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Metabolic profiling in children 
and young adults with autosomal 
dominant polycystic kidney disease
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Autosomal dominant polycystic kidney disease (ADPKD) is the most commonly inherited kidney 
disease. Although children with ADPKD show normal renal function, cyst development is already 
occurring. In this study, we aimed to identify markers and associated molecular pathways of disease 
progression in children and young adults with ADPKD. Plasma samples were collected during a 3-year 
randomized, double-blind, placebo-controlled, phase III clinical trial that was designed to test the 
efficacy of pravastatin on slowing down ADPKD progression in pediatric patients. Samples from 58 
patients were available at baseline and at the 3-year endpoint of the study, respectively. Furthermore, 
plasma samples from 98 healthy children were used as controls. Metabolomic analysis was performed 
using liquid chromatography-tandem mass spectrometry and differences in metabolic profiles over 
time and within study groups were evaluated. While pravastatin therapy led to a decrease in a percent 
change of total kidney volume (HtTKV) in ADPKD patients, it had minimal effects on metabolite 
changes. Oxidative stress, endothelial dysfunction, inflammation and immune response were the 
most affected signaling pathways that distinguished healthy from diseased children. Pathway analysis 
revealed that metabolites in the arginine metabolism (urea and nitric oxide cycles), asparagine and 
glutamine metabolism, in the methylation cycle and kynurenine pathway were significantly changed 
between healthy and children with ADPDK and continued to diverge from the control levels while the 
disease progressed. Detected metabolite changes were primarily governed by disease progression, 
and less by pravastatin treatment. Identified metabolic pathways, from arginine and asparagine to 
kynurenine metabolism could present therapeutic targets and should be further investigated for 
potential to treat ADPKD progression at an early stage.

Autosomal dominant polycystic kidney disease (ADPKD) is the most commonly inherited kidney disease, 
affecting approximately 1:400 to 1:1000 live births. The disease is characterized by cysts in the kidneys as well as 
extrarenal manifestations (e.g. hepatic cysts, mitral valve prolapse, berry aneurysms) and accounts for 5% of the 
end stage renal disease (ESRD)  population1,2. In ADPKD patients, cyst growth and accumulation are thought to 
compress renal vasculature and activate the renin–angiotensin–aldosterone system (RAAS)3. RAAS activation 
along with the upregulation of vasopressin receptors in these patients leads to early  hypertension4–7. In children 
with ADPKD, early onset of hypertension has been linked to rapid decline in estimated glomerular filtration 
rate (eGFR) and early-onset  ESRD8,9.

In addition to early hypertension, factors including PKD1 versus PKD2 mutation, gender, early and frequent 
gross hematuria as well as changes in total kidney volume (TKV), glomerular filtration rate (GFR), and renal 
blood flow are linked to early adverse outcomes in  ADPKD10. Given that treatments for ADPKD are limited and 
that a subset of patients may benefit from early intervention, we conducted a randomized clinical trial to test the 
efficacy of pravastatin on slowing disease progression in children and young adults with ADPKD. The results 
showed that the percent change in height-corrected TKV (HtTKV) over the 3-year period, following adjustment 
for age, sex, and hypertension status, was significantly decreased with pravastatin  therapy11,12.

Furthermore, in addition to limited therapy options, there is also still a lack of reliable prognostic or predic-
tive biomarkers in children and adults with ADPKD.
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Metabolomics, the study of the small-molecule intermediates of cellular metabolism, has been useful in 
eliciting metabolic pathways that underlie disease processes as well as in identifying biomarkers of disease 
 progression13. Whereas several metabolomics studies were performed in patients with chronic kidney disease 
(CKD) and some in adult patients with  ADPKD14–18, only a handful of studies have looked at biomarkers in 
pediatric patients with  ADPKD19. Our previous work focused on identifying changes in biomarkers of inflam-
mation and oxidative stress, both processes that underly the development and progression of ADPKD. We found 
that pravastatin therapy diminished the increase of cyclooxygenase- (COX) and lipoxygenase-derived (LOX) 
pro-inflammatory and oxidative stress markers in plasma of children and young adults with  ADPKD19. Thus, 
in the present study, we utilized the same plasma samples collected at baseline and at the 3-year endpoint of the 
above referenced pediatric clinical trial for targeted metabolomics analysis with the aim to identify additional 
markers, metabolic pathways and mechanisms that are associated with ADPKD  progression11,12,19.

