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Abstract: Light-emitting diodes based on colloidal quantum dots (QLEDs) show a good prospect in
commercial application due to their narrow spectral linewidths, wide color range, excellent luminance
efficiency, and long operating lifetime. However, the toxicity of heavy-metal elements, such as Cd-
based QLEDs or Pb-based perovskite QLEDs, with excellent performance, will inevitably pose a
serious threat to people’s health and the environment. Among heavy-metal-free materials, InP
quantum dots (QDs) have been paid special attention, because of their wide emission, which can,
in principle, be tuned throughout the whole visible and near-infrared range by changing their size,
and InP QDs are generally regarded as one of the most promising materials for heavy-metal-free
QLEDs for the next generation displays and solid-state lighting. In this review, the great progress of
QLEDs, based on the fundamental structure and photophysical properties of InP QDs, is illustrated
systematically. In addition, the remarkable achievements of QLEDs, based on their modification
of materials, such as ligands exchange of InP QDs, and the optimization of the charge transport
layer, are summarized. Finally, an outlook is shown about the challenge faced by QLED, as well
as possible pathway to enhancing the device performance. This review provides an overview of
the recent developments of InP QLED applications and outlines the challenges for achieving the
high-performance devices.
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1. Introduction

Colloidal quantum dots (QDs) are zero-dimensional semiconductor nanocrystals,
also known as “artificial atoms”, “superlattices”, and “superatom” [1]. Since the 1990s,
researchers have paid attention to the synthesis methods and photoelectric application
of QDs. Due to the excellent characteristics, such as narrow linewidth, high fluorescent
quantum yield, tunable emission color, and wide color range, QDs are the best candidate
for next-generation solid-state light and display field. The conventional QDs include II-VI
group (ZnS [2], ZnSe [3], CdS [4], CdSe [5]), III-V group (InP [6], GaAs [7], and InAs [8]),
IV group (carbon dots [9] and silicon dots [10]), and perovskite QDs (CH3NH3PbBr3 [11]).
Most of them are spherical or quasi-spherical, with a diameter between 2 and 20 nm. Due
to the quantum confinement effect, the emission wavelength can be turned by the size
or morphology of QDs [1,12,13]. Up until now, the Cd-based QLEDs have shown the
best performance of the colloidal quantum dot light-emitting diodes (QLEDs) based on
colloidal QDs. The brightness of the red, green, and blue (RGB) Cd-based QLEDs reaches
356,000, 614,000, and 62,600 cd/m2 [5], and the external quantum efficiency (EQE) reaches
30.90% [14], 23.90% [15], and 19.80% [16], respectively, which is comparable to the mature
organic light-emitting diodes (OLEDs). At a luminance of 100 cd/m2, the operational
lifetime of RGB Cd-based QLEDs is 2,260,000 h [17], 1,700,000 h [5], and 10,000 h [18],
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respectively, which is basically suitable for low-brightness displays. However, people pay
more and more attention to the biotoxicity of cadmium, which threatens human health and
the environment. Therefore, the development of nontoxic and environmentally friendly
QD materials has become one of the frontier research hotspots.

InP is a representative direct bandgap semiconductor material. Compared with Cd-
based QDs, InP QDs have superior characteristics, such as a larger exciton Bohr radius
(stronger quantum confinement effect), wide spectral tunability (from deep blue to near
infrared), and larger intrinsic absorption coefficient [19,20]. InP QDs have become an ideal
candidate for replacing heavy-metal Cd-based QDs [21,22]. With systematic investigation
of mechanism and device physics and the rapid development of materials and device
fabrication technologies, the electroluminescence (EL) efficiency of red InP QLEDs has
been greatly improved and is comparable to that of Cd-based QLEDs [6,23–25]. In 2019,
Jang et al. achieved a red InP device with an external quantum efficiency (EQE) of 21.4%
and an operational lifetime over 100,000 h [6]. In 2021, Chou et al. reported a green InP
device with 16.3% EQE [24]. The EQE of blue InP QLEDs is only 2.8% [26]. InP QLEDs
with low toxicity and excellent luminescent properties are generally regarded as one of the
most promising devices to replace Cd-based QLEDs. The study of high-performance InP
QLEDs is significant to realize the wide color gamut display of environmentally friendly
QLEDs [27].

Another important EL parameter of QLEDs is the half-height full width (FWHM) of
the emission spectrum. The line spectrum of the luminescence can provide quite detailed
information about the structure of the luminescent center [28,29]. In the spectral linewidth,
each atom contributes to the overall line shape, called heterogeneous linewidths [30].
Due to some physical factors, different resonators have different oscillation frequencies,
numbers of atoms, and distribution of emission frequencies, the spectral lines will exhibit
corresponding line shapes and widths, which are called inheterogeneous linewidths [30]. In
addition, each atom in the system is subjected to time-dependent perturbations (dynamic
perturbations) that produce random changes in the amplitude or phase of the resonant
oscillator, resulting in a broadening of the spectrum. In addition, dynamic perturbations
may also cause random changes in the frequency of the leap, resulting in a dynamically
inhomogeneous broadening. In general, the line shape obtained from a typical spectroscopic
measurement contains both heterogeneous and inhomogeneous broadening.

The study of spectral linewidth is useful for understanding the variation in the proper-
ties of materials and devices, so the half-height full width of the spectrum is an important
parameter for measuring the luminescence properties of materials and devices. To ob-
tain high color purity for the QLEDs, the narrower the half-height full width (FWHM)
of the emission spectrum, the better. The current mature Cd-based QLED linewidth can
reach 20 nm [31]; the Pb-based perovskite QLED, which has received a lot of attention, can
achieve an FWHM of less than 20 nm [32]; and the environmentally friendly InP QLED has
a quite narrow FWHM of about 30–40 nm (Table 1), showing good color saturation for use
as lighting and display arrays.

Table 1. Electroluminescent (EL) performance of RGB InP QLEDs.

QD Structure EL (nm) FWHM (nm) EQE (%) Luminance (cd/m2) Reference

InP/ZnSe/ZnS 630 35 21.4% 100,000 [6]
InP/ZnSe/ZnS 630 34 18.6% 128,577 [25]
InP/ZnSe/ZnS 632 36 21.8% 23,300 [23]
InP/ZnSe/ZnS 545 39 16.3% 12,600 [24]
InP/ZnSe/ZnS 531 34 13.6% 13,900 [33]

InP/ZnS 492 / 2.8% 421 [26]

Green InP/ZnSeS QLEDs were first reported by Lim et al. [34] in 2011. There are two
aspects to improve the performance of InP QLEDs: (1) core/shell structure and surface
ligand modification of QDs, which requires in-depth research on the growth mechanism
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of InP QDs; and (2) optical and electrical optimization of InP QLEDs, which refers to the
structural design of QLED devices and modification of charge transport layers, such as
HTL and ETL. The following text mainly focusses on the above two aspects.

