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Nanoparticle-based anticancer medications were first approved for cancer treatment
almost 2 decades ago. Patients benefit from these approaches because of the targeted-
drug delivery and reduced toxicity, however, like other therapies, adverse reactions often
limit their use. These reactions are linked to the interactions of nanoparticles with the
immune system, including the activation of complement. This activation can cause well-
characterized acute inflammatory reactions mediated by complement effectors. However,
the long-term implications of chronic complement activation on the efficacy of drugs
carried by nanoparticles remain obscured. The recent discovery of protumor roles of
complement raises the possibility that nanoparticle-induced complement activation may
actually reduce antitumor efficacy of drugs carried by nanoparticles. We discuss here the
initial evidence supporting this notion. Better understanding of the complex interactions
between nanoparticles, complement, and the tumor microenvironment appears to be
critical for development of nanoparticle-based anticancer therapies that are safer and
more efficacious.

Keywords: nanomedicine, complement, activation, immunosuppression, tumor microenvironment,
cancer, nanoparticle
OVERVIEW OF CANCER NANOMEDICINE

Nanomedicine is a submicroscopic platform for effective and smart drug delivery, which enables
direct drug interactions with cancer cells and their biological milieu. The main tool of this platform
are nanoparticles, a heterogeneous group of engineered drug carriers, defined by a size within the
nanometer scale, which includes: liposomes, polymer-conjugates, and micelles (1). The therapeutic
potential of nanoparticles for cancer treatment lies in their ability to passively deliver drug to tumor
tissue via the enhanced permeability and retention (EPR) effect (2). The EPR effect results from an
increased vascular permeability of tumor blood vessels, which is linked to neoangiogenesis (3).
Importantly, the size of nanoparticles enables their extravasation only in tumors but not in normal
tissues. The nanoparticle formulation increases their half-life in circulation, leading to an increased
number of passages of drug/carrier complex through the tumor vascular beds. The optimal size
range to assure EPR effect appears to be between 20 and 200 nm (in approximate diameter). This
ability of nanoparticles to specifically target tumors significantly attenuates drug toxicity.
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Additionally, the encapsulation of nanoparticles protects the
drug from degradation (4). Several nanoparticle-based
therapies have been approved because of improved efficacy and
tolerability. The most common nanoparticles among the
approved agents are liposomes, however, there are other
nanoparticle-delivery platforms, including albumin-conjugated
micelles and polyethylene glycol (PEG) conjugates (5) (Table 1).
Additionally, a large repertoire of nanoparticle systems is under
preclinical and early phase clinical development including
biopolymers (chitosan, alginate, cellulose, hyaluronic acid),
dendrimers, inorganic nanoparticles (Au, Ag, iron oxide, silica,
etc.), quantum dots, and the combinations thereof (12–14).
These novel nanoparticle systems are likely to become more
clinically relevant as there is an increasing interest and research
efforts focused on the integration of diagnostics and therapeutics
within the cancer nanomedicine field (15, 16).

The transformation of a “free” drug, usually less than 1–2 nm
size, into a nanoparticle, with ~1 million-fold greater volume and
loaded with thousands of drug molecules, is an extraordinary
pharmaceutical challenge with significant pharmacological and
biological consequences. For example, unlike traditional small
molecule drugs, nanoparticles have a tendency to interact with
the innate immune system (17). The cells that primarily interact
with systemically administered nanoparticles are mononuclear
phagocytes such as tissue-resident macrophages, including
hepatic Kupffer cells, and circulating monocytes. These
interactions result in the clearance of nanoparticle-delivered
drugs from the circulation and their sequestration in organs
enriched in macrophages such as liver and spleen (18, 19).
The nanoparticles also interact with plasma proteins like
immunoglobulins, IgG and IgM, and complement proteins
(20). These proteins adsorb to the surface of nanoparticles
forming a protein corona (21, 22), which contributes to
nanoparticle opsonization, phagocytic clearance, the formation
of immune complexes, generation of immunogenic epitopes
from self-antigens, and activation or suppression of the
immune responses (21–23). The composition of the protein
corona is dynamic, highly variable, and depends on the
Frontiers in Immunology | www.frontiersin.org 2
physicochemical characteristics of the nanoparticle and
fluctuations in the host circulating proteins. The interactions of
nanoparticles with circulating complement proteins leads to the
activation of complement cascade (17, 24–26) and the
subsequent generation of opsonins (e.g., C3b), anaphylatoxins
(e.g., C3a and C5a), and C5b-9 complex, known as terminal
complement complex (TCC) or membrane attack complex
(MAC). The anaphylatoxins, especially C5a, are associated with
acute infusion reactions in patients, known as complement
activation-related pseudoallergy (CARPA) (27).
MECHANISMS OF NANOPARTICLE-
INDUCED COMPLEMENT ACTIVATION