Materials and methods
Trial design. For this study, we used plasma samples collected during the Pravastatin ADPKD Pediatric 
Clinical  Trial12. Briefly, a 3-year randomized, double-blind, placebo-controlled phase 3 clinical trial was designed 
to investigate the effect of pravastatin therapy on change in the combined endpoints of HtTKV, left ventricular 
mass index (LVMI), and urinary microalbumin excretion (UAE) in pediatric ADPKD  patients11,12. Patients were 
seen for a baseline visit during which a history and physical exam were undertaken, abdominal and cardiac 
MRI scans were performed, and fasting blood work (at least 10 h) was collected. All patients were placed on the 
angiotensin-converting enzyme (ACE) inhibitor, lisinopril. Patients were seen again at 36 months (i.e. 3-year 
endpoint of the study) at which time the tests mentioned above were  repeated11,12.

This study was registered and approved (NCT00456365, April 4, 2007) by the Colorado Multiple Institutional 
Review Board (COMIRB). Written informed assent/consent was obtained. Study conduct followed the principles 
of good clinical practices as monitored by the local IRB and adhered to the principles as set forth by the Declara-
tion of Helsinki and its amendments.

Healthy subjects. Our control group consisted of plasma samples collected from 98 healthy children 
undergoing minor dental and ENT surgical procedures (patients fasted for at least 8 h prior to surgery). Sample 
collection was approved by COMIRB and occurred at the same clinical site (Children’s Hospital Colorado). 
Upon plasma generation, all samples (from diseased and healthy subjects) were stored at − 80°C.

Targeted metabolomics. Collected plasma samples were extracted according to a published  protocol20. 
Briefly, samples were centrifuged and mixed with methanol to create an 80% (volume/volume) methanol solu-
tion and were incubated overnight at − 80°C to allow for protein precipitation. Following incubation, samples 
were centrifuged, and supernatants were dried in a SpeedVac concentrator (Savant, ThermoFisher, Waltham, 
MA). Samples were reconstituted with 20µL water/methanol (80:20, volume/ volume). Selected multiple reac-
tion monitoring (sMRM) of 184 metabolites using a positive/negative ion-switching high-performance liquid 
chromatography-tandem mass spectrometry (5500 QTRAP HPLC–MS/MS21) was used for analysis (please refer 
to Supplementary Materials for more detail).

Once the data were acquired, MultiQuant (v2.1.1., Sciex, Foster City, CA) software was used for data process-
ing of 184 unique metabolites in plasma. For between-sample normalization, the intensity values for each sample 
were summed up, and the median value of the sums across all samples were determined. Tune and quality control 
samples were evenly distributed during the batches. The intensity values of each sample were then scaled such that 
the sum of the scaled intensities equaled the median value of all samples. Normalized intensity values were then 
 log2 transformed to reduce the influence of extreme values and to meet the homogeneity of variance assumption.

Statistical analysis. MetaboAnalyst 4.0 was used for statistical analysis of metabolomics  data22. Changes in 
metabolites between healthy and diseased as well as between placebo and pravastatin treated ADPKD patients 
was performed by utilizing Principal Component Analysis (PCA). Relative peak intensities were initially log 
transformed and then autoscaled (mean centered and divided by the square root of the SD of each variable). 
Pathway analysis was performed using the pathway analysis tool in MetaboAnalyst 4.0 (University of Alberta, 
Canada). This tool uses both pathway enrichment analysis through the R‐package GlobalTest based on com-
pound concentration values as well as pathway topological analysis accounting for the impact of individual 
measured metabolites within the pathway. The goal of assessing pathway impact is to account for pathway 
structure and the intuitive concept that central or nodal positions in a pathway will have a greater impact than 
marginal or isolated positions. Total or maximal importance for each pathway is designated as 1, whereas the 
importance of measured metabolites to that pathway is designated as the cumulative percentage from matched 
metabolite nodes. Stepwise linear regression analysis and correlation analysis was performed to identify rela-
tionships between the individual metabolites and HtTKV at baseline as well as percent change in metabolites 
and the percent change in HtTKV (36 months versus 0 months), after adjustment for age, gender, and treatment 
group using SPSS 27.0 (IBM, Armonk, NY). Percent change was calculated by normalizing change over time 
(Δ36 months – baseline) to the corresponding baseline value. Bonferroni correction was applied to correct for 
multiple testing.