2. Synthesis of InP QDs
2.1. Synthetic Method

The synthesis of InP QDs was first reported by Micic et al. in the early 1990s [35]. At
first, InP QDs did not receive much attention, although it is not long after the first synthetic
reports of Cd-based QDs. In the initial work, InP QDs do not have a shell, and these
QDs usually exhibit asymmetric broad emission peaks in photoluminance (PL) spectra,
sometimes also characterized by shoulder peaks. One of the challenges in synthesizing high-
quality InP nanocrystals is how to control the nanocrystal size distribution by regulating
the nucleation and growth processes [36,37]. The current work on InP QDs mostly adopts
a direct strategy, in which the In and P precursors are heated and reacted in a solution
composed of an organic solvent and a coordination-capped ligand to obtain nanocrystals
dispersed in the solvent. Hot-injection and heat-up are two representative methods. A
synthetic route diagram of hot-injection method is shown in Figure 1a, which contains
either rapidly injecting one [B] precursor into a hot reaction anther [A] precursor medium
(Route I) [22], or injecting both [A] and [B] precursors into a hot medium (Route II) [38].
In a supersaturated state, the precursor has a faster nucleation rate. As time proceeds,
the concentration of reactants decreases and crystals precipitate. For the heat-up method
(Figure 1b), all reactants are dissolved in a solvent, mixed uniformly, and then heated to
the reaction temperature [35]. Therefore, using the heat-up method requires strict control
of the composition ratio of precursors and ligands, reaction temperature, and heating rate
to reduce the overlap of nucleation and time [39].

However, the simultaneous nucleation and crystal growth in the direct synthesis
strategy leads to a non-uniform grain size distribution [40]. To solve this problem, the re-
searchers proposed seeded growth strategies [6,41] and the cation exchange method [42–44].
The seeded growth method first pre-synthesizes InP QDs seeds and then uses additional
In and P precursors for further growth to obtain uniform InP QDs, as shown in Figure 1c.
Due to the good controllability of the size, morphology, and uniformity of InP QDs, seed
growth is a better choice for obtaining high-quality InP QDs. The cation exchange method
(Figure 1d) refers to replacing cations in host nanocrystals with guest ions dissolved in
water or organic solvents. For covalent InP QDs, the exchange reaction usually requires
thermal stimulation. The low mobility of anions in solution ensures that the size and
morphology of the QDs are largely preserved. The cation exchange method is a facile route
for the rapid synthesis of size-controllable nanocrystals [45]. However, cation exchange InP
QDs usually contain a mass of defects, especially when templated nanocrystals composed
of low-valent cations were employed [46]. Representative synthesis methods of InP QDs
and EQE of QLEDs are demonstrated in Table 2.

Table 2. Representative synthesis methods of InP QDs and EQE of QLED.

QD Structure Methods EL
(nm)

PLQY
(%)

FWHM
(nm)

EQE
(%) Reference

InP/ZnSe/ZnS Hot-injection 630 96 34 18.6 [25]
InP/ZnSeS/ZnS Hot-injection 525 95 45 7.06 [47]
In(Zn)P/ZnSe/ZnS Heat-up 641 67 36 / [19]

InP/ZnS/ZnS Heat-up 484 43 1.47 [48]
InP/ZnSe/ZnS Seeded growth 533 65 ± 2 37 [41]
InP/ZnSe/ZnS Seeded growth 630 100 35 21.4 [6]

InGaP/ZnSeS/ZnS Cation exchange 465 80 45–47 2.5 [43]

Cu-assisted
InP/ZnS Cation exchange ~420 25 ~72 / [49]
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(Reprinted with permission from Ref. [41]. © 2018, American Chemical Society), and (d) cation ex-
change method (Reprinted with permission from Ref. [44]. © 2019, American Chemical Society). 
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Figure 1. Schematic of QD synthesis by (a) hot-injection, (b) heat-up (Reprinted with permission from
Ref. [46]. © 2020, WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany), (c) seeded growth
(Reprinted with permission from Ref. [41]. © 2018, American Chemical Society), and (d) cation
exchange method (Reprinted with permission from Ref. [44]. © 2019, American Chemical Society).

2.2. Cost-Effectiveness of InP QDs

Colloidal InP QDs are fabricated by means of wet chemical synthesis. Compared
with traditional III–V epitaxial QDs, colloidal InP QDs have obvious advantages, such as a
simple synthesis process, low-cost of instrumentation and materials, controllable reaction
process, low reaction temperature, solution-process, and large area preparation. These
excellent characteristics are the reason why colloidal InP QDs are receiving more and more
attention and have become the star materials in the field of wearable devices and lighting
displays. However, it is worth noting that, compared with mature colloidal Cd-based
QDs, especially perovskite QDs, InP precursor materials are slightly expensive, and the
synthesis of InP QDs requires higher reaction safety, so the development of colloidal InP
QDs has been limited for quite a long time. Compared with Cd-based and perovskite
QDs, whose commercial development is limited by toxicity, InP QDs have always had poor
optical properties. The reason is that InP synthesis proceeds in a non-classical synthesis
mechanism [50]. In addition, the steeper effective bandgap and nanocrystal size of InP
than CdSe, as well as its easy oxidation to form more trap sites, negatively affect its PLQY
and FWHM [28,51]. However, effective solutions have been found for the above problems,
and they are described in detail below. In recent years, researchers used aminophosphorus
precursors to replace phosphorus precursors, which have high reactivity and poor safety.
Tris(trimethylsilyl)phosphine ((SiMe3)3P), as the mainstream phosphorus precursor for the
synthesis of InP QDs, is not only expensive but also highly active; thus, it can spontaneously
ignite in air and explode at high temperatures [35,52]. Recently, a type of aminophosphorus,
tris(dimethylamino)phosphine ((DMA)3P), was used to replace (SiMe3)3P as a phosphorus
precursor [47,53,54]. By using aminophosphorus precursors, controlled-reaction conditions
with suitable reactivity and good safety can be obtained in the wet synthesis process. As a
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result, the synthesis of indium phosphide has made rapid progress, so that the performances
of QLEDs are greatly improved.