Nanoparticle-mediated complement activation is a multifaceted
process that depends on the physicochemical characteristics of
the nanoparticle including: surface chemistry and topography,
charge (zeta potential), size, and shape (28–38). Depending on
the composition, nanoparticles may induce complement
activation through the classical (IgG/IgM/C-reactive protein-
mediated), mannose-binding lectin (MBL), or alternative
(properdin-mediated) pathways, or any combination of these
canonical pathways (39–44) (Figure 1).

Size and Shape
In general, as size increases, nanoparticles induce greater
complement activation and are also more likely to be
internalized by phagocytic cells, presumably due to enhanced
opsonization by complement proteins (45, 46). Nanoparticles
between 40 to 250 nm in size induce a potent activation
of the complement system through the classical pathway
similar to dextran coated nanoparticles with a size of ~250 nm
(33). However, if the size of the particle is very large (~600
nm diameter), the activation of complement is reduced
when adjusted for surface area (38, 46). Dextran-coated
superparamagnetic iron oxide (SPIO) core-shell nanoworms of
a size of ~200 nm are opsonized by C3b.This C3b engages with
TABLE 1 | Nanoparticle formulations used clinically for treatment of cancer.

Brand Name Initial Approval API Platform Indication

Oncaspar® (6) 1994 Asparaginase Polymeric Protein Conjugate Acute lymphoblastic leukemia
Doxil® (6) Lipodox® (7) 1995 Doxorubicin Pegylated liposome Ovarian cancer, breast cancer,Kaposi’s sarcoma
DaunoXome® (6) 1996* Daunorubicin Non-pegylated liposome HIV-associated Kaposi’s sarcoma
Depocyt® (6) 1999* Cytarabine Non-pegylated liposome Lymphomatous meningitis
Myocet® (8) 2000 Doxorubicin Non-pegylated liposome Metastatic breast cancer
Eligard® (6) 2002 Leuprolide Acetate PLG Polymer Prostate cancer
Mepact® (9) 2004 Mifamurtide Non-pegylated liposome Osteosarcoma
Abraxane® (6) 2005 Paclitaxel Albumin-conjugated micelle Breast cancer
NanoTherm® (10, 11) 2010 Iron Oxide Iron oxide nanoparticle Glioblastoma (thermo-ablative therapy)
Marqibo® (6) 2012 Vincristine Sulfate Non-pegylated liposome Philadelphia chromosome negative acute

lymphoblastic leukemia
Onivyde® (6) 2015 Irinotecan Pegylated (Stealth) Pancreatic adenocarcinoma
Vyxeos® (6) 2017 Cytarabine and Daunorubicin Non-Pegylated Therapy-relatedacute myeloid leukemia
*Discontinued and no longer in clinical use.
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properdin to recruit more C3b to form C3bBb, the C3 convertase
of the alternative pathway (47, 48). When the size of the
nanoparticle is at or below 30 nm diameter, they are usually
too small to efficiently trigger the calcium-dependent
complement activation pathways, such as the classical or lectin
pathways, due to the relatively large size of C3b. The complement
opsonin C3b occupies an area of about 40 nm2, therefore, very
small nanoparticles do not have enough surface area to adsorb
C3b molecules. Consequently, most of the C3 cleavage fragments
will be released rather than be deposited on to the surface of these
nanoparticles (38, 46, 49).