Finally, sensitivity and specificity of biomarkers was analyzed in MetaboAnalyst using multivariate Receiver 
Operator Characteristic (ROC) curve analysis, with a P < 0.05 considered significant.
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Results
Patient characteristics. From 110 participants enrolled in the clinical trial, plasma samples from 78 
patients were available at baseline, and samples from 58 patients were available at both baseline and 36-month 
time points (Tables  1, 2). All available samples were utilized for analysis.  There were no significant changes 
in the renal function (eGFR) between the groups, either at the baseline or at the end of the trial (Tables 1, 2). 
HtTKV increased from 342 ± 213 ml/m (baseline) to 441 ± 267 ml/m (36 months) in placebo group  patients11,12 
(Tables 1, 2). Characteristics of the healthy subjects are summarized in Table 3. While we did not evaluate the 
renal function in the healthy children, it can be expected that their 24-h urine creatinine clearance [mL/min/1.73 
 m2] was within the established reference range of 85–145 (5–95 percentile in children above 2 years of age)23,24. 
In the vast majority of children and young adults with ADPKD, kidney function is within the normal  range25,26 
(Tables 1, 2).  

Consistency with parent clinical trial. Since only a subset of patients’ plasma samples were available 
at both baseline and 36-month time points, we aimed to confirm the consistency of findings in our reduced 
subset with the outcomes of the parent clinical trial. Our results showed a significant decline in the change 
of HtTKV over 3 years (Supplementary Figure 1, Table 2) and were consistent with the results of the parent 
 trial12.

Comparison with healthy children. As expected, we observed a clear separation between the base-
line metabolic profiles of children with ADPKD and healthy children (Fig. 1A). Ninety-five metabolites were 
statistically significantly changed between the two groups (after Bonferroni correction), and thirty-nine of these 

Table 1.  Characteristics of the patients at the initial visit (N = 58). Samples from the same patients were 
available at the baseline and the 36-month time points (as reported  in12). Values are the mean ± SD or median 
[25th percentile, 75th percentile]. P < 0.05 considered significant (bolded).

Characteristic
Placebo
(N = 27)

Pravastatin
(N = 31) P Value

Age (year) 15 ± 4 16 ± 3 0.82

% Female 59 55

Race

% White 93 100

% Black 7 0

% Other 0 0

Height (cm) 161 ± 15 167 ± 16 0.16

Weight (kg) 56 ± 20 67 ± 23 0.05

Urine microalbumin excretion (mcg/min)

Mean 42 ± 96 19 ± 23 0.25

Median 15 [7, 23] 10 [7, 19]

Left ventricular mass index (g/m2) 53 ± 11 55 ± 13 0.65

Total kidney volume (ml)

Mean 565 ± 375 545 ± 250 0.81

Median 489 [322, 663] 493 [324, 668]

Total kidney volume corrected for height (ml/m)

Mean 342 ± 213 321 ± 136 0.67

Median 278 [196, 386] 287 [200, 372]

Serum creatinine (mg/dl)

Mean 0.6 ± 0.2 0.7 ± 0.2 0.31

Median 0.6 [ 0.5, 0.7] 0.7 [0.6, 0.8]

24-h urine creatinine clearance (ml/min per 1.73  m2) 142 ± 34 140 ± 32 0.80

BP (mmHg)

Systolic 119 ± 11 122 ± 11 0.42

Diastolic 72 ± 7 72 ± 7 0.97

24-h urine protein (g/day)

Mean 0.16 ± 0.20 0.11 ± 0.05 0.25

Median 0.11 [ 0.09, 0.12] 0.10 [0.07, 0.14]

Hematocrit (%) 39 ± 3 41 ± 3 0.03

Cholesterol

HDL 49 ± 11 48 ± 13 0.78

LDL 94 ± 22 85 ± 23 0.14

Total 157 ± 26 145 ± 25 0.07
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Table 2.  Characteristics of the patients at the final visit (N = 58). Samples from the same patients were 
available at the baseline and the 36-month time points (as reported  in12). Values are the mean ± SD or median 
[25th percentile, 75th percentile]. P < 0.05 considered significant (bolded).

Characteristic
Placebo
(N = 27)

Pravastatin
(N = 31) P Value

Age (year) 18 ± 4 19 ± 3 0.84

% Female 59 55

Race

% White 93 100

% Black 7 0

% Other 0 0

Height (cm) 170 ± 11 172 ± 12 0.39

Weight (kg) 64 ± 18 75 ± 22 0.04

Urine microalbumin excretion (mcg/min)

Mean 27 ± 43 18 ± 15 0.29

Median 13 [8, 23] 13 [10, 19]

Left ventricular mass index (g/m2)

Percent change for slow progressors (per 3 year, within patient, N = 13) − 14.3 ± 7.3 − 15.5 ± 8.6 0.80

Percent change for fast progressors (per 3 year, within patient, N = 13) 48.5 ± 27.4 38.5 ± 27.1 0.53

