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Background: Cancer treatment is based on tumor staging. Curative intent is only applied to localized tumors. Re-
cent studies show that oligometastatic patients who have limited number of metastases may benefit from
metastasis-directed local treatments to achieve long-term survival. However, mechanisms underlying
oligometastatic to polymetastatic progression remains elusive.
Methods: The effects of miR-200c and Sec23a on tumor metastasis were verified both in vitro and in vivo. The
secretome changes were detected by mass spectrometry.
Findings:We established a pair of homologous lung-metastasis derived oligometastatic and polymetastatic cell
lines from humanmelanoma cancer cell lineM14. Using the two cell lines, we have identified Sec23a, a gene tar-
get of miR-200c, suppresses miR-200c augmented oligometastatic to polymetastatic progression via its
secretome. Firstly,miR-200c over-expression and Sec23a interference accelerated oligometastatic to polymetatic
progression. Secondly, Sec23a functions downstreamofmiR-200c. Thirdly,mass spectrometric analysis of the se-
cretory protein profile suggests that Sec23a-dependent secretome may impact metastatic colonization by mod-
ifying tumor microenvironment. Fourthly, the survival analysis using The Cancer Genome Atlas database shows
Sec23a as a favorable prognostic marker for skin cutaneous melanoma, supporting the clinical relevance of our
findings.
Interpretation: The finding that Sec23a is a suppressor of oligometastatic to polymetastatic progression has clin-
ical implications. First, it provides a new theoretical framework for the development of treatments that prevent
oligometastasis to polymetastasis. Second, Sec23amay be used as a favorable prognosticmarker for the selection
of patients with stable oligometastatic disease for oligometastasis-based local therapies of curative intent.
Fund: National Natural Science Foundations of China.
© 2018 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://

creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Cancer treatment is based on tumor staging. Curative intent is only
applied to early-stage localized tumors. Recent studies show that in
ranslational Cancer Stem Cell
Medical University, No.1 Yixue

ranslational Cancer Stem Cell
l University, No.1 Yixue Road,

oscience, Chongqing Medical
, China.
y2003123@163.com (J. Wang),

. This is an open access article under
contrast to widespread polymetastases, oligometastatic patients who
have limited number or spread of metastases may benefit from
metastasis-directed local treatments [1–4]. Surgical resection has been
proven to have curative effects on limited metastases in lung [5,6],
liver [7,8] and breast [9,10]. Moreover, treatment of limited metastases
with SBRT (stereotactic body radio therapy) has achieved long-term
survival [11,12]. However, mechanisms underlying oligometastatic to
polymetastatic progression remain elusive. Identification of predictors
or mediators of progression will improve patient selection for
metastasis-directed therapy, or for the development of novel therapies
that prevent oligometastatic to polymetastatic progression.

MiRNAs are a class of non-coding single-stranded RNAmolecules of
about 22 nucleotides in length encoded by endogenous genes that are
involved in in normal and pathological processes [13,14]. Metastasis is
the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Research in context

Evidence before this study

Cancer treatment is based on tumor staging. Curative intent is
only applied to early-stage localized tumors. Recent studies
show that oligometastatic patients who have limited number or
spread of metastases may benefit from metastasis-directed local
treatments and achieve long-term survival. However, our under-
standing about mechanisms underlying oligometastatic to
polymetastatic progression remains limited.

Added value of this study

In this study, we characterized themetastasis promoting effect of
miR-200c in the context of oligometastatic to polymetastatic pro-
gression, providing more experimental evidence for the context-
dependency of the role of miR-200c in tumor metastasis. We
have demonstrated for the first time that Sec23a, a gene target
of miR-200c, suppresses miR-200c augmented oligometastatic
to polymetastatic progression via its secrotome function. Further,
survival analysis using The Cancer Genome Atlas (TCGA) data-
base showedSec23a as a favorable prognosticmarker for skin cu-
taneous melanoma, supporting the clinical relevance of our
findings. In summary, our study provided newmechanistic under-
standing on oligometastatic to polymetastatic progression.

