-Learning Application to Support the Disease Characterization
and Diagnosis
5.1. Artificial Intelligence (AI) and Machine Learning (ML) in Medicine

AI is an umbrella term that includes technologies that can solve tasks requiring
human intelligence. ML is one of the main branches of AI and it includes algorithms that
autonomously learn from data to make decisions. In particular, ML algorithms for diagnosis
can be trained using a supervised learning approach to associate a label (e.g., affected
vs. non-affected) with the corresponding input data. The establishment of AI-based
methods in clinical diagnostic protocol aims at providing more precise diagnoses with
a fast, unbiased and data-driven evaluation of patients [104]. To date, AI has enhanced
clinical diagnosis and decision-making performance in several medical domains, such as
oncology, cardiology and neurology [104,105]. ML-based methods have been tested for
enhancing the usefulness of molecular disease biomarkers, including genetic and epigenetic
signatures in different kinds of diseases and phenotypes [106–110]. In fact, ML algorithms
can be set to build computer-aided diagnosis (CAD) tools, user-friendly software that aids
physicians with AI predictions. CAD systems that exploit data from multiple sources
are more accurate when highly complex models are implemented, such as deep neural
networks. These are AI algorithms that mimic brain functioning. Therefore, they are made
of multiple layers of nodes that apply complex transformation functions to the input data.
Due to this complexity, their behavior is uninterpretable, but CAD tools can be enriched
with explainable AI (XAI) methods [111], allowing humans to better understand how the
algorithm made its predictions, ultimately fostering physicians’ trust in AI and its spread
in clinical setting [112].

5.2. Existing Artificial Intelligence Applications to FSHD

To date, ML approaches to FSHD data analysis have mainly focused on magnetic reso-
nance imaging (MRI) or gene expression data. In the MRI-based AI modeling, upper/lower
limb muscles MRI images are usually extracted and quantitative measures such as fat
fraction (FF) and water T2 (wT2) are computed, but expert radiologists have been able to
include up to 47 radiological features in their dataset. These measures are then used as an
input for one or more ML algorithms to obtain common precision medicine deliverables,
such as biomarkers identification, diagnosis or prognosis. To date, only one study using a
support vector machine (SVM) obtained a 0.89 accuracy with 95% (CI 0.85–0.92) in discrimi-
nating FSHD cases from patients affected by other myopathies [113]. MRI-based algorithms
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have also been used to predict functional outcomes in FSHD, such as the wheelchair use.
In this context, a random forest trained on clinical and genetic longitudinal data achieved a
0.79 accuracy and 0.85 AUC [114]. Despite there being few studies, the MRI-based AI mod-
eling of upper/lower limb muscles provided promising results in FSHD and confirmed the
diagnostic/prognostic role of FF and wT2 upper/lower limbs features. These two features
are commonly derived from qualitative imaging, requiring the manual interpretation of
the weightening and contrasts of the images. Quantitative MRI (qMRI) could be useful for
standardizing measurements of FF and wT2 upper/lower limbs features, but the required
MRI sequences are not routinely available in every FSHD center. ML was used to overcome
this issue and a random forest was used to predict the qMRI values of FF and wT2 from
conventional MRI, obtaining mean absolute errors ranging from 0.110 to 0.133 for FF and
0.068 to 0.115 for wT2 [115]. The few applications that have been found, coupled with
their highly variable cohort sizes (ranging from 14 to 558), suggest that FSHD research
would benefit from consortium initiatives similar to the Parkinson’s Progression Markers
Initiative or the Alzheimer’s Disease Neuroimaging Initiative, to finally enter into the
big data era. A common effort in the harmonization of data sharing and standardization
practices would be beneficial for the advent of AI and CADs in FSHD based on reliable
high-quality data [116].

Contrary to MRI-based AI models, which have mostly been used for differential
diagnosis or prognosis, AI models based on transcriptomics are used to explore the potential
of molecular diagnosis of FSHD. In these tasks, FSHD and healthy controls (HC) are
compared to identify differentially expressed genes (DEGs). Subsequently, the DEGs will
be used as an input in an ML algorithm that will classify observations in FSHD or HC.
Generally, this kind of study relies on RNA extracted from muscular biopsies, which
are relatively more difficult to obtain than other more easily available biological sources,
such as blood samples. Nevertheless, AI models taking DEGs from muscle tissue as an
input give a high accuracy for both biceps (0.90) and deltoids (0.80) using L1-regularized
logistic regression [81]. A similar level of accuracy (0.91, 95% CI [0.907–0.913]) was yielded
using an SVM to diagnose FSHD on gene expression data from skeletal muscle biopsies,
whereas a previous SVM application on the same dataset reported an impressive 0.994
accuracy [117,118]. Even though there is only one published experiment where FSHD is
diagnosed using gene expression data from blood samples, the results are promising, with
a logistic regression achieving a mean AUC ranging from 0.794 (95% CI [0.618–0.961]) to
0.883 (95% CI [0.735–1.0]) [103].

