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As one of the most environmentally toxic heavy metals, cadmium (Cd)

has attracted the attention of researchers globally. In particular, Guangxi,

a province in southwestern China, has been subjected to severe Cd

pollution due to geogenic processes and anthropogenic activities. Cd can

be accumulated in aquatic animals and transferred to the human body

through the food chain, with potential health risks. The aim of the present

study was to explore the effects of waterborne Cd exposure (0.5 mg/L

and 1.5 mg/L) on the intestinal microbiota of mudsnail, Cipangopaludina

cathayensis, which is favored by farmers and consumers in Guangxi. Gut

bacterial community composition was investigated using high-throughput

sequencing of the V3–V4 segment of the bacterial 16S rRNA gene. Our

results indicated that C. cathayensis could tolerate low Cd (0.5 mg/L)

stress, while Cd exposure at high doses (1.5 mg/L) exerted considerable

effects on microbiota composition. At the phylum level, Proteobacteria,

Bacteroidetes, and Firmicutes were the dominant phyla in the mudsnail gut

microbiota. The relative abundances of Bacteroidetes increased significantly

under high Cd exposure (H14) (p < 0.01), with no significant change in

the low Cd exposure (L14) treatment. The dominant genera with significant

differences in relative abundance were Pseudomonas, Cloacibacterium,

Acinetobacter, Dechloromonas, and Rhodobacter. In addition, Cd exposure

could significantly alter the pathways associated with metabolism, cellular

processes, environmental information processing, genetic information

processing, human diseases, and organismal systems. Notably, compared to

the L14 treatment, some disease-related pathways were enriched, while some
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xenobiotic and organic compound biodegradation and metabolism pathways

were significantly inhibited in the H14 group. Overall, Cd exposure profoundly

influenced community structure and function of gut microbiota, which may

in turn influence C. cathayensis gut homeostasis and health.

KEYWORDS

cadmium, Cipangopaludina cathayensis, intestinal microbiota, high-throughput
sequencing, microbial diversity

Introduction

In the wake of rapid industrialization, aquatic ecosystem
pollution is becoming severe (Ali et al., 2022). As ubiquitous
hazardous pollutants, heavy metals have attracted the attention
or researchers globally due to their environmental toxicity.
Cadmium (Cd), a non-essential element, usually exists as Cd
(II). As one of the most toxic heavy metals, Cd is released
into the environment mainly through anthropogenic activities,
including electroplating, battery manufacturing, soldering,
mining, and agriculture (Burger, 2008). Cd has numerous
negative impacts on aquatic animals, including triggering
histopathological changes, inducing oxidative stress, causing
metabolic disorders, and altering gut microbial community
structure (Chang et al., 2019; Liu et al., 2019; Cheaib et al., 2020;
Wang et al., 2020a,b). Moreover, Cd is not easily degradable, and
can be accumulated in aquatic animals followed by in the human
body through the food chain, with potential human health risks
(Wang et al., 2022).

Heavy metal pollution is a major environmental issue in
China, and heavy metal pollution in aquatic environment is
increasing in severity (Chen et al., 2022; Wang et al., 2022).
Cd has been identified as one of the major soil contaminants
in China (Ministry of Ecology and Environment of the People’s
Republic of China, 2014). In particular, Cd contamination in
Guangxi province is significantly higher than in other regions
in China due to high background geochemical concentrations
in the region (Zhao et al., 2015; Wen et al., 2020). In addition,
Guangxi province is a key non-ferrous metal production area
in China, so that Cd pollution is a major challenge in the
province. In early January 2012, the Longjiang River of Guangxi
was exposed to serious Cd contamination following an accident,
with long-term impacts on the regional aquatic ecosystems
(Zhao et al., 2018; Cui et al., 2022). Cd is also the primary
heavy metal pollutant in Chinese agricultural land, including
paddy soils (Song et al., 2019; Yang et al., 2021). Indeed, people
inhabiting such areas with high levels of Cd pollution may be
exposed to Cd toxicity, with potential threats to human health
(Xu et al., 2018).