Implications of all the available evidence

The findings have provided a new theoretical framework for future
research to explore the translational potential for using Sec23a as
a biomarker for selection of oligometastatic patients for therapies
of curative intent. Since many secreted proteins affecting tumor
progression can be regulated by Sec23a, whether Sec23a can
be a therapeutic target for the development of oligometastasis-
based therapies merits further investigation.
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a multi-step process and all steps are subjected to the regulation of
miRNAs [15,16]. MiR-200c can exert both inhibitory and stimulatory ef-
fects on tumor metastasis which are context-dependent. In primary tu-
mors, miR-200c suppresses invasion by inhibiting epithelial-to-
mesenchymal transition (EMT) via Zeb1/Zeb2-E-cadherin axis [17,18].
In contrast, miR-200c promotes tumor metastasis at the step of coloni-
zation at the distant site [19]. However, themechanisms underlying the
metastasis-promoting effect ofmiR-200c have not beenwell elucidated.

Establishment of favorable tumormicroenvironment at a distant site
can be achieved in part by secretome which consists of proteins se-
creted by tumor cells [20]. Coat protein complex II(COPII) is a type of
vesicle coat protein that transports proteins from the rough endoplas-
mic reticulum to the Golgi apparatus [21,22]. The COP II pathway is clas-
sified as the classical secretory protein pathway. The COPII complex,
consists of large protein subcomplexes that include the Sec23p/Sec24p
heterodimer and the Sec13p/Sec31p heterotetramer [21,23,24]. Sec23
homolog A(SEC23A), encoded by the Sec23a gene. Sec23a is a member
of the SEC23 subfamily of the SEC23/SEC24 family that is responsible
for the assembling of COPII [21,25]. The expression of Sec23a has been
reported to be lower in the advanced stage tumors than that in the
early stage tumors [19,26].

In our previous study, miRNA-microarray profiling had identified
Sec23a gene as a gene target of miR-200c [27,28]. While the
metastasis-promoting activity ofmiR-200cwas reported to bemediated
by Sec23a [19], the function of miR-200c and Sec23a in the context of
oligometastatic to polymetastatic progression has not been character-
ized. In the present study, we identified and characterized the
regulatory effects of miR-200c-Sec23a-secreted proteins axis in
oligometastatic to polymetastatic progression at the step of coloniza-
tion. We demonstrated for the first time that Sec23a is a suppressor of
oligometastatic to polymetastatic progression, providing a new theoret-
ical framework for the development of treatments that prevent
oligometastasis to polymetastasis.

2. Materials and methods

2.1. Cell culture

GFP-labeled M14 were kindly provided by Dr. Robert Hoffman
(University of California San Diego). M14, OL, POL, OL-N.C.,
OL-shSec23a, OL-miR-200c-OE, OL-miR-200c-OE-vector and OL-miR-
200c-OE-Sec23a-OE were maintained in DMEM high glucose supple-
mented (Life Technologies, Carlsbad, CA, USA) with 10% fetal bovine
serum (FBS) (ExCell Bio, Shanghai, China), and incubated at 37 °C in hu-
midified air containing 5% CO2.

2.2. Transwell migration and invasion assays

Transwell inserts (8 μm pore size, BD Falcon) were used to perform
cell invasion assay withMatrigel (100 μl, 1:8 dilution in serum free me-
dium, BD Biosciences) and migration assay without Matrigel. 300 μl
serum-freemediumwith 5 × 104 cells was seeded into the upper cham-
ber, while 800 μl mediumwith 20% FBS as chemo-attractant was added
into the lower chamber. After 24 h of incubation, cells were removed
from the upper surface of the porus membrane with a cotton swab,
followed by fixation of cells migrated and invaded to the lower surface
of the membrane with 70% ethanol for 1 h and staining with crystal vi-
olet for 15 min. Stained cells were counted under light microscopy and
10 random fields from three replicate Transwells were counted. The
number of migrated and invaded cells was presented as number of
cells counted per field of the porous membrane.