Total kidney volume (ml)

Mean 758 ± 473 680 ± 380 0.50

Median 610 [403, 965] 527 [422, 868]

Percent change (per 3 year, within patient) 40 ± 27 26 ± 16 0.03

Total kidney volume corrected for height (ml/m)

Mean 441 ± 267 388 ± 200 0.40

Median 342 [245, 542] 310 [250, 480]

Percent change (per 3 year, within patient) 31 ± 21 22 ± 14 0.04

Percent change for slow progressors (per 3 year, within patient, N = 13) 7.8 ± 3.0 6.8 ± 4.1 0.62

Percent change for fast progressors (per 3 year, within patient, N = 13) 63.4 ± 10.8 42.3 ± 6.5 0.003

Serum creatinine (mg/dl)

Mean 0.7 ± 0.1 0.7 ± 0.1 0.65

Median 0.7 [0.6, 0.8] 0.7 [0.7, 0.8]

24-h urine creatinine clearance (ml/min per 1.73  m2) 124 ± 24 135 ± 25 0.10

BP (mmHg)

Systolic 121 ± 9 122 ± 11 0.92

Diastolic 74 ± 8 73 ± 9 0.56

24-h urine protein (g/day)

Mean 0.16 ± 0.11 0.13 ± 0.09 0.31

Median 0.14 [0.09, 0.19] 0.11 [0.06, 0.17]

Hematocrit (%) 41 ± 3 42 ± 4 0.48

Cholesterol

HDL 50 ± 12 47 ± 14 0.36

LDL 89 ± 28 73 ± 27 0.04

Total 160 ± 31 142 ± 36 0.05

Table 3.  Characteristics of the healthy subjects (N = 98).

Characteristic
Healthy controls
(N = 98)

Age (year) 12 ± 5

% Female 53

Race

% White 90

% Black 2

% Other 6

% Unknown 2
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had changed more than 50% between the groups (Fig. 1B). As aforementioned, kidney function did not change 
between the baseline and the end of the trial in either of the treated patient  groups12. It should be mentioned that, 
while all patients were fasting for at least 8 h prior to sample collection, we did not monitor their prior dietary or 
water intake. In addition, healthy subjects were on average 4 years younger than the patients with ADPKD, and 
therefore ANCOVA was used to correct for age differences.

The pathway enrichment analysis performed on the above mentioned 95 compounds revealed methylhisti-
dine metabolism, homocysteine degradation, malate-aspartate shuttle, betaine metabolism and urea cycle to be 
the most affected pathways and separators between the children with ADPKD and those without. Furthermore, 
amino acid metabolism (including glutamate, arginine and proline metabolism, alanine, cysteine, aspartate, 
serine and glycine metabolism); glucose metabolism (including glycolysis, citric acid cycle and gluconeogen-
esis) as well as fatty acid metabolism and oxidation (including phospholipid and triacylglycerol biosynthesis 
and transfer of acetyl groups into mitochondria) were identified as the main metabolic nodes connecting the 
metabolic pathways significantly different between the healthy and diseased children (Fig. 1C).

Biomarker analysis using receiver operating characteristic (ROC) curves revealed thirty-seven metabolites 
with area under the curve (AUC) values of above 0.90 and thus an excellent sensitivity potential for distinguish-
ing healthy from children with ADPKD (Fig. 1D).

Baseline cross-sectional metabolite analysis. PCA analysis showed that metabolic profiles of patients 
were, as expected, similar prior to randomization (Supplementary Figure  2, no significant features between 
groups). At baseline, twenty-one metabolites significantly correlated with the patients’ HtTKV, after adjustment 
for age, gender and race, and again, prior to any change in GFR (Fig. 2A). Several of the metabolites including 
allantoin, uric acid, 1-methyladenosine, indoleacetic acid, kynurenate, thymine and hippurate are known uremic 
toxins and have been shown to be associated with the progression of chronic kidney disease and worsening of 
renal  function14,27–30. Allantoin, 5-hydroxyindoleacetic acid (5-HIAA) and indoleacetic acid were metabolites 
that we identified above as significantly different between healthy and children with ADPKD.

The identified metabolites belonged to the betaine metabolism, ketone body metabolism, gluconeogenesis 
and fatty acid biosynthesis, as well as aspartate and tryptophan metabolism pathways (Fig. 2B). Interestingly, 
most of the metabolites that associated with HtTKV in a stepwise linear regression analysis in ADPKD patients 
at baseline were also those we identified as being different between children and young adults with ADPKD at 
baseline and healthy children (Fig. 1C,D).