The mudsnail, Cipangopaludina cathayensis (phylum
Mollusca, Gastropoda, Prosobranchia, Mesogastropoda,

Viviparidae, and Cipangopaludina), is a widely distributed
species that can be found in Chinese rivers, lakes, ponds, and
other water bodies (Lu et al., 2014). C. cathayensis has high
protein and low fat content, is rich in umami amino acid, and
has high nutritional value, so that it is highly favored among
consumers and farmers in China (Luo et al., 2021). Moreover,
C. cathayensis flesh has been reported to have diverse biological
and physiological properties that are beneficial in human disease
prevention and treatment (Wang et al., 2016; Zhao et al., 2021).

Indeed, C. cathayensis is one of the most popular aquatic
animals in China. Particularly in Guangxi province, the snail
family Viviparidae is a source of key components of a famous
snack, “snail rice noodle,” which represents one of the intangible
cultural heritages in China (Luo et al., 2021). In recent years,
with the continued increase in “snail rice noodle” consumption,
demand for mudsnail and its production has been increasing.
Paddy field culture is one of the major ways of mudsnail
production in Guangxi. However, Cd pollution has been
identified as a serious problem in Guangxi paddy soils and
aquatic environments (Zhao et al., 2018; Song et al., 2019; Yang
et al., 2021). In addition, considering mudsnail is a benthic
organism that is closely associated with paddy soil, it could be
exposed to high Cd concentrations, with major threats to food
safety (Wang P. et al., 2019). At present, only a few studies had
explored the adverse impacts of Cd exposure on the snail family
Viviparidae. In addition, current studies have largely focused on
the oxidative stress caused by Cd exposure (Hu and Tang, 2012;
Zhou and Luo, 2018), so that further investigations on other
adverse effects on snails need to be carried out.

The microbiomes associated with aquatic animals,
particularly their gut systems, not only participate in digestion
but also influence nutrition, growth, reproduction, the
immune system, and host vulnerability to disease (Talwar
et al., 2018; Chang et al., 2019; Paul and Small, 2019; Duan
et al., 2020; Wang et al., 2020a; Diwan et al., 2021). Cd
exposure has been reported to significantly affect the gut
microbiota of numerous aquatic organisms (Chang et al.,
2019; Wang et al., 2020b; Zhang Y. et al., 2020). However,
the effects of Cd exposure on the intestinal microbiota of C.
cathayensis remain unclear. To address the knowledge gap,
in the present study, C. cathayensis individuals were exposed
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to two doses (0.5 mg/L and 1.5 mg/L) of cadmium chloride
(CdCl2·2.5H2O) for > 14 days. The aim of the present study was
to investigate the effect of Cd on C. cathayensis gut microbiota
composition and diversity.

Materials and methods

Ethics statement

The experimental protocol for snail acclimation and
experimentation was approved by the Animal Ethics committee
of Guangxi Normal University, Guilin, Guangxi, China
(No. 202207-02).

Experimental snail and treatment

Adult snails (C. cathayensis) were obtained from Juhe
Agricultural Development Cooperatives (25.75◦ N, 109.38◦ E),
Sanjiang District, Liuzhou City, Guangxi, China. They were
then transferred to the laboratory, and acclimated to the
experimental conditions at a temperature 24.0 ± 1.0◦C, under
a 12-h/12-h light/dark cycle in a 50-L (65 × 41 × 20 cm)
plastic tank for 2 weeks. During the acclimation period,
specimens were fed with commercial ground fish food
(Tongwei, Chengdu, Sichuan, China) once a day at 0.5%
of their body weight. The tank water was changed partially
(30%) every day.