2.3. Cell colony formation assay

A total of 200 cells in 1ml DMEM containing 0.2% agar (Solarbio Sci-
ence & Technology Co., Beijing, China) and 10% FBSwere plated perwell
into 6-well plates coatedwith 1mlDMEM containing 0.5% agar and 10%
FBS. After 1 week, colonies were stained with crystal violet and colonies
consist of no less less 50 cells counted. The experiment was performed
in triplicate and repeated three times.

2.4. Animal experiments

All mice used in the study were obtained from the core facility of
Experimental Animal Centre in Chongqing Medical University. All ani-
mal work was conducted in accordance with an approved protocol
and carried out in accordance with the institutional animal welfare
guidelines of the Chongqing Medical University. 5 × 105 tumor cells
were transplanted into each male NOD/SCID mouse via tail intravenous
injection. Mice were weighted every 3 days and dissected after 27 days
post tumor cell injection. SellstromZ87fluorescence goggles and an LDP
470 nm bright blue flashlight were used for examining the metastases
in the mice. Metastatic nodules in the lungs were counted at the time
of sacrifice and confirmed by H&E staining.

2.5. CCK-8 Cell proliferation assay

Cell proliferation was determinedwith the cell counting kit (CCK)-8
assay (Beyotime, Shanghai, China). Cellswere plated in 96-well plates at
a density of 2× 103 cells perwell. The absorbance of eachwell at 450 nm
was measured with an enzyme-linked immunosorbent assay reader
(TecanM200 PRONanoQuant). Cell proliferation activity wasmeasured
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for successive 6 days. Cell doubling time (DT) was calculated with the
eq. DT = Δt × lg2/(lgNt-lgN0).

2.6. Lentivirus-mediated stable silencing of Sec23a, over-expression of miR-
200c and overexpression of Sec23a

The sequence for the control short hairpin RNA was 5’-TTCTCCGAA
CGTGTCACGT-3′. The sequence for the sh-RNAs targeting Sec23a was
5’-GGAAGCTACAAGAATGGTTGT-3′. The lentivirus particles of N.C., sh-
Sec23a and miR-200c overexpression (OE) were purchased from
Sangon Biotech Co. (Shanghai, China). Sec23a overexpression plasmid
pLVX-Puro-mRuby-Sec23a (Plasmid#36158)was provided by Addgene
(Massachusetts, USA) and the lentivirus particles were prepared by
Sangon Biotech Co. (Shanghai, China). Cells were infected with a multi-
plicity of infection (MOI) of 50 according to themanufacturer's protocol.
Stable OL-N.C., OL-shSec23a and OL-miR-200c-OE cells were purified by
flow fluorescence sorting. After 72 h of infection, RT-qPCR and western
blotting assays were performed to measure the infection efficiency.

2.7. Real-time quantitative polymerase chain reaction (RT-qPCR)

Total cellular RNAwas extractedwith Trizol (TaKaRa, Dalian, China).
2 μg of total RNA was subjected to reverse transcription with
PrimeScript RT Master Mix (TaKaRa, Dalian, China). For the reverse
transcription of miRNA, Mir-X miRNA First-Strand Synthesis Kit
(TaKaRa, Dalian, China) was used. RT-qPCR was performed using a
SYBR Green Real-time PCR Master Mix kit (TaKaRa, Dalian, China)
under the following condition: initial pre-incubation at 95 °C for 30s,
followed by 39 cycles at 95 °C for 5 s and 60 °C for 30s. The relative
mRNA levels were analyzed using the 2−ΔΔCt method. The forward
primer sequence of miR-200c was GCTAATACTGCCGGGTAATGATG
and the forward primer sequence of U6 was GCTTCGGCAGCACACA
TACTAAAAT. The forward primer sequence and reverse primer se-
quence of Sec23a were AGTGGCGGAAGTCAGGATAC and GGCATTGGA
AATCTGGAGTG. The forward primer sequence and reverse primer se-
quence of GAPDH were AGAAGGCTGGGGCTCATTTG and AGGGGCCAT
CCACAGTCTTC.