Markers of disease progression. As the disease progressed, plasma metabolomic profiles of placebo 
and pravastatin treated ADPKD patients separated from their respective baselines (Fig.  3A). However, very 
little separation between the placebo and pravastatin groups was visible at 36 months, suggesting limited effect 
of statin treatment on the change in metabolite profiles identified by the presently used metabolomics assay 
(Fig. 3A). Furthermore, since patients started the study with different baseline values, we normalized the change 
in metabolites over time (Δ(36–0) months) to the corresponding baseline value (as percent change). Again, there 
was a lack of separation between placebo and pravastatin groups (data not shown).

To specifically address the question of which metabolites correlated with increasing HtTKV and thus worsen-
ing ADPKD disease, we performed stepwise linear regression and correlation analysis between percent change 
in metabolites to percent change in HtTKV (adjusted for age, gender and race, Fig. 3B). As previously shown, 
due to the lack of distinction between placebo and pravastatin groups at either timepoint, we decided to per-
form analysis on only the placebo group (N = 27) as well as on combination of both treatment groups and so 
to improve the statistical power for discovery of markers and pathways related to ADPKD progression (N = 58). 
Strong correlations, after adjustment for gender, age and race (and treatment group when both groups were 
considered) were observed between percent change in HtTKV and methylhistidine and methyladenosine, both 
markers shown to be elevated in patients with advanced chronic kidney  disease31. Methyladenosine, ornithine 
and kynurenate were the three metabolites that were significantly associated with HtTKV at baseline (Fig. 2A) 
as well as with the change in HtTKV over the 3-year observation period (Fig. 3B).

Most importantly, we identified metabolites that were significantly different between healthy and children 
with ADPKD (at baseline, after Bonferroni correction) and that were also associated with disease progression 
(expressed as the change in HtTKV over 3 years, adjusted for age, gender, and race) while further differentiating 
from healthy levels (Table 4). Identified metabolites were associated with tryptophan metabolism, urea cycle, 
ammonia recycling, aspartate and glutamine, nicotinamide, methionine, arginine and proline, glycine and serine 
metabolism as well as the Warburg effect.

Discussion
In ADPKD, it is clinically very difficult to identify patients at risk for rapid disease progression. The literature on 
biomarkers of disease progression is scarce in general and even more so in pediatric patients. Thus, identification 
of biomarkers and metabolic pathways at early stages of ADPKD, before secondary effects including the vicious 
cycle of oxidative stress and inflammation emerge, is of utmost clinical importance. The present study character-
ized plasma fingerprints of pediatric ADPKD patients with preserved kidney function. Targeted metabolomics 
profiling was performed with the following aims: (1) to identify the markers and pathways that differ between 
healthy children and those with ADPKD and (2) to identify if these or other markers and pathways associate 
with the progression of ADPKD over 36 months.

We could demonstrate that PCA-based classification of metabolic fingerprints allowed for a reliable discrimi-
nation between children with very early stage ADPKD and healthy children. Our data suggest the existence of 
a set of compounds and metabolic pathways sensitive to early stages of ADPKD. These included ninety-five 
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metabolites involved in the metabolism of amino acids, carbohydrates, nucleotides, lipids, vitamins and cofactors 
as well as phase II-conjugation drug metabolism.

A large number of the identified metabolites are known uremic toxins including 1-methyladenosine, allantoin, 
asymmetric dimethylarginine (ADMA), dimethylglycine (DMG), guanidinoacetic acid (GAA), homocysteine 
(HCy), hypoxanthine, indolacetic acid (IAA) and 5-hydroxyindolecateic acid (5-HIAA), kynurenate, mono-
methylarginine (MMA), quinolinate, trimethylamine oxide (TMAO), and  xanthine30,32,33. Their accumulation 
in plasma of ADPKD as compared to healthy children was evident even prior to the decline of GFR. From the 
ninety-five identified metabolites, thirty-seven showed potential to differentiate between the healthy and diseased 
pediatric populations as identified by ROC analysis.

Arginine metabolism (urea and nitric oxide cycles) and methylation cycle. Children with 
ADPKD showed unchanged arginine levels but significantly higher levels of ornithine and the polyamine putres-
cine as well as a lower level of citrulline as compared to healthy children. The enzyme responsible for the conver-
sion of arginine to ornithine is arginase (Arg), whose overexpression and increased activity leads to a reduced 
bioavailability of arginine for nitric oxide (NO) production and therefore to oxidative stress and endothelial 
 dysfunction34,35. Furthermore, increases in arginase activity and accumulation of polyamines have been linked 
to cancer and dysfunction of the immune  system36,37.