3. Influence of Core/Shell Structure on Performance of InP QLEDs

In principle, the emission wavelength of QDs can be regulated by dynamically chang-
ing the electronic structure of QDs. The construction of high-quality colloidal QDs is a
key factor in determining the EL performance of QLEDs. It is necessary to tailor the InP
QD core–shell structure and optimize its device structure to improve the EL performance
through nanoengineering. The nanoengineering of InP QDs, that is, the tuning of param-
eters, such as emission wavelength, linewidth and luminous efficiency of QDs through
energy-band engineering of core–shell structures and alloys out-shell. The development
of InP QDs can be divided into several stages: from a core-only QD, to a core/shell QD,
and then to a more refined core/shell/shell QD and alloyed core/shell QD (Figure 2) to
improve the photoluminescence quantum yield (PLQY) and stability of QDs, as well as the
EL performance of InP QLEDs.
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3.1. Core-Only InP QDs

In the early works, QDs often fabricated with a single InP core without the outside
shell. In 1994, Nozik et al. firstly synthesized InP QDs by using InCl as the indium source
and P(SiMe3)3 as the phosphorus source [35]. In 1996, Guzelian prepared 2–5 nm InP QDs
in trioctylphosphine oxide (TOPO) by using InCl and (TMS)3P [52]. In the same year, Mićić
et al. also prepared InP QDs of 2.5–4.5 nm, which exhibited 30% PLQY at 300 K and 60%
PLQY at 10 K high QY [55]. However, the abovementioned InP QDs usually exhibit a wide
linewidth, asymmetric spectra, and shoulder peaks. The reason is likely related to surface
defects, where electron and hole pairs are prone to non-radiative recombination, and PL
emission is largely suppressed [35,55,56]. The synthesis process usually takes 3–7 days,
and the long time makes the nucleation and growth processes overlap, resulting in uneven
particle size distribution. In 2002, Battaglia et al. synthesized InP QDs with symmetrical
single-peak emission spectrum by using indium acetate, instead of indium oxalate, and the
synthesis time was decreased to 3 h [22].

The intermediates InP magic-sized clusters (MSCs) were first observed and reported
by Xie et al. in 2009 [57]; they believe that the MSCs with higher thermal stability makes
the nucleation and growth process of InP nanocrystals different from the classical model.
Cossairt et al. proposes a non-classical view of nucleation growth, as shown in Figure 3 [58].
It is shown that the MSCs play a slow-release role, providing active monomers in reaction,
so that the concentration of active monomers can be maintained at a high level [50]. Xie
et al. observed the reaction process of InP MSCs and found that the content of MSCs
gradually decreased with the increase of reaction temperature and disappeared completely
at 300 ◦C [59]. Using this method, they obtained nearly monodisperse InP QDs. A study on
the growth mechanism of InP MSCs will play a positive role in overcoming some challenges
of InP QDs, such as monodisperse QDs and precise morphology control.
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3.2. Core/Shell Structure

Due to the poor encapsulation of core-only InP QDs and many superficial defects,
the PLQY of InP QDs is quite low. To improve the stability and PLQY of InP QDs, a
core/shell heterostructure was fabricated which is covered with an out-shell and organic
ligands as surface passivated materials [20,60]. In 2000, Mićić et al. first used perfectly
matched ZnCdSe2 to the shell [56]. However, the small conduction band minimum (CBM)
difference between ZnCdSe2 and InP resulted in a weaker electron confinement, and the
PLQY was <10%. On the contrary, Haubold et al. used ZnS as the shell, which has a large
lattice mismatch but a large band gap (3.68 eV) [61]. Surprisingly, the InP QDs reached
a 23% PLQY. It is shown that high-quality shell growth is an effective way to enhance
the performance of InP QDs. Under the same strategy, in 2007, Xie et al. developed a
low-temperature synthesis method of InP/ZnS QDs, and the PLQY reached 40% [62]. In
2008, a rapid growth method of InP core and ZnS shell was reported, which improved
the efficiency of QDs with uniform size [63]. In 2012, Lim et al. synthesized ZnS/InP
QDs by etching the InP core with acetic acid [64], and blue InP QDs with an emission
wavelength of 475 nm and a FWHM of 39 nm were obtained. Although the performance of
InP QDs has been improved, the PLQY and stability are still lower than those of Cd-base
QDs. Meanwhile, these reported high-efficiency InP QDs are not used to fabricate InP
QLEDs. The investigation of PL kinetic curve reveals the reason (Figure 4) [65]. Due to
the large lattice mismatch between the InP core and the ZnS shell, many trap sites are
formed. Moreover, most of the electrons are captured by the traps and lost through the
non-radiative recombination process.
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Figure 4. (a) Schematic diagram for the luminescence relaxation kinetics of core–shell InP@ZnSe
quantum dots dispersed in n-hexane. All the time, constants are given in units of nanoseconds.
Picosecond luminescence kinetic profiles were measured in short (b) and long time (c) windows of
core–shell InP@ZnSe nanoparticles dispersed in n-hexane, and the sample was excited at 532 nm
and monitored at 600 nm. Nanosecond luminescence kinetic profiles were measured in short (d) and
long time (e) windows of core–shell InP@ZnSe nanoparticles dispersed in n-hexane, and the sample
was excited at 532 nm and monitored at 800 nm. Reprinted with permission from Ref. [65]. © 2010,
Elsevier Inc.

3.3. Core/Shell/Shell Structure

The reason for the poor performance of InP-based QLEDs is the deep gap state defects
and oxidation defects of InP QDs, resulting in low radiative recombination efficiency of
electrons and holes injected into the emission layer of InP QDs [20,66,67]. Among them,
the oxidation defect of InP is the main reason for the poor optical properties of InP [68]. In
addition, the InP/ZnS core/shell structure inevitably leads to the inter-doping of core/shell
structure, because the III and V group atoms are easily doped into the II–VI atoms [69,70].
Both oxidation defects and component doping could generate a large number of surface
traps at the InP/ZnS interface, as these will cause energy losses, such as Förster resonance
energy transfer (FRET) and Auger recombination (AR) [6,71]. To suppress the non-radiative
progress, double-shell QDs were fabricated [72]. The conventional shell materials used in
InP QDs are GaP, ZnS, ZnSe, and ZnSeS [6,73–76], as shown in Figure 5. Among them, the
lattice mismatch between ZnSe and InP is the smallest, at only 3.3%; GaP reaches 7.1%; and
ZnS is the largest, which is 7.7% [70,73,74,77,78]. However, the band gap of ZnS is higher,
reaching 3.68 eV [77]. The high band gap attribute InP/ZnS QDs reach a good confinement
effect for the electron. Therefore, GaP and ZnSe are regarded as strong competitors for the
intermediate shell and ZnS for the out-shell [34,73,77,79]. In 2019, Zhang et al. successfully
synthesized InP/GaP/ZnS core/shell/shell QDs which have high stability, a high PLQY
(67%), and a large particle size (7.2 ± 1.3 nm) [80].
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Double-shell InP/ZnSe/ZnS QDs with a 1 nm ZnS shell were reported in 2011, and
the QDs were successfully used as an emitting layer in QLED [34]. In 2016, Lee et al.
synthesized a series of trichromatic InP/GaP/ZnS core/shell/shell QDs by using an im-
proved thermal synthesis method [81]. Blue QDs were obtained by using t-DDT to prevent
grain growth; the transition from green to orange was obtained by adjusting the content
of myristic acid; red QDs were obtained by adding a large amount of gallium chloride.
The PLQYs are about 40%, 85%, and 60%, and the FWHMs are 50, 41, and 65 nm for the
synthesized blue, green, and red QDs, respectively. The large size and thick shell exhibit a
better ability to suppress non-radiative recombination processes. Li et al. confirmed that,
In or P doping into the shell also affect the QDs performance, as shown in Figure 6a–d [74].
By controlling the stoichiometry of precursor, red InP QDs show a PLQY over 90% and an
FWHM of 35 nm. In addition, the EQE of InP QLEDs reached 12.2%. As demonstrated in
Figure 6e,f, in 2019, Won et al. added HF solution to the early stage of shell growth to pre-
vent re-oxidation, and increased the thickness of the ZnSe interlayer to 3.6 nm [6]. Finally,
high-quality red InP/ZnSe/ZnS QLEDs based on high spherical QDs were obtained; the
highest brightness of the device is 100,000 cd/m2, the maximum EQE is 21.4%, and the
operational lifetime is 1,000,000 h at 100 cd/m2. The EL performance of the InP/ZnSe/ZnS
QLEDs is comparable to the state-of-the-art Cd-based QLEDs.