3. Western blotting analysis

Cells were lysed in 200 μl SDS lysis buffer (Beyotime, Shanghai,
China) with 1% PMSF (Beyotime, Shanghai, China) and boiled at
100 °C for 15 min. 40 μg of each protein sample was separated by elec-
trophoresis with 12% polyacrylamide gels and transferred to
polyvinylidene fluoride (PVDF) membranes (Bio-Rad, CA, USA). There-
after, according to the manufacturer's instruction, the proteins were in-
cubatedwith appropriate primary antibodies and secondary antibodies.
Primary antibodies of SEC23A and the loading control (TUBULIN) were
purchased from Cell Signaling Technology (Massachusetts, USA). Pri-
mary antibodies of Thrombospondin-1 and CXCL4 were purchased
from Sigma-Aldrich (St. Louis, MO, USA). Primary antibodies of Trans-
ferrin, S100A8 and CYB5R3were purchased from R&D Systems (Minne-
sota, USA). Results were analyzed by ImageJ version 1.47 (National
Institutes of Health, Maryland, USA). Three independent experiments
were done for statistical analysis.

4. Secretory protein profile analysis

Conditioned media from different cell lines were concentrated with
a vacuum concentrator (Thermo Scientific Savant DNA120, Thermo
Fisher Scientific, USA) and centrifuged in 3-kDa ultracentrifuge tube
(Merck Millipore, Massachusetts, USA), followed by protein quantiza-
tion and SDS-PAGE electrophoresis. Thereafter, protein samples were
subjected to reductive alkylation, enzymatic hydrolysis and labeled
with Tandem Mass Tags (TMT) 10-plex Isobaric Label Reagent Set
(Thermo Fisher Scientific, Massachusetts, USA). Reversed phase liquid
chromatography (RPLC) analysis was performed on the Agilent 1200
HPLC System (Agilent, CA, USA). Online Nano-RPLC analysis was
conducted on theEasy-nLC1000 System (ThermoFisher Scientific,Mas-
sachusetts, USA), and samples were loaded onto NanoLC trap column
(PepMap100, NanoViper, Thermofisher Dionex). Data acquisition was
performed with Q-Exactive System (Thermo Fisher Scientific, Massa-
chusetts, USA) fitted with a Nanospray. The spectral data files were
tanalyzed using the SEQUEST algorithm available in Proteome Discov-
erer 1.4 software (Thermo Fisher Scientific, Massachusetts, USA).

4.1. Statistical analysis

All experiments were performed at least three times for statistical
analysis. Quantitative results were shown as mean ± SEM (standard
error of the mean). Data were analyzed with GraphPad Prism version
5.0 (GraphPad Software Inc., CA, USA) by two-tailed Student's t-test. Im-
ages were globally adjusted with Photoshop version 11.0.1 (Adobe Sys-
tems Inc., CA, USA). P b .05 was considered significant statistically and
wasmarkedwith an asterisk. P b .01 and P b .01 were considered highly
statistically significant and were marked with double asterisks and tri-
ple asterisks respectively.

Ethics statement

All mice used in the studywere obtained from the core facility of Ex-
perimental Animal Centre in Chongqing Medical University. All animal
work was conducted in accordance with an approved protocol and car-
ried out in accordance with the institutional animal welfare guidelines
of the Chongqing Medical University.