In terms of ADPKD, comparison of gene expression profiles in kidney tissues of Pkd1-deficient versus wild-
type mice identified 204 genes that were differently expressed in late-stage polycystic kidneys including Arg1. 
Said results indicated that arginine metabolism was significantly activated in Pkd1-KO  mice38. Arg1 was predomi-
nantly expressed in macrophages. Inhibition of Arg1 activity significantly retarded cyst growth and effectively 
lowered the proliferative indices in polycystic  kidneys38. In vitro experiments revealed that macrophages with 
an upregulated Arg1 expression and increased polyamine synthesis stimulated cyst-lining epithelial cell (CLEC) 
 proliferation38. Another study showed that the expression of ASS1, an enzyme that converts aspartate to arginino-
succinate, which is needed for arginine production, is reduced in murine and human ADPKD, and that arginine 
depletion results in a dose-dependent compensatory increase in ASS1 levels as well as decreased cystogenesis 
in vitro and ex vivo with minimal toxicity to normal  cells16. Change in citrulline and ornithine over 36 months 
positively corelated with the corresponding change in HTKV in lisinopril-treated placebo patients. Interest-
ingly, after 36 months, both treatments, lisinopril alone and lisinopril plus pravastatin were able to reduce the 
ornithine/arginine-ratio, suggesting a decrease in arginase activity. The effects were stronger in the combination 
therapy group, similar to previous observations made in patients treated with ACE inhibitors with or without 
 statins35. While arginine/ argininosuccinate and arginine/citrulline ratios remained unchanged over the 3 years 
of treatment, concentrations of eNOS inhibitors ADMA and SDMA declined, suggesting an improvement in 
eNOS activity with ACE inhibition.

Glutamine and asparagine metabolism. Interestingly, the metabolite with the highest ROC AUC 
and potential for differentiating between the healthy and diseased children was asparagine that was more than 
threefold higher in the patients with ADPKD. A recent pediatric study showed that asparagine is significantly 
increased in pediatric cancer patients as compared to healthy  children39. The same study identified a decrease 
in glutamine levels in diseased versus healthy  patients39, an observation that we also made in ADPKD patients 
(Fig. 4).

In cancer cells, metabolic reprogramming results in an increased cell utilization of glutamine needed for 
sustaining the increased energy needs of rapidly dividing  cells40. The expression of glutaminase, the enzyme that 
converts glutamine to glutamate in the mitochondria, is increased and glutaminase inhibitors are currently used 
in clinical trials as treatment options for diverse  cancers41,42. Furthermore, asparagine synthetase that uses the 
amide group from glutamine to synthesize asparagine from aspartate, has also been shown to be overexpressed 
in  cancers43. The opposite reaction of asparagine degradation is mediated by asparaginase, that is downregulated 
in cancer and, in its purified form, has been used for treatment of acute lymphoblastic (ALL) and acute myeloid 
leukemia (AML) for  decades44.

In PKD, a recent study found that embryonic day 12.5 Pkd1-mutant but not wild-type kidneys require glu-
tamine for  growth45. In addition, treatment of Pkd1-mutant mice with a glutaminase inhibitor in utero (by admin-
istration to the mother) and postnatally (up to P10) slowed cyst  progression45. Another study showed that glucose 
metabolism via TCA cycle was reduced and replaced by enhanced utilization of glutamine in Pkd1−/− mouse 
embryonic  fibroblasts46. It was found that these cells depend on glutamine for growth and show increased aspara-
gine synthetase activity, the inhibition of which resulted in decreased cell  growth46. Our results in patients sup-
port these recent studies (Fig. 4). Unfortunately, lisinopril and pravastatin were not able to alter these pathways, 

Figure 1.  (A) Principal component analysis scores plot of healthy children (N = 98) versus children with 
ADPKD (N = 78) revealed a clear separation between the groups at baseline. Ellipses represent 95% confidence 
intervals for each individual group on the PCA plot. (B) Factor change in metabolite intensity between patients 
with ADPKD and healthy subjects (at baseline; presented only those with minimum of 50% change) and (C) 
pathway enrichment analysis of metabolites that were significantly different (after Bonferroni correction) 
between healthy children and children with ADPKD at baseline. The color and size of each dot were associated 
with the -log (p) value and pathway impact value, respectively, where a small p value and high pathway 
impact value indicate the pathway is greatly influenced (large red node). (D) Receiver operating curve (ROC) 
biomarker analysis of metabolites identified in ADPKD at baseline versus healthy subjects revealed thirty-seven 
metabolites with area under the curve (AUC) values of above 0.90.