Up to 15 DEGs have been found in these experiments (Figure 2A), and they could
all be considered as biomarkers of FSHD. Most of the DEGs identified in blood are non-
overlapping with those found in muscle gene expression data (Figure 2B). This finding
may advocate for a multi-source data integration when it comes to using gene expression
data in an ML pipeline. Unfortunately, these DEGs should not be considered a stable
molecular signature of the disease, since most of them were not confirmed by other studies
adopting the same data source and experimental design (Figure 2B). Furthermore, only
two out of seven DEGs (FEZ2 and HOXC10) were confirmed by the same group using
the same dataset (E-GEOD-3307) and the same SVM algorithm (Figure 2B,C). Taking into
consideration the instability of these candidate biomarkers, the performance of the models
trained with these DEGs should be reconsidered (accuracies ranging from 0.790 to 0.994).
A possible explanation is that ML requires appropriate cross-validation strategies when the
sample size is low, and the k-fold or hold-out validation strategies used in these studies
inflated the performance metrics (Figure 2D). As a matter of fact, only one study included
more than 15 subjects. This considered, these analyses are lacking stability and do not seem
reliable in detecting DEGs as effective biomarkers.
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Figure 2. A comparison of gene-expression-based AI models with data attained from
(Gonza-lez-Navarro et al., 2013 [117], Gonza-lez-Navarro et al., 2015 [118], Rahimov 2012 [81] and
Signorelli 2020 [103]). (A) Bar plot indicating the number of DEGs found in the considered studies.
Up to 15 DEGs representing potential biomarkers for FSHD were identified across 4 studies. (B) Tile
plot indicating which genes were found by the considered studies. All of the genes identified in blood
(red) were not retrieved in the other studies based on muscle biopsies (blue), and this may be due
to the different levels of gene expression of the two biological samples. However, only two genes
of 15 were identified both from Gonzalez-Navarro et al., 2013 and Gonzalez-Navarro et al., 2015
across the experiments performed on muscle data. (C) Tile plot with a focus on the studies by
Gonzalez-Navarro et al. The studies proposed by these authors were performed on the same dataset
and used the same SVM algorithm. Despite these favorable conditions, only 2 out of 7 DEGs were
confirmed. (D) Tile plot to visualize the cross-validation strategies used in FSHD vs. HD modeling,
suggesting that the performance metrics used may be inflated by the low sample size (12 < n < 54).
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5.3. Multi-Source Data Integration in AI for Medicine and FSHD Research

As presented above, AI applications for FSHD research focused on data from a single
source. To the best of our knowledge, there are still no published attempts to train an
AI model with multi-modal data in FSHD research to date. Research trends in other
pathologies, such as cancer and neurodegenerative diseases, have shown that multi-source
data integration follows years of published applications on single-source data, as those
are easier to implement [119,120]. Nevertheless, the complexity of such a disease deserves
a multifaceted view of the patients’ biological and clinical states. In fact, it has been
extensively shown that integrating multi-source data when developing AI for medicine
gives more accurate models. This multi-source data integration paradigm opens a greater
understanding of disease-specific mechanisms and more reliable predictive models to be
used in CAD systems. Most AI for medicine applications exploiting integrated multi-source
data implement deep neural networks due to their ability to manage highly non-linear
associations between the input data and the predicted outcome. As an example from
Alzheimer’s Disease research, it has been shown that the integration of MRI with PET
imaging, cerebrospinal fluid and genetic variants achieves up to 10% higher accuracy
levels. To perform an efficient multimodality fusion, a system of extreme learning machine
models (basically neural networks) was applied, combining the information from all
different sources and finally providing its prediction [121]. In a similar fashion, cancer
subtype classification can be performed with a system of deep neural networks to integrate
multi-omics data. It has been shown that multi-omics data integration improves the
model’s performance compared to using single-omic data [122]. This considered, we believe
that FSHD research would benefit from multi-source data integration, as appropriate AI
algorithms can manage their complexity and detect relevant mechanisms invisible to the
human expert, finally giving clinically useful insights. When multi-source data integration
is trending in FSHD research too, deep neural networks will also take the field, unleashing
their unparalleled power in data elaboration to manage healthcare big data integration
complexity at best. To make this dream come true and achieve the best results in FSHD
research, there is a need for the availability of clinical data from medical health records,
multi-omics molecular data from muscle tissue biopsies and blood and medical imaging
data from cellular microscopy and MRI. All of this can be integrated and also followed
along in time, leading to the ability to monitor FSHD over its evolution, opening the blinds
on disease characterization, prediction of its progression and selection of treatments.