5. Results

5.1. Characterization of oligometastatic and polymetastatic cells in vitro
and in vivo

By isolation of M14 cells from the lung of mice exhibited
oligometastasis or polymetastasis respectively in vivo, followed by
three rounds of in vivo validation, a set of paired stable lung-derived
oligometastatic cell model (OL) and the homologous polymetastatic
cell model (POL) from human melanoma cancer cell line M14 were
established [29]. The migration and invasion capacities of the OL and
POL cells were examined using the Transwell chambers. Compard
with OL cells, POL cells exhibited significantly elevated migration and
invasion ability in vitro (Fig. 1a-d, P b .001). Colony formation assay
was performed to compare the metastatic colonization capacities of
the OL and POL cells (Methods). POL cells were more capable of meta-
static colonization than the OL cells in vitro (Fig. 1e-f, P b .01). Tail vein
injection of tumor cells to the immunodeficient NOD/SCID mice was
performed to access metastatic colonization efficiency in vivo
(Methods). Mice received POL cells developed much more GFP-
labeled macroscopic metastatic foci in the lungs than that of the OL
cells, as evident by whole lung fluorescent imaging (Fig. 1g), H&E stain-
ing and quantitative H&E analysis (Fig. 1h-i, P b .001). Tail vein injection
of POL cells also resulted in the development of more metastatic foci in
the thoracic cavities (Supplementary Fig. 1a) and suffered from more
severe weight loss (Supplementary Fig. 1b) than that of OL cell injected
mice. These observations demonstrate that POL cells have higher meta-
static capability than the OL cells both in vitro and in vivo.

6. MiR-200c over-expression and Sec23a interference augmented
metastasis

While POL and OL cells differed greatly in the capability of invasion
andmetastasis (Fig. 1), they had comparable doubling time for cell pro-
liferation (Methods, Fig. 2a, P N .05), confirming the differences in cell



Fig. 1. POL possesses stronger metastatic ability than OL in in vitro and in vivo. (a) representative images of migrated cells of POL and OL in Transwell migration assay, bar = 60 μm.
(b) quantification of transwell migration assay of POL and OL. (c) representative images of invaded cells of POL and OL in Transwell invasion assay with matrigel, bar = 60 μm.
(d) quantification of transwell invasion assay with matrigel of POL and OL. (e) representative images of agar colony formation assay of POL and OL. (f) quantification of agar colony
formation assay of POL and OL. (g) metastatic nodules in the lungs were shown by whole-lung green fluorescent images, bar = 1 mm. (h) metastatic nodules in the lungs were shown
by H&E staining of whole-lung images, arrows show the metastatic nodules, bar = 5 mm. (i) quantification of metastatic nodules in the lungs. (**P b .01, ***P b .001).
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migration and invasion between OL and POL cells were not due to al-
terations in cell proliferation. MiR-200c expression was detected
which showed that the expression of miR-200c in the parental cell
line was higher than that in OL and was lower than that in POL
(Fig. 2b, P b .001). MiR-200c, highly expressed in polymetastatic pa-
tients [19] was expressed at higher level in POL cells (Fig. 2b, P b

.001), showing the clinical relevance of the POL model to clinical
polymetastasis. Sec23a expression pattern was the opposite of the
Fig. 2. The expression level of miR-200c in POL is significantly higher than that in OL, and the
activities of POL and OL measured by the CCK-8 assay. (b) miR-200c abundance in POL and O
measured by Real-time quantitative PCR. (d) protein abundance of SEC23A in POL and OL mea
and OL. (**P b .01, ***P b .001).
miR-200c, i.e., it was reduced in POL cells (Fig. 2c-e, P b .01). This find-
ing is consistent with the report that Sec23a is a confirmed gene target
of miR-200c [19,30].

To determine the role ofmiR-200c and Sec23a in regulating themet-
astatic potential of OL cells, stable miR-200c overexpression (OL-miR-
200c-OE cells) and Sec23a interference (OL-shSec23a) were achieved
by lentivirus infection (Methods). and altered expression of miR-200c
and Sec23awas confirmed by PCR (Fig. 3a-b, P b .001) and by Western
expression level of Sec23a in POL is significantly lower than that in OL. (a) proliferation
L measured by Real-time quantitative PCR. (c) mRNA abundance of Sec23a in POL and OL
sured by Western-blotting. (e) quantitative analysis of the expressions of SEC23A in POL



Fig. 3. Overexpression of miR-200c and inhibition of Sec23a expression in OL. (a) miR-200c abundance in OL-N.C., OL-shSec23a and OL-miR-200c-OEmeasured by Real-time quantitative
PCR. (b)mRNA abundance of Sec23a in OL-N.C., OL-shSec23a and OL-miR-200c-OEmeasured by Real-time quantitative PCR. (c) protein abundance of SEC23A inOL-N.C., OL-shSec23a and
OL-miR-200c-OEmeasuredbyWestern-blotting. (d) quantitative analysis of the expressions of SEC23A inOL-N.C., OL-shSec23a andOL-miR-200c-OE. (e) proliferation activities of OL-N.C.,
OL-shSec23a and OL-miR-200c-OE measured by the CCK-8 assay. (**P b .01, ***P b .001).
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blot analysis (Fig. 3c-d, P b .001). Altered mIR-200c and Sec23a expres-
sion had no significant effect on OL cell proliferation (Fig. 3e, P N .05).