In 2017, high-performance green InP QLEDs were demonstrated by using thick-shelled
InP/ZnSeS/ZnS QDs and a ZnMgO commercial electron transport layer in an inverted
structure [82]. The brightness of these improved QLEDs is higher than 10,000 cd/m2. Zhang
et al. introduced the intermediate ZnMnS layer to obtain green InP/ZnMnS/ZnS QDs with
a PLQY of 80% [83]. ZnMnS reduces the lattice mismatch between the core InP and shell
ZnS, as shown in Figure 7a,b. In 2019, Zhang et al. synthesized thick-shell InP/GaP/ZnS
QDs [80], and the green QLEDs exhibited a maximum current efficiency of 13.7 cd/A and
an EQE of 6.3%, which is 1.8 times higher than the previously reported value [84]. In 2021,
Liu et al. used (DMA)3P as the P precursor to synthesize green InP/ZnSeS/ZnS QDs [47]
and obtained the highest PLQY of 95%, as shown in Figure 7c–h. Finally, the EQE of the
fabricated inverted InP QLEDs exceeds 7%, which is the highest EQE record currently
reported based on the (DMA)3P synthesis route. Recently, Chao et al. synthesized green
InP/ZnSe/ZnS QDs with a PLQY of 86% [24]. Then they modified the InP QD emitting
layer by passivation with various alkyl diamines and zinc halides, and a record 16.3% EQE
of green QLEDs was achieved.
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ical Society. (e) Preparation of InP cores and InP/ZnSe/ZnS QDs with different morphology and 
shell thickness. (f) Photoluminescence spectra of QD-1′ (prepared without HF addition), QD-1, QD-
2, QD-3, QD-1R, QD-2R, and QD-3R. Inset, photograph of QD-1′ (no HF) and QD-3 taken under 365 
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Figure 6. (a) Stoichiometry-controlled synthesis scheme. (b) TEM images of the obtained
InP/ZnSe/ZnS QDs with size-distribution histograms (top right) and high-resolution TEM images
(bottom left). (c) Stoichiometry-controlled route (top), conventional route (middle), and control-
experiment route (bottom) producing different QDs. (d) Atomic In:P ratios in InP-based QDs
synthesized by three different routes. Reprinted with permission from Ref. [74]. © 2019, American
Chemical Society. (e) Preparation of InP cores and InP/ZnSe/ZnS QDs with different morphology
and shell thickness. (f) Photoluminescence spectra of QD-1′ (prepared without HF addition), QD-1,
QD-2, QD-3, QD-1R, QD-2R, and QD-3R. Inset, photograph of QD-1′ (no HF) and QD-3 taken under
365 nm illumination. Reprinted with permission from Ref. [6]. © 2019,The Author(s), under exclusive
license to Springer Nature Limited.
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peak of 477 nm and an FWHM of 43.7 nm. In 2019, Huang et al. found that the copper ions 
can compete with the nucleation process of InP QDs to form smaller-sized InP QDs. More-
over, deep blue InP QDs were achieved with a record emission wavelength of 425 nm, as 
shown in Figure 8a–c [49]. In 2020, Zhang et al. used GaP as the intermediate shell to 
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(b) PL spectra of InP QDs with different shells. Reprinted with permission from Ref. [83]. © 2019,
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The growth stages of green InP QDs synthesized with (DMA)3P. (e–g) Aliquot study of three growth
stages during reactions: InP cores, InP/ZnSeS QDs, and InP/ZnSeS/ZnS QDs. (h) EQE versus
luminance of the two QLEDs. Reprinted with permission from Ref. [47]. © 2021, Wiley-VCH GmbH.

Compared with green and red InP QDs, the core size of blue InP QDs is smaller,
meaning that more defects will be generated. Moreover, it is difficult to realize controllable
epitaxial growth of QD shells, resulting in a wide linewidth and low PLQY; the research
on high-performance blue InP QDs lags far behind red and green QLEDs. In 2017, Shen
et al. used (DMA)3P, which has a moderate reaction rate and is easily tunable as the P
precursor, to adjust the size of InP QDs to achieve blue light emission [54]. In addition,
the formation of a halamine passivation layer, combined with the zinc halide–mediated
colloid method, can greatly reduce surface defects; they obtained InP/ZnS QDs with a PL
peak of 477 nm and an FWHM of 43.7 nm. In 2019, Huang et al. found that the copper
ions can compete with the nucleation process of InP QDs to form smaller-sized InP QDs.
Moreover, deep blue InP QDs were achieved with a record emission wavelength of 425 nm,
as shown in Figure 8a–c [49]. In 2020, Zhang et al. used GaP as the intermediate shell to
synthesize InP/GaP/ZnS//ZnS core/shell/shell InP QDs with a PLQY of 81%, as shown
in Figure 8d–f [85]. The best-performing InP QLED shows an EQE of 1.01%, a maximum
luminance of 3120 cd/m2, and an FWHM of 50 nm at the luminescence peak at 488 nm.
Ding et al. successfully synthesized pure blue InP/ZnS/ZnS core/shell/shell QDs with
an emission wavelength of 468 nm, a PLQY of 45%, and an FWHM of 47 nm by using
stable and low-cost (DMA)3P, ZnI2, and InI3 as precursors [76]. The EQE of the device is
enhanced from 0.6% of InP/ZnS QLED to 1.7% of InP/ZnS/ZnS QLED.
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density and luminance as a function of the voltage. (f) Current efficiency and EQE as a function of 
the luminance. Reprinted with permission from Ref. [85]. © 2020, American Chemical Society. 
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the lattice strain. The alloyed QDs can effectively inhibit Auger recombination, due to the 
smooth interface potential distribution. To reduce lattice core–shell mismatch, Pietra et al. 
realized alloyed InxZnyP QDs; the lattice constant can be fine-tuned by changing the Zn2+ 
concentration and reduced from 5.93 to 5.39 Å [86]. Moreover, the maximum PLQY of the 
core/shell InP QDs with matching lattice parameters reaches 60%. In 2021, Taylor et al. 
developed a two-step heating-up process to grow an In(Zn)P core and coated inorganic 
ZnSe/ZnSeS/ZnS shell, as shown in Figure 9a [87]. Surface-modified bright green InP 
core/shell QDs showed a narrow FWHM of 33 nm and a PLQY of 71%. To surmount in-
trinsic size limitation, in 2020, Kim et al. implemented action exchange strategy to achieve 
deep blue InGaP QDs [43]. The 465 nm emitting InGaP/ZnSeS/ZnS QDs were further em-
ployed as an emitting layer of an all-solution-processed QLED, and the device generates 
a maximum EQE of 2.5% and luminance of 1038 cd/m2, as shown in Figure 9b–f. By adopt-
ing a lowly reactive P precursor, Liu et al. significantly promoted alloyed-shell 
InP/ZnSeS/ZnS QDs with a PLQY of 95% and an FWHM of 45 nm, which was the record 
PLQY obtained from the aminophosphine system [47]. By optimizing the device structure, 
an inverted green InP QLED with an EQE of 7.06% was achieved. 