After a 2-week acclimation period, 225 snails were
divided randomly into three groups and placed in plastic
tanks, with three replicates (25 snails per tank) in each
treatment. CdCl2·2.5H2O (Silong, Shantou, Guangdong, China)
was dissolved in deionized water to prepare stock solution
with a final concentration of 900 mg/L. The 0.5 mg/L and
1.5 mg/L Cd doses were selected according to previous
studies (Hu and Tang, 2012). The three treatments in the
present study included the control treatment (CK14: with
no Cd supplementation), low Cd concentration exposure
treatment (L14: 0.5 mg/L), and high Cd concentration exposure
treatment (H14: 1.5 mg/L). Other experimental conditions
were consistent with those in the acclimation phase. During
the experimental period, one-third of the water in the tank
was replaced every day by adding fresh water or water with
a similar concentration. The experiment lasted 2 weeks, as
severe mortality occurred at 14 -day in the H14 treatment
(Supplementary Table S1).

Sample collection

Snail intestine samples were collected on day 14 and
used to determine gut microbiota composition and diversity.

The guts of three snails were pooled as a single sample,
to ensure sample adequacy, with three biological replicates
in each treatment. Briefly, the samples were wiped with
75% ethanol before the snails were removed from the shell.
Subsequently, the snails were dissected and the guts extracted
and rinsed with sterile water three times. The gut samples were
flash frozen using liquid nitrogen and stored at −80◦C for
subsequent analyses.

DNA extraction, bacterial 16S rRNA
amplification, and sequencing

Total genomic DNA (gDNA) of the gut microbiota
were extracted using a Fast DNA SPIN Extraction Kit (MP
Biomedicals, United States) according to the manufacturer’s
protocol. The V3–V4 regions of the bacterial 16S rRNA
genes were amplified by PCR using universal bacterial
primers (338F: 50-ACTCCTACGGGAGGGAGCA-30, 806R:
50-GGACTACHVGGGTWTCTAAT-30). The PCR cycle
conditions for each sample were as follows: an initial
denaturation at 95◦C for 5 min; 25 cycles of denaturation
at 95◦C for 30 s, annealing at 55◦C for 30 s, and extension at
72◦C for 30 s, with a final extension at 72◦C for 5 min. PCR
products were purified and quantified using an AxyPrep DNA
Gel Extraction Kit (Axygen, Union City, NJ, United States)
and a Quant-iT PicoGreen dsDNA Assay Kit (Invitrogen,
Waltham, MA, United States), respectively. A TruSeq
Nano DNA LT Library Prep Kit (Illumina, United States)
was used to establish the DNA library. The library was
sequenced using a MiSeq Reagent Kit v3 (6,000-cycles-PE)
(Illumina, United States) on a MiSeq platform by Personal
Biotechnology Co., Ltd. (Shanghai, China). The raw reads
were deposited into the NCBI Sequence Read Archive
database (PRJNA837347).

Sequence processing

The sequencing data were processed using Quantitative
Insights Into Microbial Ecology 2 (QIIME2 v2019.41). Briefly,
Cutadapt (version 3.7) was used to filter and trim PCR primers
from the raw reeds. DADA2 was used for quality control
(Callahan et al., 2016), removing chimera sequences, and
determining the sequence variants. Taxonomy was assigned
using the DADA2 pipeline, which implements the Naive
Bayesian Classifier using the DADA2 default parameters based
on the Greengenes database (Release 13.82). Subsequently,
the sequences were rarefied using the feature-table rarefy
command in QIIME2.