MiR-200c overexpression and Sec23a inhibition lead to comparable
level of enhanced cell migration (Fig. 4a-b, P b .001), invasion (Fig. 4c-
d, P b .001) and metastatic colony formation (Fig. 4e-f, P b .001)
in vitro, as well as more pronounced lung metastases in vivo (Methods,
Fig. 4g-I, P b .001). miR-200c overexpression and Sec23a inhibition also
resulted in the development of moremetastatic foci in the thoracic cav-
ities and on the backsides (Supplementary Fig. 2a-b). One mouse
injected with the OL-shSec23a cells even developed a GFP-labeled met-
astatic foci in one of the testis (Supplementary Fig. 2c). Mice received
OL-shSec23a cells and the OL-miR-200c-OE cells suffered frommore se-
vere weight loss (Supplementary Fig. 2d). These observations collec-
tively indicate that overexpression of miR-200c or inhibition of Sec23a
augmented metastasis both in vitro and in vivo.

7. MiR-200c over-expression and Sec23a interference triggered sig-
nificant changes in protein secretion

SEC23A is essential for the assembling of COPII, and has also been
shown to interact with TRAPP, Grh1p, and Dynactin which are involved
in anterograde vesicle transport from ER to Golgi [21,23,31]. Previous
studies have reported that Sec23a is responsible for the secretion of
many extracellular matrix components involved in different physiolog-
ical processes such as craniofacial development [32,33] and chondro-
genesis [34,35]. Since Sec23a can be regulated by miR-200c, we
hypothesized that over-expression of miR-200c and down-expression
of Sec23a might profoundly alter the protein secretion function of OL
cells, promoting oligometastatic to polymetastatic progression.

Mass spectrometry (MS) detection of secreted proteins with Tan-
dem Mass Tags (TMT) labeling was performed using conditioned
media of OL-miR-200c-OE cells, OL-shSec23a cells, and OL-N.C. cells
(Supplementary Fig. 3). 3585 proteins were identified among which
1510were secreted proteins ofwhich475were classified as the classical
secreted proteins and the rest 1035 were classified as the nonclassical
secreted proteins (Fig. 5a). Heat map and hierarchical clustering
indicated that over-expression of miR-200c or down-expression of
Sec23a dramatically changed the secreted proteome pattern of OL cells
(Fig. 5b). Gene Ontology (GO) analysis annotated biological processes
related to the functions of the differentially expressed and decreased se-
creted proteins (Fig. 5c). Protein-protein interactions (PPI) analyses re-
vealed functional relationships within the decreased secreted proteins
(Fig. 5d). MS quantitative analysis identified 16 commonly decreased
secreted proteins shared by the changed secreted proteomes of OL-
shSec23a cells and OL-miR-200c-OE cells (Fig. 5e-f). To confirm the
down-regulation of proteins identified by MS analysis,
Thrombospondin, Transferrin, S100A8, CYB5R3, and CXCL4 were se-
lected for the RT-PCR andwestern-blot validation using the conditioned
media, respectively (Fig. 5g-h).