Figure 8. (a) Schematic synthesis of blue-emitting InP/ZnS QDs with Cu−assisted process.
(b) UV−Vis absorption and (c) photoluminescence emission spectra of InP and InP/ZnS QDs,
Cu−assisted InP QDs, and Cu−assisted InP/ZnS core/shell QDs. Reprinted with permis-
sion from Ref. [49]. © 2019, American Chemical Society. (d) Schematic diagram of the QLEDs
structure. (e) Variations of current density and luminance as a function of the voltage. (f) Current
efficiency and EQE as a function of the luminance. Reprinted with permission from Ref. [85]. © 2020,
American Chemical Society.

3.4. Alloyed Core/Shell Structure

Both oxidation defects and compositional doping will generate many surface traps
at the InP/ZnS interface, and this will cause some non-radiative energy losses. Alloyed—
especially gradient alloyed QDs—can be effectively used to solve this problem. The lattice
mismatch can be gradually changed to alleviate the interface defects that are caused by
the lattice strain. The alloyed QDs can effectively inhibit Auger recombination, due to
the smooth interface potential distribution. To reduce lattice core–shell mismatch, Pietra
et al. realized alloyed InxZnyP QDs; the lattice constant can be fine-tuned by changing
the Zn2+ concentration and reduced from 5.93 to 5.39 Å [86]. Moreover, the maximum
PLQY of the core/shell InP QDs with matching lattice parameters reaches 60%. In 2021,
Taylor et al. developed a two-step heating-up process to grow an In(Zn)P core and coated
inorganic ZnSe/ZnSeS/ZnS shell, as shown in Figure 9a [87]. Surface-modified bright
green InP core/shell QDs showed a narrow FWHM of 33 nm and a PLQY of 71%. To
surmount intrinsic size limitation, in 2020, Kim et al. implemented action exchange strategy
to achieve deep blue InGaP QDs [43]. The 465 nm emitting InGaP/ZnSeS/ZnS QDs were
further employed as an emitting layer of an all-solution-processed QLED, and the device
generates a maximum EQE of 2.5% and luminance of 1038 cd/m2, as shown in Figure 9b–f.
By adopting a lowly reactive P precursor, Liu et al. significantly promoted alloyed-shell
InP/ZnSeS/ZnS QDs with a PLQY of 95% and an FWHM of 45 nm, which was the record
PLQY obtained from the aminophosphine system [47]. By optimizing the device structure,
an inverted green InP QLED with an EQE of 7.06% was achieved.
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Figure 9. (a) Schematic diagram of the two-step heating-up process synthesis of InP QDs. Reprinted 
with permission from Ref. [87]. © 2021, American Chemical Society. (b) Schematic illustration of 
In3+−to−Ga3+ cation−exchange−based InGaP core and subsequent ZnSeS/ZnS double shelling. (c) En-
ergy band diagram of InGaP QLEDs. (d) Spectral comparison of PL of a QD dispersion with EL 
collected at 6 V. (e) Variations of current density and luminance as a function of the voltage. (f) 
Variations of current efficiency and EQE as a function of the current density. Reprinted with per-
mission from Ref. [43]. © 2020, American Chemical Society. 
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To improve the photophysical property, surface chemistry modification has long 

been used to achieve nonblinking and stable QDs. In ligand modification, the ligands af-
fect the superficial defects of QDs, leading to enhanced carrier transport in QD thin films 
and an improved PLQY [88]. Ligand exchange is one of the key factors affecting carrier 
mobility; mobility can be modified by decreasing the ligand length [89]. Changing the 
chemical binding group and dipole moment of the ligand will change the surface dipole 
strength of the QD ligand, thereby varying the valence band maximum (VBM) and CBM 
of the QDs [90,91]. Won et al. replaced the oleic acid ligand on the surface of the quantum 
dots with a shorter chain length hexanoic acid (HA), and the device hole current of the 
short ligand QDs increases fourfold, promotes exciton recombination, and reduces Auger 
recombination, and the EQE of the device increases to 21.4% [6]. In 2021, a high EQE of 
16.3% for InP QLEDs was obtained based on the modification of surface ligands and the 
ZnI2 precursor, which is the record EQE value of green InP QLEDs up to now [24]. In this 
work, a shorter chain (BDA) was used to strengthen the molecular bonds between QDs 
and control carrier transfer at the QDs interface, and hole injection and mobility were 
modified; the schematic diagram of the reaction is shown in Figure 10. Yoo et al. reported 
InP QLEDs decorated with bipyridyl ligands with delocalized molecular orbitals, which 

Figure 9. (a) Schematic diagram of the two-step heating-up process synthesis of InP QDs. Reprinted
with permission from Ref. [87]. © 2021, American Chemical Society. (b) Schematic illustration of
In3+−to−Ga3+ cation−exchange−based InGaP core and subsequent ZnSeS/ZnS double shelling.
(c) Energy band diagram of InGaP QLEDs. (d) Spectral comparison of PL of a QD dispersion with
EL collected at 6 V. (e) Variations of current density and luminance as a function of the voltage.
(f) Variations of current efficiency and EQE as a function of the current density. Reprinted with
permission from Ref. [43]. © 2020, American Chemical Society.