1 http://qiime.org

2 http://greengenes.secondgenome.com/
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Data analysis

All sequence analysis steps were performed using QIIME2
and R v3.2.0 (R Foundation for Statistical Computing, Vienna,
Austria). The rarefaction curve was generated based on
Amplicon Sequence Variants (ASVs) at a 97% similarity cut-off
level. For alpha diversity analyses, Chao 1, Observed_species,
Shannon, and Simpson indices were calculated using QIIME2
(for calculation methods3). Significance between groups was
tested using the Kruskal–Wallis H test and the Dunn test.
Beta diversity was calculated using weighted Bray-Curtis
distance matrix and visualized with Principal Coordinates
Analysis (PCoA). Hierarchical clustering using Bray–Curtis
distances based on the relative abundances of species was
performed to cluster the dataset. A Venn diagram was drawn
using the “VennDiagram” package in R v3.2.0 (R Statistical
Foundation). The functional profiles of microbial communities
were predicted using PICRUSt2 (Phylogenetic Investigation of
Communities by Reconstruction of Unobserved States4). The
predicted genes and their respective functions were annotated
using the Kyoto Encyclopedia of Genes and Genomes (KEGG)
database5. Differences between populations were analyzed
using one-way Analysis of Variance. Results were considering
statistically significant at p < 0.05. The values are expressed as
mean ± SD (Standard deviation).

Results

Relative abundance

After normalization, there were 833,989 sequences across all
snail gut contents sampled, with an average of 92,665 sequences
per sample (minimum of 55,824 sequences per sample and
maximum of 145,373 sequences per sample, see Supplementary
Table S2). Rarefaction curves indicated that all samples reached
the saturation phase (Supplementary Figure S1). There were
14,951 ASVs derived from all samples; the CK14, L14, and
H14 treatments had 4,625, 5,121, and 5,205 ASVs per sample,
respectively. Moreover, 859 ASVs were shared among the three
treatments, while 2,010, 2,029, and 2,386 ASVs were unique to
the CK14, L14, and H14 treatments, respectively (Figure 1).

Intestinal microflora diversity

To compare bacterial community diversity across different
groups, alpha-diversity and beta-diversity were evaluated.

3 http://scikit-bio.org/docs/latest/generated/skbio.diversity.alpha.
html#module-skbio.diversity.alpha

4 https://github.com/picrust/picrust2

5 http://www.genome.jp/kegg/pathway.html

FIGURE 1

Venn diagram analysis depicting the numbers of shared and
unique Amplicon Sequence Variants (ASVs) among the control
(CK14), 0.5 mg/L (L14), and H14 (1.5 mg/L) treatments.

There were no significant differences in Chao 1 index,
Observed_species index, Shannon index, and Simpson
index among the three groups (p > 0.05) (Figure 2A
and Supplementary Table S3). In a beta-diversity analysis
(PCoA based on Bray–Curtis), the L14 and CK14 treatments
were clustered together and could not be distinguished,
whereas the H14 group was distinct from the L14 and
CK14 groups, with the following main principal component
(PC) scores: PC1 = 48.1%, PC2 = 25.7% (Figure 2B). In
addition, according to the hierarchical clustering tree
results, ASVs from C. cathayensis in the high Cd exposure
group were clustered in one group based on similarity,
while the control and low Cd exposure groups clustered
into one independent group, excluding one control
sample (Figure 2C). The results indicate that the high
Cd exposure treatment had more severe effects on the
diversity of the C. cathayensis microbiome than the low Cd
exposure treatment.

Gut microbiota community structure

In total, 25 phyla, 50 classes, 115 orders, 185 families,
324 genera, and 90 species were identified. At the phylum
level, Proteobacteria was the most abundant phylum across
all three treatments (51.9% in CK14, 55.2% in L14, and 38.9%
in H14), the other two prevalent phyla were Bacteroidetes
and Firmicutes (Figure 3A and Supplementary Table S4). In
addition, Bacteroidetes abundance in the H14 treatment was
significantly higher than that in the C14 treatment (p < 0.01),
although there was no significant difference between the
L14 and control treatments (Figure 3A and Supplementary
Figure S2a). At the genus level, Pseudomonas, Cloacibacterium,
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FIGURE 2

Intestinal microbiome diversity in the control (CK14), 0.5 mg/L (L14) and H14 (1.5 mg/L) groups. (A) α-diversity comparisons in the intestinal
microflora among the CK14, L14, and H14 groups. (B) Bray–Curtis distances were calculated and visualized through Principal Coordinate
Analysis (PCoA) (Ellipses were drawn with 95% confidence intervals). (C) Hierarchical cluster analysis of the Bray–Curtis distances generated
from taxa tables showed Amplicon Sequence Variant (ASV) similarity across microbial communities among different groups.