In addition to size, the particle shape and curvature also play
roles in complement activation. Studies with SiO2 nanoparticles
of different sizes (8, 32, and 68 nm) demonstrate that surfaces
with the sharp curvature can reduce complement activation.
Peptidoglycan particles with a diameter of 50–100 nm and
curvature in the range of 0.02–0.04 nm−1 induce stronger
complement activation when compared to particles with
shallower or sharper curvatures. If the curvature is sharper or
shallower than 0.02–0.04 nm−1, the conformation requirement
for complement activation through IgM and C1q is not optimal
and leads to poor induction of the complement cascade (38, 50).
Prolate ellipsoidal (rod) and oblate ellipsoidal (disk) shaped
carboxylated polystyrene nanoparticles induce more profound
and robust activation of the complement system than spherical
nanoparticles when tested in porcine blood. However, when
tested in human blood, the difference in complement
activation between nanoparticles with different shapes were
negligible (51). This phenomenon is also seen with spherical
gold nanoparticles, gold nanorods, and gold nanostars (52).
Frontiers in Immunology | www.frontiersin.org 3
More research is needed to understand the mechanisms for
this difference of complement activation between species.

Composition, Surface Charge,
and Zeta Potential
While nanoparticles less than 30 nm are less likely to induce the
activation of the complement system, their composition also
affects this process because of the interaction of a particular
material with the surrounding biological milieu. Polyethylene
oxide-polypropylene block copolymer poloxamer 407 micelles of
~25 nm significantly activate the complement system via all
three canonical pathways, while similar sized PEG-phospholipid
micelles fail to activate the complement system (46, 53, 54). The
closer inspection revealed that the poloxamer 407 component
leads to the generation of larger particles with a range of 100 nm
to nearly 1 µm in human plasma. Likely these particles interact
with chylomicrons and other lipoprotein classes to form large
aggregates that lead to the more potent activation of the
complement system (54).

The surface charge of nanoparticles also impacts their
interaction with complement. Nanoparticles with anionic
surfaces (e.g., liposomes) attract Ca2+ ions that are vital for
the activation of complement system through the classical
pathway (28, 55, 56). These anionic charges derive from
cardiolipin, phosphatidylserine, phosphatidic acid, and
phosphatidylglycerol incorporated within the structure of
liposomes. The complement protein C1q can also directly
bind to these anions through hydrophobic interactions and/or
hydrogen bonding (57, 58). Cationic or positively charged
liposomes containing lipids, including stearylamine or 1,2-bis
FIGURE 1 | Mechanisms of nanoparticle-induced complement activation.
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(oleoyloxy)-3-(trirnethylammonio) propane, activate the
complement system by interacting with proteins of the
alternative pathway. Neutral liposomes poorly interact with
the complement components and poorly activate the
complement system (28, 56, 59). Consequently, nanoparticles
containing polypropylene sulfide, lipid nanocapsules,
polycations, polyplexes, and polystyrene that are highly
charged are more potent activators of complement than
particles with low or no charge (60–63). The important role
of surface chemistry in complement activation is obvious when
nanoparticles are coated with surface-charge-neutralizing
polymers, such as polyethylene glycol (PEG). This coating
leads to a reduction in nanoparticle-mediated complement
activation (60). Suppression of complement activation by
neutralizing polymers on the surface of anionic nanoparticles
can occur even if the net charge remains slightly negative. For
example reducing the net charge from −27.17 to −6.046 mV was
sufficient to mitigate nanoparticle-induced complement
activation (64).