◂
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Figure 2.  (A) Pearson correlation coefficients and (B) pathway enrichment analysis of plasma metabolites that 
significantly correlated with HtTKV at baseline in pediatric ADPKD patients (N = 78, after adjustment for age, 
gender and race).

Figure 3.  (A) Principal component analysis between pediatric ADPKD patients at the baseline (0 months) 
and after 36 months of treatment (group A = pravastatin, N = 31, group B = placebo, N = 27) and (B) Pearson 
correlation coefficients between the percent change HtTKV to a percent change in metabolites (significant after 
adjustment to age, gender, race (placebo, N = 27) as well as treatment group (both groups combined = ALL, 
N = 58). Percent change was calculated by normalizing the change over time (Δ(36–0) months) to the 
corresponding baseline. Ellipses represent 95% confidence intervals for each individual group on the PCA plot.
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Table 4.  Summary of metabolites that were significantly different between healthy children (N = 98) and 
children with ADPKD at baseline (N = 78) AND were significantly associated after linear regression analysis 
with either HtTKV at baseline (adjusted for age, gender and race, N = 78) or with a percent change in HtTKV 
over 3 years (adjusted for age, gender, treatment groups and race, N = 58).

Significantly different between healthy subjects and pediatric patients at the initiation of the trial 
AND

Association with HtTKV at baseline Association with percent change in HtTKV over 3 years

2-Oxobututyrate 1,3-Diphosphateglycerate

5-Hydroxyindoleacetic acid 2-Aminooctanoic acid

Acetoacetate 2-Hydroxyglutarate

Acetylphosphate 2-Ketohexanoic acid

Allantoin 4-Pyridoxic acid

Betaine Glutamine

Glucose-6-phosphate Hydroxyproline

Indoleacetic acid Kynurenine

Kynurenine Methyladenosine

Methionine sulfoxide Ornithine

Methyladenosine S-Adenosylhomocysteine

Ornithine Xanthosine

Shikimate

Shikimate 3-phosphate

Thymine

Figure 4.  Summary of metabolic reprogramming observed in patients with ADPKD: changes in activity 
of NO and urea cycles, aspartate/asparagine and glutamine/glutamate cycles and methylation/ methionine 
cycles. Arrows indicate directional changes (increase/decrease) with lighter arrows expressing less 
pronounced changes. ADMA: asymmetric dimethylarginine, ARG: arginase1, ASNase: asparaginase, ASNS: 
asparagine synthetase, ASS1: argininosuccinate synthase 1, eNOS: endothelial nitric oxide synthase, GLSase: 
glutaminase, GS: glutamine synthetase, ODC: ornithine decarboxylase, SAM: S-adenosylmethionine, SAH: 
S-adenosylhomocysteine, SAHH: S-adenosylhomocysteine hydrolase.
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with plasma glutamine and glutamate concentrations further declining over time in the ACEI and ACEI plus 
statin-treated patients.

Kynurenine and indole-related pathways. Plasma concentrations of kynurenate, a marker of renal 
insufficiency and oxidative  stress47,48, was higher in ADPKD patients as compared to healthy subjects and fur-
ther increased over time, independent of the treatment group. Interestingly, metabolomics analysis of plasma 
from 1434 adult participants of the Framingham Heart Study found kynurenic acid to be significantly increased 
in patients who progressed faster through  CKD49. In the context of cystic kidney diseases, serum metabo-
lomics analysis of adult participants of the Modification of Diet in Renal Disease Study showed higher levels 
of kynurenic acid in patients with polycystic kidney disease compared to patients with other causes of  CKD50. 
Oppositely, another recent study showed no significant difference in the kynurenate levels between healthy sub-
jects (n = 25) and ADPKD patients with preserved kidney function (eGFR ≥ 90  ml/min per 1.73  m2, n = 31) 
or between patients with ADPKD (n = 95) and CKD patients (n = 92) (eGFR < 90 ml/min per 1.73  m2 in both 
groups)51.

Indoleamine 2, 3-dioxygenases (IDO1 and IDO2) and tryptophan 2, 3-dioxygenase (TDO) are tryptophan 
catabolic enzymes that catalyze the conversion of tryptophan to kynurenine. The increase in kynurenine has been 
shown to exert important immunosuppressive functions by activating T-regulatory cells and myeloid-derived 
suppressor  cells52,53. Targeting IDO1 represents a therapeutic opportunity in cancer immunotherapy and might 
be an effective strategy for targeting ADPKD as well.