7.1. The effect ofmiR-200c onmetastasis can be reversed by the overexpres-
sion of Sec23a

Thus far, we have demonstrated that overexpression of miR-200c
and inhibition of Sec23aproduced comparablemetastasis promoting ef-
fect as well as similar changes in secretome function in M14 OL cells
(Fig. 2-5). Taking in consideration of the knowledge that Sec23a is a
gene target of miR-200c [19,30], our observations suggest that the
mechanism underlying the metastasis promoting effect of miR-200c
could be at least in part, mediated by its inhibition of Sec23a gene ex-
pression. To molecular order Sec23a to be functionally downstream of
miR-200c, we designed a rescue experiment in which Sec23a is
overexpressed by lentivirus infection in OL-miR-200c-OE cells that sta-
bly overexpressmiR-200c (Fig. 6a-c, P b .001). Overexpression of Sec23a
did not alter the proliferation of OL-miR-200c-OE cells (Fig. 6d, P N .05).
In contrast, overexpression of Sec23a effectively and successfully re-
versed augmented cell migration (Fig. 6e-f, P b .001), invasion
(Fig. 6g-h, P b .01) and colony formation (Fig. 6i-j, P b .01) as a result
of miR-200 overexpression. More importantly, overexpression of
Sec23a switched polymetastatic phenotype seen in mice injected OL-
miR-200c-OE-NC cells to oligometastasis (Fig. 6k-l, P b .001). This set
of observations confirm that Sec23a functions as a downstream



Fig. 4.Overexpression ofmiR-200c and inhibition of Sec23a expression effectively enhance themetastatic ability of OL in vitro and in vivo. (a) representative images ofmigrated cells of OL-
N.C., OL-shSec23a and OL-miR-200c-OE in transwell migration assay, bar = 60 μm. (b) quantification of transwell migration assay of OL-N.C., OL-shSec23a and OL-miR-200c-OE.
(c) representative images of invaded cells of OL-N.C., OL-shSec23a and OL-miR-200c-OE in transwell invasion assay with matrigel, bar = 60 μm. (d) quantification of transwell
invasion assay with matrigel of OL-N.C., OL-shSec23a and OL-miR-200c-OE. (e) representative images of agar colony formation assay of OL-N.C., OL-shSec23a and OL-miR-200c-OE.
(f) quantification of agar colony formation assay of OL-N.C., OL-shSec23a and OL-miR-200c-OE. (g) metastatic nodules in the lungs were shown by whole-lung green fluorescent
images, bar = 1 mm. (h) metastatic nodules in the lungs were shown by H&E staining of whole-lung images, arrows indicate the metastatic nodules, bar = 5 mm. (i) quantification of
metastatic nodules in the lungs. (**P b .01, ***P b .001).
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mediator of miR-200 in the promotion of oligometastatic to
polymetastatic progression.
8. Discussion

The introduction of the theory of oligometastatic tumors provides an
opportunity to cure metastatic tumors [4,36,37]. Clinical observations
show that cases of oligometastatic tumors are more prevalent than ex-
pected, for example, the proportion of oligometastatic tumors in non-
small cell lung cancer can be as high as 50% [38]. As the sensitivity and
accuracy of imaging techniques used in the diagnosis of cancer continue
to improve, tumors diagnosed at the oligometastatic phase will con-
tinue to increase. Surgery and SBRT have achieved remarkable improve-
ments in the targeted treatments for patients with stable
oligometastatic tumors [4,12,39]. However, a large percentage of
oligometastatic patients will inevitably progress to polymetastatic
phase [40,41]. Clinical outcomes also show that the evolution from
oligometastasis to polymetastasis is the root cause of the failure of
targeted treatments in oligometastatic tumors [40].

Targeted therapy for oligometastatic tumors has shown great prom-
ise for clinical cure of a subset of metastatic tumors. However, themajor
obstacle that hinders the development of oligometastasis-based
targeted therapy is the lack of mechanistic understanding of progres-
sion from oligometastasis to polymetastasis. Although elevated miR-
200c expression was observed in clinical polymetastases, the context-
dependent dual functions (inhibition and promotion) of miR-200c
makes it not a feasible therapeutic target for developing
oligometastasis-based therapies.