Lipid bearing nanoparticles (e.g., liposomes) can activate the
classical complement pathway via interactions between IgG and/
or IgM and the phospholipid head-groups and cholesterol
components (43, 57, 65, 66). Anti-phospholipid antibodies can
also bind to other suitable epitopes found on the liposome
surface, such as apolipoprotein H (66, 67). However, there is
significant inter-individual variability in the specificity of these
antibodies, which may contribute to heterogeneity in
nanoparticle-induced complement activation in patients (65,
66). The classical pathway can also be activated by liposomes
through the adsorption of C-Reactive Protein (CRP) to the
liposomal surface. This CRP subsequently interacts with C1q
(66, 68, 69). Liposomes containing phosphatidylinositol may also
trigger the lectin pathway through binding to MBL. This initial
event leads to MBL-Associated Serine Protease-2 (MASP-2)
activation, triggering the complement cascade (40, 66). Similar
mechanisms appear to be applicable to mannosylated liposomes.
Liposomes can also contribute to the alternative pathway
through antibody-independent direct C3 adsorption and C3
conformational changes that lead to the generation of
structures resembling C3b and subsequent formation of the
alternative pathway C3 (C3bBb) convertase. The alternative
pathway is also triggered when the C3 binds to the Fab portion
of liposome-bound antibodies (41, 42, 66, 70). In addition to
charge neutralization, incorporating mPEG may reduce or delay
complement activation through steric hinderance preventing
interactions with blood proteins (39, 53). A high density of
polymeric chains may lead to the compression of the chains on
the surface of the nanoparticle. Whereas a low density may lead
to interpenetration of protein molecules on the surface
of the mPEG coated nanoparticles. Compression of the
polymeric chains may cause steric hindrance that results in
reduced protein interactions, consequently, the reduction
in complement activation (71). When the surfaces of
nanoparticles are modified, however, this can lead to different
conformations of nanoparticle surface architectures that can
have varying effect on the complement system. If the said
Frontiers in Immunology | www.frontiersin.org 4
surface is modified with mPEG, for example, different
conformations can be generated, such as “mushroom,”
“mushroom-brush,” or “brush.” Changing the surface
conformation from “mushroom”-like to the other conformations
leads to a reduced complement activation and shifts the pathway
from the classical to the lectin (35).

Topography and Surface Chemistry
Nanoparticle surfaces that have repetitive epitopes may trigger
the activation of the complement system through the pattern
recognition mechanisms, which are dependent on the surface
topography. For example, the nanoparticles coated with star-
shaped polyethylene oxide-polypropylene block copolymer
(poloxamine 908) have the repetitive patterns of polarity and
hydrophobicity. These patterns can be manipulated by altering
the density of poloxamine on the nanoparticle surface,
and, therefore, the docking sites for complement pattern
recognition receptors can be altered (35, 46, 72).

A high density of amino and hydroxyl functional groups on
the surfaces of nanoparticles can induce a nucleophilic attack by
these chemical moieties on the internal thioester bond within the
a-chain of nascent C3b, resulting in the acceleration of
alternative complement activation pathway (46, 73, 74).
Additionally, nanoparticles with surface polysaccharides that
are cross-linked facilitate the activation of the complement
system. This activation is partially inhibited if the hydroxyl
groups are substituted with carboxymethyl groups (75, 76).
The impact of the surface chemistry on the activation of the
complement system becomes very complex when the
interspecies variat ion is considered. For example ,
superparamagnetic iron oxide (SPIO) nanoparticles coated
with dextran activate the classical complement pathway in
mice, but when tested in human serum, the alternative
pathway was found to be activated (76–80).

Drug Payload
The composition of the nanoparticle carrier clearly plays a role in
complement activation, however, the influence of the payload
(i.e. encapsulated or conjugated drug molecules) on the
complement system has not been thoroughly studied. Doxil®, a
PEGylated liposomal doxorubicin (PLD), activates the
complement system more than liposomes of similar size and
formulations that do not contain doxorubicin (46, 81). One of
the characteristic features of PLD liposomes is their oblate/disc
shape, whereas placebo liposomes are spherical. The oblate shape
of PLD is due to deformation of the liposomes by crystalized
doxorubicin that is loaded into these liposomes. PLD may trigger
more complement activation via classical and/or alternative
pathways, partly due to the altered phospholipid arrangement
and partly due to the surface presence of doxorubicin crystals. It
has also been observed that the administration of placebo
PEGylated liposomes in rats induced an IgM-mediated
complement activation, which increased the hepatic clearance
of the second dose of the liposome. In the case of the doxorubicin
encapsulated PEGylated liposomes, however, the second dose
showed similar long-circulating half-life. This phenomenon is
January 2021 | Volume 11 | Article 603039
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believed to be related to the action of doxorubicin, which can kill
B cells, responsible for producing IgM (26, 46, 82, 83).
CLINICAL IMPACT OF NANOPARTICLE-
INDUCED COMPLEMENT ACTIVATION