To date, the utilization of molecular data and ML approaches has not been deeply
evaluated in large cohorts. In particular, there are still no published attempts of FSHD
classification based on DNA methylation data. Our group is currently working on a
highly curated ML analysis of FSHD classification on methylation data related to the D4Z4
array, with promising results for improving the disease characterization (manuscript in
preparation). In fact, the exploitation of such data may help to tackle the challenges in
FSHD identification and its differential diagnosis with other neuromuscular diseases that
may be characterized by overlapping phenotype features, such as limb girdle muscular
dystrophy (LGMD). This can be useful for those patients that are harder to diagnose due
to a subtler disease pathophysiology, lowering both false positive and false negative error
rates. Moreover, this could result in lower costs for clinical centers, reducing inappropriate
accesses to specialist visits thanks to an accurate and reliable omics screening phase carried
out with AI.

Indeed, the integration of such data with those from genomics and transcriptomics,
along with clinical records and demographics, has yet to be applied in the development of
AI-based CAD tools for FSHD [120,123].

Combining and analyzing multimodal data to train accurate models and XAI methods
to investigate their behavior would finally lead to highlighting relevant mechanisms under-
lying FSHD pathogenesis. The development of software tools would be advantageous for
the specialists involved in FSHD patients management. The ideal AI-based tool would be
able to take into account data from different sources, such as genetic variants, D4Z4 size
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and haplotype, DNA methylation status and FSHD-related transcriptome signatures, MRI,
clinical records and demographics, finally providing predictions and summaries to clearly
show the patient status. This would facilitate a proper monitoring of the disease stage over
time in the FSHD trajectory. Thus, not only would such a software aid the diagnosis, but it
would also give support in patients’ stratification and prediction of prognosis, as well as
in the choice of therapeutic strategies, thus constituting a proper multifunctional tool. Of
note, considering that unknown targets and mechanisms could be discovered concerning
FSHD pathogenesis, such a tool should be flexible and open to implementations with novel
data (Figure 3).
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Figure 3. Schematic overview of a multifunctional tool. Such a tool would be able to integrate
molecular, clinical and phenotype data with AI pipelines for enhancing the knowledge of FSHD
and foster the research for novel treatment strategies, as well as biomarkers to be applied for the
characterization, diagnosis, prognosis and monitoring of disease.

6. Discussion

The present review discussed the molecular features and technologies able to produce
genetic and epigenetic data, which could be combined with detailed clinical information
into an advanced multifunctional tool built by ML and AI approaches. Indeed, the availabil-
ity of functional tools and molecular tests able to standardize and optimize the diagnosis,
prognosis and treatment of FSHD are crucial for coping with the existing phenotypic and
genetic variability among patients and families. The molecular signatures and analytical
methods discussed above have been summarized in Table 1.

Table 1. Overview of the described investigated FSHD molecular signatures and corresponding
analytical methods.

Molecular Analysis Molecular
Signature Methodology References

D4Z4 sizing

DRA, 4q subtelomeric alleles and
haplotypes

Southern blot + PFGE+ probes
hybridization Lemmers et al., 2007 [6], Lemmers et al., 2017 [18]

DRA, 4q subtelomeric alleles and
haplotypes, complex

rearrangements

MC Nguyen et al., 2019 [19], Nguyen et al., 2017 [21],
Vasale et al., 2015 [22]

SMOM Dai et al., 2020 [24]
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Table 1. Cont.