Acinetobacter, Dechloromonas, Halomonas, Pelomonas,
Mitochondria, Aeromonas, Rhodobacter, and Aquabacterium
were the dominant (Figure 3B and Supplementary Table S5).
Pseudomonas relative abundance was higher in the L14
treatment than in the C14 treatment, although the difference
was not significant (Figure 3B and Supplementary Figure S2b).
Conversely, Pseudomonas relative abundance was lower in the
H14 treatment than in the C14 treatment, although the
difference was not significant (Figure 3B and Supplementary
Figure S2b). However, Pseudomonas relative abundance
decreased with an increase in Cd concentration (p < 0.01) in
the H14. Acinetobacter exhibited a similar trend (Figure 3B
and Supplementary Figure S2c). In addition, Rhodobacter
relative abundance was significantly lower in the H14 treatment
than in the C14 treatment (p < 0.05). Rhodobacter relative
abundance was also lower in the L14 treatment than in the
C14 treatment, although the difference was not significant
(Figure 3B and Supplementary Figure S2d). On the contrary,
Cloacibacterium and Dechloromonas were significantly enriched
in the H14 treatment (p < 0.05), although there was no
significant indifference between the L14 treatment and the
CK14 treatment (Figure 3B and Supplementary Figures S2e,f).

The results were consistent with beta diversity analysis results
(Figures 2B,C). Cd exposure at low doses had minimal effect on
snail gut microbial diversity, whereas high Cd stress influenced
snail gut microbial diversity considerably.

Prediction of microbial community
function

PICRUSt functional prediction and KEGG pathway
enrichment analysis results showed that the main functional
categories included five cellular processes pathways, three
environmental information processing pathways, four
genetic information processing pathways, five human disease
pathways, 11 metabolism pathways, and seven organismal
system pathways (Figure 4). In the L14 treatment, the
fluorobenzoate degradation pathway was enriched; on the
contrary, carotenoid biosynthesis, steroid biosynthesis, and
indole alkaloid biosynthesis pathways were significantly down-
regulated in the L14 treatment compared with in the control
treatment (Figures 5A,B). In the H14 treatment, five pathways
(protein digestion and absorption, apoptosis, lysosome, other
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FIGURE 3

Compositions of the intestinal microflora among the control (CK14), 0.5 mg/L (L14), and H14 (1.5 mg/L) treatments. (A) Compositions of the
intestinal microflora at the phylum level. (B) Compositions of the intestinal microflora at the genus level. The top ten abundant genera (higher
than 1% in at least one sample) are shown in the figure and the rest are indicated as “Others.”

glycan degradation, and pathways in cancer) were significantly
up-regulated, whereas shigellosis and endocytosis pathways
were decreased relative to the control group (Figures 5A,C).
In addition, notably, compared with in the L14 treatment,
some xenobiotic and organic compound biodegradation and
metabolism pathways were significantly reduced in the H14
treatment (Figures 5A,D).

Discussion

Intestinal microbial diversity

Cadmium is undoubtedly an environmental contaminant.
Previous studies have demonstrated that Cd exposure could
alter intestinal flora composition in aquatic animals (Chang
et al., 2019; Wang et al., 2020b; Zhang Y. et al., 2020). In
the present study, intestinal microbiota in C. cathayensis was
investigated using high-throughput 16S rRNA gene sequencing.