3.5. Ligand Engineering

To improve the photophysical property, surface chemistry modification has long been
used to achieve nonblinking and stable QDs. In ligand modification, the ligands affect the
superficial defects of QDs, leading to enhanced carrier transport in QD thin films and an
improved PLQY [88]. Ligand exchange is one of the key factors affecting carrier mobility;
mobility can be modified by decreasing the ligand length [89]. Changing the chemical
binding group and dipole moment of the ligand will change the surface dipole strength
of the QD ligand, thereby varying the valence band maximum (VBM) and CBM of the
QDs [90,91]. Won et al. replaced the oleic acid ligand on the surface of the quantum
dots with a shorter chain length hexanoic acid (HA), and the device hole current of the
short ligand QDs increases fourfold, promotes exciton recombination, and reduces Auger
recombination, and the EQE of the device increases to 21.4% [6]. In 2021, a high EQE of
16.3% for InP QLEDs was obtained based on the modification of surface ligands and the
ZnI2 precursor, which is the record EQE value of green InP QLEDs up to now [24]. In this
work, a shorter chain (BDA) was used to strengthen the molecular bonds between QDs and
control carrier transfer at the QDs interface, and hole injection and mobility were modified;
the schematic diagram of the reaction is shown in Figure 10. Yoo et al. reported InP QLEDs



Micromachines 2022, 13, 709 13 of 26

decorated with bipyridyl ligands with delocalized molecular orbitals, which lowered the
charge injection barrier and improved the charge balance in QDs [92]. Recently, a method
was reported to encapsulate blue InP QDs with siloxane via 3-Trimethoxysilylpropanethiol
(TMSPT) for ligand exchange and condensation reactions to improve their stability [93].
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Figure 10. Schematic diagram of the synergistic passivation of InP green QDs by BDA and zinc
halide. (a) Green InP/ZnSe/ZnS QDs with oleic acid ligands. (b) InP QDs modified with BDA
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image of the interlayers cross−section and corresponding device structure. (f) Operational lifetimes
of InP QLEDs under a condition of 2000 cd/m2. Reprinted with permission from Ref. [24]. © 2021,
The Author(s).

In summary, in order to obtain high-efficiency InP QLEDs, it is necessary to syn-
thesize InP QDs with high lattice integrity, uniform size distribution, and high stability.
The development of InP QDs varies from the initial shell-free structure to the core/shell
structure that uses a metal shell to passivate the surface of quantum dots, and now to a
conventional double-shell structure or alloyed shell structure that can effectively alleviate
lattice mutation and reduce core–shell interface defects. In addition, by increasing the
thickness of the shell layer, and performing ligand exchange can also improve the efficiency
and stability of InP QDs, thereby improving the performance of InP-based QLEDs.

4. Influence of Device Structure on the Performance of InP QLEDs

The design and optimization of the device structure determine the injection and
transport of carriers and the recombination rate of excitons, as well as the efficiency and
brightness of the device. To realize high-efficiency InP QLEDs, the structure of QLEDs
needs to be carefully designed, considering a conventional or inverted structure, modifica-
tion of energy levels of HTL and ETL, interfacial engineering, and the optical optimization.
Furthermore, it is also crucial to prevent excessive electron leakage to improve the operating
lifetime. QLEDs generally consist of a multilayer sandwich structure: a QD light-emitting
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layer (EML), an electron transport layer (ETL), a hole transport layer (HTL), and positive
and negative electrodes (Figure 11). Operated with the electric field, electrons and holes
are respectively transported through the charge transport layer and injected into the QD
EML and then formed excitons, which are de-excited by radiative recombination and emit
photons. The performance of QLEDs has been greatly improved with the deeply under-
standing of the device physics and mechanism of QLEDs, the continuous development of
QDs and charge transport materials, and the continuous improvement and optimization of
device structures.

4.1. The Blended Emitting Layer

Mixed QDs with conducting polymers as EML is a good strategy to improve the
charge injection efficiency to balance the carriers [94]. Han et al. fabricated a uniform
thin film by blending the organic molecule N,N’-bis (3-methylphenyl)-N,N’-bis-(phenyl)-
9,9-dioctylfluorene (DOFL-TPD) with long-alkyl-chains-covered InP/ZnSe/ZnS QDs, as
shown in Figure 12 [25]. They found that DOFL-TPD was uniformly distributed in the
blended EML without any phase separation, which facilitated hole injection and energy
transfer to the quantum dots; moreover, the blended EML exhibited a highly efficient
electron-blocking ability for HTL, thereby enhancing the efficiency and lifetime of QLED
devices. The device of the blended EML exhibits an EQE of 18.6%. Compared with pure
InP/ZnSe/ZnS QLEDs without DOFL-TPD, the lifetime is significantly prolonged with a
lifetime of 107,772 h at a luminance of 100 cd/m2. The idea of homogeneously mixing QDs
with efficient charge transport materials to prepare the blended EML shows great promise
for developing efficient optoelectronic devices.

4.2. Modification of ETL

In a previous work, ZnO nanoparticles (NPs) [95] and doped-ZnO NPs [96,97] with
high mobility, suitable energy level, and solution-process deposition, were identified as
the best electron transport material for QLEDs. In addition, the strong electron injection
ability of the ZnO NP layer could result in excess electrons in EML and form an undesirable
leakage current. In general, the excess electrons may cause many problems, such as charged
QDs, reduction of the fraction of excitons, trion emission, poor EL performance, or drop
of device lifetime [98]. In 2017, Wang et al. replaced ZnO with ZnMgO as the ETL of InP
QLEDs, which greatly improved the device performance, giving it a highest brightness
level of over 10,000 cd/m2 [82]. Although ZnO has high electron mobility, Wang et al.
believes that the electron injection barrier is still large. As an alternative, ZnMgO, with
a higher CBM, was used as an ETL in InP QLEDs to reduce the electron injection barrier,
thereby improving the performance of InP QLEDs. In 2019, Lee et al. acknowledged that
the excess electrons in InP QLEDs are the main reason for the emergency of non-radiative
recombination process, and the electron mobility can be reduced by Mg doping; and
green InP QLED with 12.5 mol% Mg the ZnMgO ETL reaches a maximum brightness of
13,900 cd/m2 and an EQE of 13.6%, as shown in Figure 13 [33]. For another point of view,
Wu et al. argued that the improvement of InP QLEDs with ZnMgO ETL is due to the
passivation of the band gap states and reduction of the electron conductivity [70]. For
QLEDs with lower conductivity ZnO, the exciton quenching at the interface between QD
and ZnO is smaller, resulting in a higher EQE and current efficiency.
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Figure 13. TEM images of (a) ZnO. ZnMgO with (b) 10.0 mol% Mg, and (c) 12.5 mol% Mg, and (d) 15.0
mol% Mg. (b) Band structure diagram of the InP QLED. (c) Current density−voltage−luminance
curves of QLEDs fabricated with ETLs with different Mg contents. (d) EQE−luminance−power effi-
ciency curves of QLEDs fabricated with ETLs with different Mg contents. Reprinted with permission
from Ref. [33]. © 2019, The Royal Society of Chemistry.