Complement activation triggered by nanoparticles results in both
the liberation of proinflammatory mediators such as
anaphylatoxins and the opsonization of nanoparticles with
C3b, which interacts with phagocytes (84). The anaphylatoxins
(C3a, C4a, and C5a) stimulate the release of additional
inflammatory mediators (e.g. histamine) by the immune cells.
This sequence of inflammatory events was observed in
connection with CARPA reactions in porcine and canine
models (85). Several formulations of nanoparticles in clinical
use (Doxil®/PLD, DaunoXome®, AmBisome®, Abelcet®,
Amphocil®) have been shown to cause hypersensitivity
reactions in patients that are consistent with CARPA (86).
After intravenous administration, PLD activates complement
in the blood of cancer patients, and the extent of complement
activation (as measured by formation of s5b-9) correlated
with the development of acute infusion reactions (27).
Although complement activation induced by nanoparticles is
well established (86), the clinical occurrence of CARPA does
not appear to be as prevalent as would be expected from
in vitro studies. For example, PLD induces significant
complement activation in vitro, however, the occurrence
of acute infusion reactions in patients is typically less than
10% and can be mitigated with premedications and by
slowing the rate of infusion (27). Nonetheless, undesired
interactions with circulating complement proteins can
affect the pharmacokinetics and tolerability of nanoparticle-
mediated drugs.

Coating nanoparticles with polyethylene glycol (“pegylation”)
has become widely used to reduce complement activation,
improve stability in plasma, and prolong circulation time,
which are all important for effective tumor targeting (87,
88). However, these approaches do not entirely abolish the
immune reactions to nanoparticles (39). Several groups have
demonstrated that the initial systemic administration of
pegylated nanoparticles induces production of anti-PEG IgM
antibodies that enhance immune recognition and clearance of
the second dose of nanoparticles in preclinical models. Of note,
this “accelerated blood clearance” (ABC) phenomenon has not
been reported in patients, and its clinical relevance is currently
unclear. In fact, the opposite has been observed in patients
treated with PLD, where clearance rates decreased with repeat
administration, up to 30% by the third cycle (89).

Nanoparticle-induced complement activation is generally
perceived as undesirable when nanoparticles administered
systemically lead to complement-mediated infusion reactions
(27, 90). While uncontrolled complement activation can
induce inflammatory and life-threatening consequences,
controlled complement activation by nanoparticles may be
beneficial for vaccination strategies (91–93). Opsonization of
Frontiers in Immunology | www.frontiersin.org 5
pathogens by complement proteins facilitates their uptake by
antigen presenting cells via complement receptors CD21 and
CD33 (94). In the case of nanoparticle-based vaccines, particle-
induced complement activation products can act as endogenous
vaccine adjuvants to enhance antigen uptake and recognition by
antigen-presenting cells. Production of the complement cleavage
products C5a and C3a locally at the APC and T cell interface is
important for T cell costimulation and survival (95). Antigens
that are opsonized by complement C3d engage both B cell
receptors and the complement CD21 costimulatory receptor,
activating antibody responses more efficiently (96, 97). These
complement components can be leveraged by nanoparticle
vaccines, where the localized activation of the complement
system enhances the immune response against the
nanoparticle-delivered antigens (98). Thus, the propensity of
nanoparticles to induce complement activation can theoretically
be leveraged to facilitate their efficacy as antigen carriers for
vaccinations (98, 99).

Several studies of the last decade clearly demonstrated that
complement proteins and complement activation accelerates
tumor growth in mouse models and patients. Therefore, given
the propensity of nanoparticles that are administrated often to
cancer patients to activate complement, it is conceivable that this
activation may have also reduced therapeutic efficacy of
nanoparticles-based drugs. We will explore this possibility
through the remaining sections of this review.
THE ROLE OF COMPLEMENT IN
CANCER-ASSOCIATED IMMUNE
DYSFUNCTION, ANGIOGENESIS,
AND METASTASIS