Our results suggested no significant difference in alpha diversity
among the three treatments (Figure 2A). The results are
inconsistent with the findings of previous studies that have
reported that Cd exposure altered the alpha diversity of
gut microbiota (Ya et al., 2019; Zhang Y. et al., 2020),
even under relatively low Cd concentration (Chang et al.,
2019). Furthermore, the PCoA analysis results showed that
gut microbial community structure in the high Cd exposure
treatment was distinct from that in the low Cd exposure
and control treatments, whereas the taxonomic groups in the
latter two treatments were clustered together (Figure 2B). In
addition, hierarchical clustering tree construction revealed that
the intestinal samples of the three exposure treatments were
clustered into two independent groups, excluding one control
sample (Figure 2C), implying that Cd exposure at high dose
(1.5 mg/L) exerted greater effects on the microbiota composition
in C. cathayensis. The results indicate that C. cathayensis could
potentially tolerate low Cd stress. Gut microbiome systems
of aquatic animals participate in various processes, including
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FIGURE 4

Functional annotations and abundance information about the intestinal microbiota at KEGG level 1 and level 2. The gene function is showed as
color-bars (level 1). The detailed pathways are shown on the left side (level 2).

nutrition, growth, immunity, and disease resistance (Talwar
et al., 2018; Chang et al., 2019; Paul and Small, 2019; Duan et al.,
2020; Wang et al., 2020a; Diwan et al., 2021). In the present
study, intestinal microbiota structure was altered in the C.
cathayensis gut under high Cd exposure when compared with in
the control treatment (Figures 2B,C). Consequently, alteration
of intestinal microbial community structure following Cd
exposure could induce adverse effects on C. cathayensis health.

Effects of Cd exposure on gut
microbial community

In the present study, phylum Proteobacteria was the
dominant phylum across all three groups. The results are
consistent with the findings of recent studies in other
Cipangopaludina species (Zhou K. Q. et al., 2022; Zhou Z. H.
et al., 2022). The other two dominant phyla were Bacteroidetes
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FIGURE 5

Intestinal microbiota predictive metabolic functions from the Kyoto Encyclopedia of Genes and Genomes (KEGG) database in all samples.
(A) Heatmap of the significant differential pathways among the control (CK14), 0.5 mg/L (L14), and H14 (1.5 mg/L) treatments. (B) Significant
different pathways between the control and L14 treatments. (C) Significantly different pathways between the control and H14 treatments.
(D) Significantly different pathways between the L14 and H14 treatments.

and Firmicutes, which are consistent with the findings of
previous studies that have reported that the major bacterial
phyla in the gut of aquatic animals, including fish, crustaceans,
and mollusks are Proteobacteria, Bacteroidetes, and Firmicutes
(Chang et al., 2019; Liu et al., 2019; Wang et al., 2020b; Zhang
Y. et al., 2020; Zhou Z. H. et al., 2022). However, the two phyla
were not dominant in a closely related species, Cipangopaludina
chinensis (Zhou K. Q. et al., 2022; Zhou Z. H. et al., 2022). The
result implies that although the two species are closely related,
they may have different strategies of responding to Cd stress.
Nevertheless, further research is required to investigate the
factors responsible for the difference between the two species.
Compared to that in the control, the abundance of Bacteroidetes
was significantly higher in the H14 treatment, although there
was no significant difference between the L14 and control
treatments. Bacteroidetes, the largest phylum of Gram-negative
bacteria in the human gastrointestinal tract microbiome, has
the potential to secrete surface lipopolysaccharides and toxic
proteolytic peptides, which can cause inflammation in the gut
(Lukiw, 2016). The elevated phylum Bacteroidetes abundance
in H14 treatment indicated that high Cd exposure has potential
adverse effects on C. cathayensis health.