4.3. Modification of HTL

Most of the above improvements in device performance were achieved by suppress-
ing the excess electrons. The more desirable approach to circumvent the influence of
unbalanced charge injection is to enhance the injection and transport of holes in order
to enhance the EL performance. The modification of HTL and hole injection layer (HIL)
has also been proved feasible by many works, for example, multilayer HTLs with cas-
caded energy levels or add dipole layers between HTL and EML to achieve energy level
alignment [99–101]; and doping hole transport materials to improve the conductivity [102].
Kim et al. used 2,3,4,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane (F4-TCNQ) as the
p-type dopant material and successfully diffused into the middle of HTL and HIL in
the form of an interlayer through thermal annealing [103]. This p-type dopant HTL en-
hances the hole injection efficiency and improves the charge balance of InP QLEDs, and
the EQE increased from 1.6% to 3.78%. Yeom et al. believes that the ETL with higher
electron mobility and the HTL with low hole mobility cause exciton quenching and charge
unbalance [23]. Therefore, a new HTL with high hole mobility and deep highest occu-
pied molecular orbital (HOMO), N-([1,1′-biphenyl]-4-yl)-N-(4-(dibenzo[b,d]-thiophen-2-
yl)phenyl)dibenzo[b,d]thiophen-2-amine (DBTA), was designed to transport holes to InP
QDs faster and more efficiently. The inverted red InP QLED reaches a current efficiency of
23.4 cd/A, an operating lifetime of 72,848 h at 100 cd/m2 and an EQE of 21.8%, which is
the highest EQE value for red InP QLEDs, as shown in Figure 14. Zhu et al. conducted a
systematic study on the simultaneous optimization of ETL and HTL [104]. First, double
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HTLs ((poly [(9,9-dioctylfluorenyl-2,7-diyl)-co-(4,4′-(N-(p-butylphenyl))-diphenylamine)],
poly (9-vinlycarbazole), TFB/PVK) was used to form a step-shaped implantation, which
greatly improved the film morphology at the interface between HTL and QDs. Compared
with the device using only PVK, the turn-on voltage was reduced from 2.8 to 2.6 V, and
the current efficiency rose from 3.16 to 4.13 cd/A. The PVK layer was further doped with
TAPC to enhance the hole injection efficiency; finally, a peak current efficiency of 7.58 cd/A
was obtained, which is higher than that of the PVK-only device.
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Figure 14. (a) Current density−voltage curves for different HTL materials. (b) Device structure
and HOMO and LUMO energy levels of each part. (c) Schematic diagram of the device structure.
EL performance: (d) current density−voltage and (e) EQE−brightness curves of QLEDs fabricated
with Zn0.83Mg0.17O layers by different processes. Reprinted with permission from Ref. [23]. © 2020,
American Chemical Society.

At present, the selection of HTL for InP QLEDs mainly focuses on overcoming the
large hole injection barrier. However, some researchers put forward different ideas; they
acknowledged that the lowest unoccupied molecular orbital (LUMO) of HTL has an
important influence on the EL efficiency [70,105]. Compared with red InP QLEDs, green
InP QLEDs have more obvious parasitic emission problems due to the smaller size of InP
QDs. Kim et al. used ITO/PEDOT:PSS/TFB (or PVK)/InP QDs/ZnO/Al structures to
compare the effect of TFB and PVK as HTL [105]. The researchers used large-scale red
InP QDs with strong electron confinement and, therefore, less influence from parasitic
emission as the light-emitting layer and observed that QLEDs with PVK as HTL almost
completely suppressed the parasitic emission, while QLEDs with TFB as HTL could still
have a small number of parasitic emissions. The reason is that the LUMO energy level of
PVK is 0.4 eV higher than that of TFB, and the higher LUMO of PVK sets a higher potential
barrier for electrons in InP QDs than using TFB, thus limiting the leakage of electrons
and suppressing the generation of parasitic emission. Wu et al. replaced TFB with poly
[bis(4-phenyl) (2,4,6-trimethylphenyl)amine] (PTAA), which has a higher LUMO and the
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highest occupied molecular orbital (HOMO) energy levels compared to HTL, and observed
that the parasitic emission of HTL basically disappeared [70]. This is consistent with the
idea that the higher LUMO of HTL prevents electron injection in the quantum dots and,
thus, suppresses parasitic radiation.

4.4. Modification of Electrode and Top-Emitting InP QLED

To further enhance the luminance efficiency of QLEDs, an electrode with high transmit-
tance film or optimization of the angular distribution by top-emitting (TE) device structure
is deposited in the InP QLED. In 2016, to realize the transparent InP QLED display, Kim
et al. proposed a two-step sputtering process of indium zinc oxide (IZO) top electrode to
green InP QLED, and the transparent QLED reached a transmittance of more than 74% for
the whole device array [106]. In 2017, Kim et al. used smooth, flexible, and transparent Ag
nanowires (AgNWs) as the bottom electrode to fabricate a green InP QLED. The flexible
InP QLED gave a durable performance even under bending with a curvature radius of
5 mm [107]. In 2019, Lee et al. reported inverted TE InP QLED by introducing a hole-
suppressing interlayer [108]. The green-emitting InP QLEDs reached a maximum current
efficiency of 15.1–21.6 cd/A and a maximum luminance of 17,400–38,800 cd/m2, and the
green and red TE InP QLEDs exhibited a FWHM of 37 and 38 nm, respectively. In 2020,
Park rt al. demonstrated efficient and environmentally friendly TE InP QLEDs, which were
achieved by employing top-emitting structure. Consequently, the optical simulation was
satisfied, and the extraction of QD emission was considerably enhanced, realizing a 3.2-fold
improvement compared to those of the bottom emission device [109]. In 2021, Li et al.
used a reflective Ag/ITO (Figure 15) as the bottom electrode and investigated a TE green
InP QLED [110]. By optimizing the angular distribution, the devices exhibit a maximum
current efficiency of 30.1 cd/A and a narrowed FWHM of 31 nm, which is a record value
for green InP QLED to date.
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4.5. Optical Modification

The device efficiency of QLEDs is not only affected by the device material and energy
level structure, but also by the light outcoupling efficiency (LOE) of the device [111,112].
The LOE is mainly determined by the device structure. In the multilayer structure of
QLEDs, the charge transport layer adopts the form of organic–inorganic composite, and
the HTL composed of organic materials usually has a lower refractive index than that
of inorganic materials. Moreover, the refractive index of the device material is much
larger than that of air [112]. The photons are consumed in the waveguide mode and the
plasmonic mode, and this affects the light outcoupling of the QLED and reduces the device
efficiency. Generally, LOE in a conventional planar LED architecture can be improved by
modifying the shape or the surface of the devices, using an outcoupling lens, or introducing
a microcavity [26,113–115]. To extract light from waveguide modes to air modes, in 2022,
Mei et al. proposed a light extraction strategy by using a thin HTL, a high-index substrate,
and substrate surface-roughening (Figure 16) to enhance the EQE of bule InP QLED [26].
As a result, light extraction efficiency has been significantly improved, leading to an EQE
of 2.8%, which is a record value for blue InP QLED to date.
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Figure 16. (a) The refractive indices of the QLED materials, the normalized PL spectrum of the
InP QD, and the EL spectrum of the InP QLED. (b) Penetration depth of the evanescent wave vs.
angle of incidence for varied refractive index of EML at wavelength of 488 nm. (c) Power dissipation
spectrum of the InP QLED; dashed lines separate the regions of different optical modes. Optical
power distribution of different optical modes (d) vs. refractive index of the substrate at PEDOT:PSS
thickness of 30 nm, (e) vs. PEDOT:PSS thickness at refractive index of the substrate of 2, and (f) vs.
refractive index of the substrate at PEDOT:PSS thickness of 600 nm. Reprinted with permission from
Ref. [26]. © AIP Publishing.
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5. Challenge and Future Direction