The role of the complement system in cancer has been implicated
for decades. The early studies demonstrated that several
complement proteins are expressed or deposited in common
human solid tumors (100). Given a well-established role of
complement in innate immunity and in the initiation and
propagation of the subsequent adaptive immune responses
against microbial pathogens, these findings were thought to
support the theory that complement also contributes to
antitumor immune responses and tumor immune surveillance
(100). This notion appears to be strengthened by a significant
role of complement and complement-dependent cytotoxicity
(CDC) in killing tumor cells by therapeutic monoclonal
antibodies (101). However, the studies of the last decade
clearly indicate that complement proteins and complement
activation, in the absence of therapeutic antibodies, promote
tumor growth in mouse models and cancer patients (102). The
original discovery of tumor-promoting roles of complement
linked these complement functions to the complement
anaphylatoxin C5a receptor 1 (C5aR1)-dependent regulation of
myeloid-derived suppressor cells (MDSC) and their C5aR1-
dependent recruitment to tumors (103). MDSC have recently
emerged as one of the most important cell subsets in the tumor
microenvironment (TME), responsible for suppression of
January 2021 | Volume 11 | Article 603039
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antitumor T cell-responses, enhancement of tumor-
angiogenesis, and resistance to therapy (104). In fact, C5aR1-
dependent regulations of MDSC led to the suppression of
antitumor CD8+T cells because depletion of these cells by anti-
CD8 neutralizing antibody erased beneficial effects of C5aR1
blockade on tumor growth in a mouse model of HPV-induced
cancer (103). This study has linked the complement activation in
tumors to the classically pathway, as C3 cleavage fragments
colocalized with C1q in tumors. C1q initiates the classical
pathway (105). In addition, mice deficient in complement
fragments C4, which is required for the classical and lectin
pathways to progress, had reduced tumor growth. Conversely,
mice deficient in factor B, a key protein of the alternative
pathway grew tumors in a similar rate as wild type littermate
controls (103). Several follow-up studies have confirmed these
initial findings in different mouse models (106) and discovered
other complement-mediated mechanisms contributing to
immune suppression in TME (102).

MDSC also play an important role in inducing another
immunosuppressive subset-T regulatory cells (Tregs).
Consistent with this MDSC function, the reduced number of
Tregs were found in blood and the lungs of C5aR1-deficient mice
in a model of metastatic breast cancer (107). The mechanisms of
C5aR1-mediated induction of Tregs were connected to the
regulation of TGF-b1 and IL-10 in cells of myeloid-origin in
the lungs (107). TGF-b1 and IL-10 secreted from myeloid cells
have been previously implicated in generation of Tregs in tumors
(108). Upon C5aR1 inhibition, the reduced numbers of Tregs in
the lungs correlated with the reduced lung metastatic burden
(107). C5aR1 signaling is also implicated in generation of Tregs
in tumors in a transgenic Her2/neu-driven model of breast
cancer (109). The reduced generation of Tregs when C5aR1
signaling was blocked, with a specific C5aR1 inhibitor (PMX53)
(110), was caused by the decreased production of TGF-b1 and
increased expression of IL-6 in myeloid cells in tumor
infiltrating lymph nodes (109), as the interplay between these
two cytokines is pivotal for generating various subsets of T cell
effectors (111).

In addition to regulating myeloid-origin cells such as MDSC
and tumor-associated macrophages (TAM) (112), C5aR1 and
the complement anaphylatoxin C3a receptor (C3aR)
synergistically impair cytolytic activity of tumor infiltrating
CD8+T cells (TIL) by inhibiting expression of IL-10 in these
cells (113). C3, required for complement activation and
generation of the complement anaphylatoxins C3a and C5a,
was shown to be produced by TIL. Through their reciprocal
receptors expressed in TIL, C3a and C5a blocked IL-10
expression in these cells in autocrine manner (113). The
expression of C3aR and C5aR1 in TIL indicates that TME
favors expression of these receptors in T cells because non-
activated T cells in the blood, spleen, or lymphoid organs were
repeatedly shown to lack C3aR and C5aR1 protein (114).

Interestingly, complement appears to promote tumor
angiogenesis, as indicated by reduced vascular density and
impairment of endothelial cell function in C3aR-and C5aR1-
deficient mice in a transgenic model of ovarian cancer (115).
Frontiers in Immunology | www.frontiersin.org 6
C1q, which initiates the classical complement pathway of
activation, was found in stroma and vasculature of several
human cancers, and C1q-deficient mice exhibited reduced
vascular density in tumors in a B16 melanoma model (116).
The most recent study, showing the striking impact of
complement genes on outcomes in renal cell carcinoma (RCC),
found that C3aR-deficiency or blockade and C5aR1 blockade
were all associated with reduced vascular density of tumors in a
mouse model of RCC (117). Similar to the first study reporting
tumor promoting role of complement (103), this recent work
linked the activation of complement in a mouse model to the
classical pathway. Interestingly, the comprehensive analysis of
TME transcriptome of tumors from RCC patients revealed a
significant association of complement genes including C1q
signature with highly aggressive inflammatory subtype of RCC
(117). Consistent with these finding, another report on a role of
complement in RCC found associations of genes encoding early
complement fragments, involved in the classical pathway, with
poor prognosis (118).