Genus Pseudomonas, which has been identified as bacterial
pathogen in teleosts, exists widely in aquatic environments
and in the gut of aquatic animals (Llewellyn et al., 2014;
Xu et al., 2015; Dehler et al., 2017; Diwan et al., 2021).
Pseudomonas has also been observed to increase in the
guts of different vertebrates, including fish and amphibians,
following Cd exposure (Chang et al., 2019; Ya et al., 2019;
Cheaib et al., 2020). Furthermore, Pseudomonas outbreaks
have been reported in aquacultured animals (Llewellyn et al.,
2014; Xu et al., 2015). However, Pseudomonas are also

considered probiotics for application in aquaculture (Wang
A. R. et al., 2019), that can chelate or oxidize heavy metals,
thereby facilitating heavy metal excretion and minimizing
the exposure of organisms to heavy metals (Duan et al.,
2020; Arun et al., 2021). In the present study, Pseudomonas
relative abundance in the L14 treatment was higher than that
in the control treatment, although the difference was not
significant. However, Pseudomonas relative abundance in the
H14 treatment was lower than that in the control treatment,
although not significant. Notably, Pseudomonas abundance
decreased with an increase in Cd concentration, suggesting
that Pseudomonas could play a role in Cd toxicity removal.
However, probiotics contents decreased with an increase in Cd
concentration, which could adversely affect Cd toxicity tolerance
in mudsnail. Indeed, high snail mortality was observed in
the H14 treatment but not in the L14 treatment. The results
further confirm our postulation above that C. cathayensis could
acclimate to low Cd concentration, potentially by accumulating
Pseudomonas. Acinetobacter are putative pathogens. Their
abundance increased significantly in the gut of Nile tilapia
(Zhai et al., 2016) and common carp (Chang et al., 2019)
following Cd exposure, and greatly increased in methyl-mercury
(MeHg)-exposed fish (Bridges et al., 2018). Studies have shown
that Acinetobacter may exert adverse effects on fish health
(Wu et al., 2013; Wang et al., 2020c). Consistent with the
previous findings, Acinetobacter increased in the L14 treatment,
although not significantly. However, when Cd concentration
reached 1.5 mg/L, Acinetobacter reduced considerably, which
may be related to the extremely high Cd content (Wang et al.,
2020c). Similarly, Rhodobacter significantly decreased in the
H14 treatment. Decreased Rhodobacter abundance has been
reported to reduce growth (Liu H. S. et al., 2021) and to have
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adverse effects on fish innate immunity (Wang et al., 2020c),
resulting in increased vulnerability to disease (She et al., 2017;
Liu F. P. et al., 2021). Indeed, Rhodobacter is a candidate
probiotic for fish (Ye et al., 2019). However, some studies
have found that higher abundances of such bacteria could be
associated with diseased intestines (Tran et al., 2018), and they
could cause neurotoxicity in the hosts (Bridges et al., 2018;
Arun et al., 2021). Such findings illustrate the importance of
intestinal bacterial community homeostasis in hosts. Decreased
Rhodobacter abundance in the present study suggest that
intestinal function could have been impaired in C. cathayensis
exposed to Cd, which could result in disease outbreaks under
natural conditions (She et al., 2017; Liu F. P. et al., 2021).

In the present study, Cloacibacterium, a key genus in
the phylum Bacteroidetes implicated in xenobiotic metabolism
and metal removal (Nouha et al., 2016; Duan et al., 2020),
increased significantly in the H14 treatment. Cloacibacterium
has been used to detoxify MeHg in MeHg-exposed fish
(Bridges et al., 2018). Enrichment of Cloacibacterium has
been reported to be an important feature under MeHg-
induced neurotoxicity (Bridges et al., 2018). In addition, in
the present study, Dechloromonas abundance increased in the
H14 treatment. Dechloromonas, which belongs to the phylum
Proteobacteria and is considered a Cd-resistant microorganism
(Zhang et al., 2019), could efficiently degrade polycyclic
aromatic hydrocarbons during sludge composting (Lu et al.,
2019; Che et al., 2021), and participate in organic matter
degradation in aquaculture pond sediment (Zhang K. K. et al.,
2020). Cloacibacterium and Dechloromonas enrichment in C.
cathayensis gut in the present study highlight their potential
roles in Cd detoxification, which merit further study.