InP QLEDs show great potential in the field of lighting display, due to their environ-
mental friendliness, low toxicity, and excellent optoelectronic properties. The currently
reported maximum EQEs of RGB InP QLEDs are 21.8%, 16.3%, and 2.8% [23,24,26], respec-
tively. Though the EL performance of red QLED can be comparable to that of Cd-based
QLEDs, the EL characteristics of green and blue QLEDs are still far from those of Cd-based
QLEDs. There are still many challenges to achieving an environmentally friendly wide
color gamut display.

5.1. High-Efficiency Green and Blue InP QLEDs

How to obtain high-efficiency and narrow-linewidth green and blue InP QLEDs is
the key factor to realize commercial application. Green and blue InP QLEDs still have the
following key scientific issues to be solved; that is, the alloy structure and size distribution
control of InP QDs must be considered, especially in regard to how to use multi-shell layers
to suppress interface strain and trap defects. For green and blue InP QDs, a smaller size
of core is required for synthesis [116], which easily generates more surface and interface
defects and suppresses the formation of a perfect epitaxial shell. How to choose a suitable
material, especially a suitable intermediate shell material, is something that needs to be
seriously considered. In the optimization of the device structure, it is necessary to select
a suitable charge transport material, adjust its energy level through doping or surface
modification, and combine the optical optimization of the device to improve the light
out-coupling efficiency and charge injection efficiency and greatly improve the EQE and
brightness of QLED.

5.2. Narrow Linewidth InP QLEDs

A thick shell or alloyed shell is usually used to passivate the surface traps at the
InP/ZnS interface that are caused by oxidation defects or component doping [20,66,67].
However, the lattice mismatch of the core/shell structure implies more defects and prevents
the formation of a perfect heteroepitaxial interface. In addition, broad emission originates
from the luminescence of holes trapped by surface and lattice defects, resulting in spectral
broadening [28,117]. For narrow linewidth InP QLED, the growth of InP QDs with high
lattice integrity, uniformity, and high spherical symmetry is helpful to exhibit more excel-
lent light-emitting properties. By increasing the size of QDs and the thickness of the shell
and passivating the surface to reduce trap sites, we can increase the ability to inhibit nonra-
diative recombination such as AR and FRET. In addition, optical structure optimization is
also an effective means to obtain a narrow linewidth. The planar optical microcavity can
improve the light output efficiency of the QLEDs, adjust the mode density, and realize the
narrowing of the spectrum, which is an efficient strategy for spectral narrowing.

5.3. Planar Microcavity InP QLEDs

It is demonstrated that the optical optimization of the QLEDs is as important as the
electrical optimizations that were mentioned above. The incorporation of optical micro-
cavity structures into QLEDs is a very effective strategy to enhance the EL performance
of the device by simultaneously enhancing the QLED spectral intensity, narrowing the
spectral width, and improving the efficiency. A microcavity is a structure with at least
one dimension on the order of an optical wavelength [118,119]. Fabry–Perot microcavity
can be easily constructed in planar-structured QLEDs that consist of a QD emitting layer
placed at the antinode of the cavity. Consequently, improved LOE can be realized by the
coupling of light emission into the optical modes of the cavity. Wang et al. fabricated a
set of red, green, and blue QLEDs with high EQE by incorporating microcavity structures
with a distributed Bragg reflector (DBR) and Al as reflectors [120]. Bragg mirrors, in fact,
are one-dimensional (1D) photonic crystals (PhCs) which reflect light due to the photon
confinement band effect [121]. The photon confinement band of a 1D PhC depends on
the angle of incidence, so Bragg mirrors do not completely solve the problem of light
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reflection. In 2002, Ferrini et al. presented first internal light source (ILS) transmission mea-
surements on 2D PhC etched in GaInAsP/InP slab waveguide structures [122]. Obviously,
3D PhCs with complete forbidden bands are even more ideal light reflectors [123–125]. The
fabrication and optical characterization of an InP-based L3 PhC microcavity embedded
with moderate-density traditional epitaxial InAs/InP QDs emitting at telecommunica-
tion wavelengths was reported in 2017 [126]. QDs emit highly linearly polarized light
at telecommunication wavelengths with spectral linewidths below 50 µeV. In 2021, Bian
et al. performed a comparative simulation study of void-containing and all-semiconductor
PhC surface-emitting lasers with square lattices and round atoms [127]. They demonstrate
that the void-containing structure can achieve a higher coupling coefficient than the all-
semiconductor structure. The mentioned reports of conventional epitaxial InP-based PhC
devices shows a promising approach to obtain high-efficient colloidal InP QLEDs.

5.4. Flexible InP QLEDs

With the development of electronic science and technology, flexibility and wearability
have gradually become two of the important trends in the future development of opto-
electronic devices [128,129]. While the flexible Cd-based QLED luminescence performance
has made great progress in recent years [130–132], the progress of flexible InP QLED is
relatively slow. The research and development of flexible QLED is of great significance to
the industrialization process of QLED. Compared with flexible OLEDs, solution-processed
flexible InP QLEDs have more stringent requirements on substrates and transparent elec-
trodes, because the device performance of QLEDs is more sensitive to fluctuations in the
thickness of each functional layer. The transparent electrodes used in the reported flexible
Cd-based QLEDs mainly include ITO and translucent thin metals [133]. However, due
to the high brittleness of ITO, it is prone to cracks after repeated bending, resulting in
a sharp increase in sheet resistance, which seriously affects the EL performance. At the
same time, indium, the main raw material of ITO, is extremely rare, and that makes the
preparation cost of ITO increase year by year. The advantage of translucent thin metal is
the easy fabrication, but its low transmittance will seriously limit the EL performance of the
device. In recent years, Ag nanowire has been found to be an excellent flexible transparent
electrode which can achieve high electrical conductivity and transmittance [107]. At the
same time, dielectric–metal–dielectric multilayer transparent electrodes have been widely
used in various optoelectronic devices and achieved good device performance, especially
their excellent bending resistance, and large-area uniformity characteristics, which make it
show important potential in the application of constructing flexible optoelectronic devices.
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