Finally, complement promotes tumor growth through
autocrine signaling in tumor cells, and this effect was
independent of TIL in a model of ovarian carcinoma. C5aR1
and C3aR signal through the PI3K/AKT pathway, and silencing
the PI3K or AKT gene in tumor cells reduced impact of C5aR1
and C3aR stimulation on tumor growth. In patients with ovarian
or lung cancer, higher C3 or C5aR mRNA levels in tumors were
associated with decreased overall survival (119). These studies
together support a key role of complement system in regulating
TME, however, they mainly focused on growth of tumors in
primary sites. Several recent comprehensive review articles cover
this topic in detail (102, 120).

Recent work extends the findings on TME to the metastasis
promoting functions of complement. The C5a/C5aR1
regulatory axis was demonstrated to recruit MDSC to the
lung and liver premetastatic niches in a model of metastatic
breast cancer (107). This recruitment and activation of MDSC
resulted in the reduced infiltration of these organs by CD8+T
cells that appears to eliminate metastasizing tumor cells in these
sites, as the depletion of CD8+T cells eliminated the beneficial
effect of C5aR1 blockade on lung metastatic burden.
Furthermore, impact of C5aR1 on antitumor immunity in
metastatic sites was linked to Th2-oriented responses that
rendered CD8+T cells dysfunctional (107). In addition to
recruiting lung infiltrating MDSC, C5aR1 appears to be
involved in regulating self-renewal of tissue-resident
pulmonary alveolar macrophages (AM) in the lung
premetastatic niche that, like MDSC, inhibit antitumor T cell
responses by favoring generation of Th2 cells. In addition, AM
reduced the number and maturation of lung dendritic cells by
regulating TGF-b1 in the lung environment (121). Similar to
findings from primary tumor sites (103, 117, 118), complement
activation in the premetastatic niches seems to be associated
with C1q-deposition and the classically pathway (122). C1q was
demonstrated to bind to IgM-deposited in the premetastatic
niche. These IgM likely belong to natural IgM that bind dying
or damaged cells as demonstrated by colocalization of Annexin
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V (binding to apoptotic cells) with IgM fluorescence in the
lungs prior metastasis (122).

In summary complement activation and generation of
complement effectors seem to be pivotal for protumor
complement functions. Several studies linked mechanistically
activation of the complement cascade in tumors to the classical
pathway. However, the alternative pathway is known to
contribute to 80% of C5a generation when the complement
cascade is activated through the classical pathway (123).
Therefore, the alternative pathway amplification loop is very
likely to contribute to complement activation in cancer. Of
course, which mechanism is pivotal for complement activation
is expected to tumor type-dependent. Finally, some complement
functions do not require the activation of complement cascade.
For example a proangiogenic role of C1q is not associated with
the classical pathway but seems to involve the direct interaction
of a globular C1q head with C1q receptors expressed on
endothelial cells (116).
IMPLICATIONS OF NANOPARTICLE DRUG
DELIVERY-INDUCED INFLAMMATION
FOR CANCER