Molecular Analysis Molecular
Signature Methodology References

Detection of pathogenic
variants within

FSHD-associated genes

SMCHD1 WES Mitsuhashi et al., 2016 [27], Lemmers et al., 2012 [29]

LRIF1 Direct resequencing + WES Hamanaka et al., 2020 [26]

DNMT3B WES van den Boogaard et al., 2016 [25]

DNA methylation

5′ DUX4-ORF
BSS

Jones et al., 2015 [35], Gould et al., 2021 [37],
Calandra et al., 2017 [39], Gaillard et al., 2014 [42],

Roche et al., 2019 [44]
MSRE Lemmers et al., 2015 [33], Nikolic et al., 2020 [38]
MeDIP Gaillard et al., 2014 [42]

D4Z4 RU BSS
Jones et al., 2015 [35], Gould et al., 2021 [37],

Calandra et al., 2017 [39], Gaillard et al., 2014 [42],
Roche et al., 2019 [44]

DUX4 promoter MeDIP Gaillard et al., 2014 [42]

Distal D4Z4 region BSS
Jones et al., 2015 [35], Gould et al., 2021 [37],

Calandra et al., 2017 [39], Gaillard et al., 2014 [42],
Roche et al., 2019 [44]

MeDIP Gaillard et al., 2014 [42]

Non-coding RNAs

lncRNA DBE-T qRT-PCR Cabianca et al., 2021 [47]

Differentially expressed miRNAs qRT-PCR Nunes et al., 2021 [60], Harafuji et al., 2013 [61],
Dmitriev et al., 2013 [62]

Small RNA seq Colangelo et al., 2014 [63]

Histone modifications H3K9me3:H3K4me2 ratio ChIP Balog et al., 2012 [48]

H3K9me3 ChIP Zeng et al., 2009 [49],
Zeng et al., 2014 [50]

Epigenetic regulators of the
D4Z4 locus D4Z4-associated proteins enChIP + MS Campbell et al., 2018 [57]

Novel SMCHD1 interacting
proteins SILAC + MS Goossens et al., 2021 [58]

Spatial genome organization D4Z4 3D organization and
spatial contacts 4C-seq Cortesi et al., 2019 [53]

Transcriptome

DUX4 mRNA qRT-PCR Dixit et al., 2007 [65], Snider et al., 2010 [69]

DUX4 target genes

Microarray Geng et al., 2012 [67]

RNA-seq

Young et al., 2013 [72], Yao et al., 2014 [73],
Choi et al., 2016 [74], Banerji et al., 2017 [78],

Signorelli et al., 2020 [103], Wang et al., 2019 [82]
Wong et al., 2020 [83]

ScRNA-seq van den Heuvel et al., 2019 [79], Guo et al., 2022 [98]
SnRNA-seq Jiang et al., 2020 [86]

PAX7 target genes RNA-seq Banerji et al., 2017 [78], Signorelli et al., 2020 [103],
Banerji et al., 2020 [84]

ScRNA-seq Banerji et al., 2019 [80]

DRA: D4Z4–reduced allele; WES: whole exome sequencing; PFGE: pulse-field gel electrophoresis; MC: molecular
combing; SMOM: single molecule optical mapping; BSS: bisulfite sequencing; MSRE: methylation-sensitive
restriction enzyme-based technique; MeDIP: methylated DNA immunoprecipitation; qRT-PCR: quantitative
real time reverse transcription-polymerase chain reaction; RNA-seq: RNA-sequencing; 4C-seq: chromosome
conformation capture (3C)-on-chip; ChIP: chromatin immunoprecipitation; enChip: CRISPR/Cas9 engineered
chromatin immunoprecipitation; MS: mass spectrometry; SILAC-MS: stable isotope labelling of amino acids in
cell culture mass spectrometry; ScRNA-seq: single cell RNA-seq; SnRNA-seq: single nucleus RNA-seq.