Furthermore, we observed a reduction in plasma concentrations of aminoadipic acid in the placebo group over 
the 36-months observation period. Studies have shown aminoadipic acid inhibits the production of kynurenic 
acid in slices of kidney tissue, supporting the inverse relationship between these two metabolites in our  results54.

Additionally, plasma levels of indole-3-carboxylic acid and indoleacetic acid (IAA) acid increased over time 
in both placebo and pravastatin groups, diverging further from healthy subjects. IAA has been linked to the 
oxidative stress and pro-inflammatory state seen in CKD and  ADPKD55.

Metabolites of disease progression. In addition to the above discussed accumulation of metabotoxins 
SAH and kynurenate, glycolysis intermediates 1,3-bisphosphoglycerate, 3-phosphoglycerate and 2-hydroxy-
glutarate (2-HG) also accumulated and were positively correlated with the percent change in HtTKV. Glucose 
metabolism is altered in ADPKD in a pattern similar to the Warburg effect found in cancer that produces a 
shift in energy production from mitochondrial oxidative phosphorylation to aerobic  glycolysis56–58. 2-HG is an 
oncometabolite produced from α-ketoglutarate that causes genetic instability, affects T cell differentiation and 
immunity, and interacts with and modifies hypoxia and cell proliferation (mTOR)  pathways59,60. Accumulation 
of 2-HG has been shown to occur in kidneys of B6(Cg)-Cys1cpk/J (cpk) mouse model of recessive  PKD61.

1-methyladenosine and 3-methylhistidine are uremic solutes shown to accumulate in plasma and to be asso-
ciate with renal  disease31,62. Similarly, 4-pyridoxic acid and thus vitamin B6 metabolism have been shown to be 
altered in patients with renal  diseases63, and seems to occur in early pediatric ADPKD as well.

In summary, our study is one of very few metabolomics studies in ADPKD patients, especially in children 
and young adults. We identified metabolites and metabolic pathways that are involved in the progression of 
ADPKD in pediatric patients. Said metabolites may allow for prognosis of ADPKD progression and stratification 
of patients into slow and rapid progressors to ESRD.

Study limitations. Our study’s primary limitation was the lack of a disease control group that received no 
treatment (i.e. no ACE inhibitor therapy). RAAS activation is a prominent feature of ADPKD pathophysiology 
and ACE inhibitor therapy in children with ADPKD and borderline hypertension has been shown to prevent 
GFR decline and left ventricular mass index (LVMI) increase that otherwise occurs with disease progression. 
Given this, ACE inhibitor therapy was deemed standard of care and was provided to all patients in the clinical 
trial. Consequently, we were unable to definitively attribute metabolite changes to disease progression independ-
ent of ACE inhibitor treatment. Furthermore, no genotyping was performed in our patients and thus no adjust-
ments could be made for either PKD1 or PKD2 mutations.

Furthermore, healthy subjects were on average 4 years younger than the ADPKD patients at baseline. Despite 
the adjustment for age as a confounding variable in our analyses, it should still be noted that some of the differ-
ences between the healthy and children with ADPDK might arise from the puberty-related metabolic changes.

Metabolomics studies of adults and children with ADPKD are limited, thus, when necessary, we compared 
our observed metabolite trends to those published for CKD patients.

A targeted, semi-quantitative assay with multiple quality control measures was used to reduce the false posi-
tive rate in detecting metabolites of importance. In the next step, specific targeted, validated assays for the herein 
identified candidate marker metabolites should be used in future larger clinical biomarker validation studies.

Conclusions
The present study demonstrates that metabolites from the tryptophan, arginine, glutamine and asparagine meta-
bolic pathways, urea and methylation cycles, are markedly associated with the development and progression of 
ADPKD. Statin therapy seemed to have limited effect on the levels of the metabolites monitored in the present 
study; it seemed that metabolite changes were primarily governed by ADPKD progression and/or ACE inhibi-
tor treatment.

Currently, TKV is the only metric that has been recommended by the US FDA as a prognostic enrichment 
biomarker for the selection and inclusion of high risk ADPKD patients in clinical trials. The identification of 
plasma biomarkers, such as markers in the tryptophan metabolic pathway as well as in the urea and arginine 
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cycles that can be used to monitor disease progression and treatment efficacy are potentially of great clinical util-
ity. Further mechanistic qualification and prospective clinical studies are necessary to understand the changes in 
the described pathways and if these provide the basis for novel tools for the diagnosis and monitoring of human 
ADPKD progression.
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