Complement cleavage products and the uptake of nanoparticles
by immune cells mediated by complement receptors may induce
chronic inflammatory responses that could potentially negate the
therapeutic effect of the payload. Indeed, there is an increasing
evidence that nanoparticles could promote tumor growth in mice
(124, 125). Polymer nanoparticles that are able to activate the
complement system were found to increase tumor growth in a
C5aR1-dependent manner, presumably through the liberation of
C5a and the recruitment and activation of proinflammatory
macrophages and Tregs (103, 126). We have also found that
systemic administration of PLD to mice was associated with the
increased infiltration of tumors by MDSC and the deposition of
the complement cleavage products in tumors (Figure 2).
Recently, we tested this pegylated liposomal carrier without
any drug payload, and observed the significantly enhanced
tumor growth in a syngeneic HPV-induced mouse tumor
model (125). This enhanced tumor growth was associated with
the suppression of antitumor immunity, indicated by blunting
the production of cytokines in TAM and CD8+ T cells and the
suppression of tumor antigen-specific immune responses.
Moreover, tumor vascular density was significantly increased
in mice receiving pegylated liposomes, suggesting enhanced
angiogenesis. Mechanistically, in vivo treatment with liposomes
increased expression of arginase-1 (typical of M2 macrophages
and MDSC) associated with the accumulation of TAMs with a
mixed M1/M2 phenotype when compared to vehicle treated
mice that had predominantly M1 macrophages in tumors (127).
These findings suggest that nanoparticle-induced immune
modulation may theoretically attenuate therapeutic efficacy of
nano-encapsulated drugs (120, 128–130). This may be especially
relevant for cancer patients as a result of profound and
heterogenous immune dysfunction (131).
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While complement activation associated with these “placebo”
nanoparticles have the potential to promote tumor growth, this
effect was not associated with drug-loaded nanoparticles. It is
likely that the anticancer drug, loaded within the nanoparticle,
mitigates the harmful carrier-related effects by inhibiting both
tumor cells and TAMs that internalize the nanoparticles. Thus,
for cytotoxic chemotherapies, the tumor-enhancing potential of
nanoparticle-induced complement activation may not be fully
appreciated. However, when nanoparticles are used for delivery
of other drugs including immunotherapeutics, which do not act
via direct tumor cell killing, nanoparticle-induced complement
activation could conceivably diminish their efficacy. Another
consideration is that complement activation in the blood, which
occurs after intravenous infusion of nanoparticle drugs, is
transient and likely do not persist long enough to impact
tumor growth in the long term. Nonetheless, chronic
inflammation and complement activation can promote tumor
progression, although it has not been determined whether
nanoparticles that accumulate in the tumor tissue induce
chronic complement activation.

The major pitfall in the studies of the complex interactions
between nanoparticles and the innate immunity is that in vitro
studies and studies in “healthy” animals do not sufficiently
mirror the biological interactions of nanomedicines with the
immunity of cancer patients. The xenograft tumor models are
the predominant in vivo models used to demonstrate anticancer
efficacy of drugs including nanomedicines. However, they rely on
immunodeficient mice. The genetically engineered and
syngeneic tumor models that utilize immunocompetent mice
would be better options for assessing the complex interplay
between the tumor immunologic milieu and nanomedicine.
The selection of animal species for use in preclinical tests of
nanomedicines also has a major impact on the preclinical
toxicology results. Some conventional preclinical models (rats
and non-human primates) may be insensitive to complement
activation and cytokine-storm induction by nanoparticles (132–
137). In such cases, supplementing in vivo studies with in vitro
assays utilizing human blood should be considered. Another
consideration for selecting an animal model is related to the
variable sensitivity of animal strains to a particular type of
immunotoxicity. For example, rabbits are more sensitive to
cytokine and complement-mediated toxicities than rodents.
Among rodents, strains may differ in their selectivity to
nanoparticle clearance. For example, Balb/c and C57BL/6 mice
commonly used in preclinical studies demonstrate a different
pattern of nanoparticle uptake due to their Th2 and Th1 bias,
respectively (138).
CONCLUSIONS

Over two decades after the approval of the first nanoparticle-
mediated anticancer drug, there has yet to be a major shift in
cancer treatment paradigms linked to nanoparticles, contrary
to what was expected based on preclinical studies of cancer
nanomedicines (130). Only two anticancer nanoparticles are
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used as front-line therapies: nanoparticle albumin-bound paclitaxel
(nab-paclitaxel; Abraxane®) for advanced non-small cell lung
cancer and metastatic pancreatic adenocarcinoma, and liposomal
daunorubicin cytarabine (CPX-351; Vyxeos®) for treatment-
related acute myeloid leukemia and acute myeloid leukemia
with myelodysplastic changes. Nonetheless, nanoparticle-
mediated drug delivery is a proven strategy to mitigate toxicity
of anticancer drugs in patients (139–141). The future of cancer
nanomedicine is promising as recent new insights in
understanding the role of the complement system in cancer
will perhaps facilitate our understanding of how nanoparticle
interactions with the innate immune system impacts drug
pharmacology. If this knowledge gap can be addressed, it will
lay the foundation for future work that will uncover the full
clinical potential of cancer nanomedicines (18).
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