Intestinal microbiome function

Our function prediction analysis of the gut microbiota
showed that most of the genes encoded by the C. cathayensis gut
microbiota were related to metabolism, followed by organismal
systems, cellular processes pathways, human diseases pathways,
genetic information processing pathways, and environmental
information processing pathways (Figure 4). The intestines
are essential organs involved in the metabolism of nutrients
(Liu et al., 2022). The results suggest that Cd exposure
may alter gut microbial function and host metabolism. In
addition, function prediction results showed that, compared
with the control treatment, only one pathway related to
fluorobenzoate degradation was enriched in the L14 treatment,
whereas more pathways were enriched in the H14 treatment
(Figure 5), including protein digestion and absorption,
apoptosis, lysosome, other glycan degradation, and pathways in
cancer. Fluorobenzoate is the sole carbon and energy source
for Pseudomonas (Kalpit et al., 1988). The fluorobenzoate
degradation pathway was enriched in the L14 treatment,

which is consistent with the increasing trends in Pseudomonas
abundance observed in the treatment group. The cell apoptosis
pathway is usually activated following disease infection (Qiu
et al., 2020) or exposure to adverse environmental factors (Chen
et al., 2021). Furthermore, lysosomes not only play a central
role in cell decomposition but also participate in metabolism,
membrane repair, and cell death (Serrano-Puebla and Boya,
2015), and lysosome metabolic pathways are closely related to
cell apoptosis (Guo et al., 2017). In the present study, lysosome
pathway and cell apoptosis pathway were both enriched in the
H14 treatment, which suggests that high Cd exposure may exert
more adverse effects on gut microbes of snails than low Cd
exposure. Furthermore, pathways in cancer were also enriched
in the H14 treatment. The results above partially explain our
hypothesis above that C. cathayensis has a capacity to acclimate
to low Cd stress.

It is also worth noting that pathways associated with
xenobiotic and organic compound biodegradation and
metabolism, including chloroalkane and chloroalkene
degradation, benzoate degradation, fluorobenzoate degradation,
styrene degradation, limonene and pinene degradation, geraniol
degradation, were significantly inhibited in the H14 treatment
in the present study, when compared to in the L14 treatment.
Chloroalkane, chloroalkene, benzoate, fluorobenzoate and
styrene are xenobiotics found in the environment (Vera et al.,
2022). However, the pathways associated with the degradation
of the xenobiotics were down-regulated in the H14 treatment,
which suggested that the capacity of elimination of the
compounds decreased following exposure to high Cd doses
(Gu et al., 2017; Vera et al., 2022). Limonene and pinene are
considered anti-inflammatory molecules; the down-regulation
of the limonene and pinene degradation pathway in the H14
treatment could have increased the levels of limonene and
pinene, which could have antagonized the inflammatory
response caused by Cd stress (Han et al., 2021). Geraniol is
another carbon and energy source for some Pseudomonas
species (Vandenbergh and Wright, 1983; Zhu et al., 2020). The
decline in the geraniol degradation pathway in the present
study could be attributed to the decreased contents of the genus
Pseudomonas. Overall, according to the results of the present
study, Cd exposure disrupts gut microbial community structure
and their potential functions, and could in turn, adversely
influence C. cathayensis health.

Conclusion

Our results revealed that Cd exposure could significantly
alter the structure and function of intestinal microbial
communities, which may in turn influence C. cathayensis gut
homeostasis and health. To the best of our knowledge, this is
the first study to explore the effects of Cd exposure on the
intestinal microbiota of C. cathayensis. The results obtained in
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this study provide insights into the mechanisms associated with
the response of the intestinal microbiota of C. cathayensis to
Cd pollution. However, obtaining the 16S rRNA gene sequences
through the Illumina HiSeq platform has limitations. In the
present study, we did not isolate and identify the putatively
pathogenic and putatively beneficial bacteria, which warrants
further research.
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