Currently, the disease heterogeneity and variable expressivity is likely to be char-
acterized by a complex molecular scenario that has been partially disclosed (Figure 1).
Currently, the genetic diagnosis is based on the assessment of DRA and/or pathogenic
variants within FSHD-associated genes, although these approaches do not always provide
a complete and exhaustive diagnosis. As a matter of fact, the pathogenic size ranging
from four to eight RUs has been reported in 3% of the healthy general population [124].
Moreover, the potential occurrence of FSHD-associated pathogenic variants in patients
carrying a borderline DRA (8–10 RU) supports the clinical utility of performing additional
genetic analysis in such cases. In fact, this approach could be very helpful in assessing pos-
sible “multigenic” inheritance patterns (namely, the co-occurrence of DRA, 4qA haplotype,
pathogenic variants within different genes and epigenetic alterations) responsible for the
variable expressivity and severity of disease in some patients or within families [28,125].
In fact, this RU range actually represents a “gray zone” for which the genetic diagnosis
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should be carefully conducted taking into account the presence of variable phenotypes
contributed by the simultaneous presence of DRA, epigenetic and other genetic alterations.
As a matter of fact, a possible relevance of epigenetic mechanisms was highlighted in the
past by observing that FSHD-affected monozygotic twins displayed different degrees of
severity although sharing the same FSHD-associated genetic features [126]. As discussed
in the present manuscript, several research studies were able to assess the key role of
epigenetic elements in establishing and modulating FSHD phenotypes. Therefore, their
implementation into the clinical practice could be helpful for improving the characteriza-
tion of patients and supporting the molecular diagnosis. As above-mentioned, different
studies highlighted that the DNA methylation status of the D4Z4 locus could be helpful
in distinguishing FSHD-affected subjects, but also FSHD subjects carrying variants from
the others [34–37]. However, considering the lack of agreement concerning the diagnostic
power of D4Z4 methylation, further studies are still necessary to evaluate it as a useful
biomarker and consider its application in the perspective of creating a multifunctional tool
for FSHD characterization. To date, this objective can be more pursued thanks to technolog-
ical progress. In fact, methylation analysis could be performed on samples retrieved from
different sources by means of different technologies able to provide the required resolution
(single-base or whole region) and throughput (targeted or genome wide). For instance,
affinity enrichment-based methods, such as MeDIP, allow for a large-scale evaluation of
methylation patterns, whereas the BSS-based methods could be employed when a higher
resolution, at a specific target, is required [127].

Bearing in mind the complex etiopathogenesis underlying FSHD, of which, a funda-
mental hallmark is the expression of DUX4, the assessment of transcriptome signatures
strictly related to FSHD and particularly to the effects of DUX4 activation is of paramount
importance for the characterization of disease and the research of clinically useful diag-
nostic, prognostic and therapeutic markers. In fact, the investigation on transcriptome
signatures at a single-cell level could lead to a finer knowledge on FSHD-related patterns of
gene expression. This approach could enable the identification of biomarkers to be exploited
for the classification of FSHD patients, the staging of disease progression or the design of
therapeutic approaches aimed at counteracting the disease (such as DUX4-targeting drugs).
Of note, transcriptome data could be exploited with the purpose of translating the dysregu-
lation of gene expression from the cellular level to the tissue level and could thus provide a
picture of the muscles compromised by the disease. This condition can be visualized by
means of MRI, which allows for the deep phenotyping of FSHD patients [82,128].

Furthermore, given the cellular heterogeneity characterizing the skeletal muscle tis-
sue, it would be useful to utilize sc-RNAseq approaches and, in particular, sn-RNA-seq
approaches, which allows for the analysis of multinucleated fiber and, thereby, a higher
detection of the disease-related transcriptome signature and molecular disease mecha-
nisms [129]. Overall, the advent of NGS analyses allowed the generation of a huge amount
of data, such as the above-mentioned RNAseq data, that could be exploited for clinical
purposes. Their analysis requires advanced computational methods that can help the
professionals in their interpretation and integration. Thus, considering this and the de-
scribed difficulties related to the interpretation of genetic analyses, it would be interesting
to evaluate the application of AI-based tools for the analysis and integration of the different
molecular signatures associated with FSHD. In fact, the utilization of such approaches could
improve the selection of useful biomarkers, allowing for a better comprehension of disease
features, ultimately enabling a better characterization of affected patients. Furthermore,
data obtained from genomic, epigenetic and fine transcriptome analysis of FSHD patients
could be combined with such methods for building highly performant classification models,
which may be able to discriminate between affected and non-affected subjects, as well as
distinguish patients suffering from other neuromuscular conditions.

For this purpose, the integration of clinical and other instrumental data with the infor-
mation provided by these classifiers will be fundamental in providing accurate genotype–
phenotype correlations, supporting physicians in the diagnosis, prognosis and selection of
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the possible therapeutic treatments or providing access to clinical trials (Figure 2). Indeed,
the combination of AI-based tools with FSHD-specific molecular profiles will pave the way
for building multifunctional tools able to analyze and integrate FSHD-related molecular
and phenotype data tailored to increasing the knowledge of disease pathophysiology and
progression and, subsequently, developing novel effective treatment strategies.

In conclusion, the present review highlights how FSHD1 and FSHD2 should not be
considered as distinct forms, and rather as part of a disease continuum characterized by a
molecular spectrum of genetic and epigenetic factors, whose alteration plays a differential
role on DUX4 repression and, subsequently, contributes to determining the FSHD pheno-
type. In this scenario, the application of NGS-based technologies is expected to set the basis
for providing patients and families with accurate genotype–phenotype correlations and, in
parallel, dissecting the different facets of FSHD.
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