In this study, we characterized the metastasis promoting effect of
miR-200c in the context of oligometastatic to polymetastatic progres-
sion, providing more experimental evidences for the context-
dependency of the role of miR-200c in tumor metastasis. While miR-
200c overexpression promotes oligometastatic to polymetastatic pro-
gression in vivo, it inhibitsmigration and invasion in vitro. The inhibitory
effect onmigration and invasion in vitro is most likely the result of inhi-
bition of epithelial to mesenchymal transition [17,18] as evidenced by
changes in cell morphology and surface markers(Supplementary
Fig. 5). However, elevated miR-200c promotes metastasis at coloniza-
tion step in our model, which is consistent with Korpal's findings [19].

Recent studies have shown the participation of secreted proteins in
human cancer [42–44]. Secreted proteins can reshape tumormicroenvi-
ronment, thereby change the metastatic characteristics of the tumor
cells at the rate limiting step of metastasis-colonization. The current
study, by identifying Sec23a as a suppressor of miR-200c augmented
olygometastatic to polymetastatic progression, has provided a new the-
oretical framework for clinical translation. In our previous study, we
identified Sec23a as a gene target of miR-200c by genemicroassay, con-
sistentwith Korpal's study in breast cancner [19,27,28]. Korpal et al.first
reported the metastasis-promoting activity of miR-200c was reported
to be mediated by Sec23a's secretom function [19]. While our findings
are highly consistent with that reported by Korpal et al., we character-
ized the effect of miR-200c/Sec23a axis on tumor metastasis in the con-
text of oligometastatic to polymetastatic progression. Further, survival
analysis using The Cancer Genome Atlas (TCGA) database showed
Sec23a as a favorable prognostic marker for skin cutaneous melanoma,
supporting the clinical relevance of our findings.

Different secreted proteins identified by MS analysis may be in-
volved in oligometastatic to polymetastatic progression, either as regu-
lators or as biomarkers. For example, THBS1 can affect endothelial cell
proliferation, migration, and apoptosis by antagonizing the activity of
VEGF, thus inhibit tumor angiogenesis [45,46]. Transferrin behavea as
a tumor suppressor in diverse cancers by inhibiting endothelial cell sur-
vival [47]. Vitamin D binding Protein GC is negatively correlated with
cancer risk [48,49]. The immune chemokines CXCL4 can inhibit tumor



Fig. 5.Mass spectrometry(MS) detection of secreted proteins of OL-N.C., OL-shSec23a and OL-miR-200c-OE. (a) identification workflow of secretory proteins applied to the MS profiles.
(b) heat map and hierarchical clustering of differentially expressed secreted proteins in OL-N.C., OL-shSec23a and OL-miR-200c-OE. (c) GOBP, GOCC and GOMF analysis of the secretory
proteomic profiles of OL-shSec23a vsOL-N.C. (i) and OL-miR-200c-OE vsOL-N.C.(ii). (d) PPI analysis of the secretory proteomic profiles of OL-shSec23a vsOL-N.C. (i) and OL-miR-200c-OE
vsOL-N.C.(ii). (e) the number of downregulated secretory proteins of OL-shSec23a vsOL-N.C. andOL-miR-200c-OE vsOL-N.C.. (f) quantification of the commonly downregulated secretory
proteins of OL-shSec23a and OL-miR-200c-OE vs OL-N.C. (g) validation of the selected down-regulated secretory proteins using the conditioned media from POL and OL by western-
blotting. (h) validation of the selected down-regulated secretory proteins using the conditioned media from OL-N.C., OL-shSec23a and OL-miR-200c-OE by western-blotting. (*P b .05).
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Fig. 6. Overexpression of Sec23a in OL-miR-200c-OE recedes its advancedmetastatic activity. (a) mRNA abundance of Sec23a in OL-miR-200c-OE-vector and OL-miR-200c-OE-Sec23a-OE
measured by Real-time quantitative PCR. (b) protein abundance of SEC23A in OL-miR-200c-OE-vector and OL-miR-200c-OE-Sec23a-OE measured by Western-blotting. (c) quantitative
analysis of the expressions of SEC23A in OL-miR-200c-OE-vector and OL-miR-200c-OE-Sec23a-OE. (d) proliferation activities of OL-miR-200c-OE-vector and OL-miR-200c-OE-Sec23a-OE
measured by the CCK-8 assay. (e) representative images of migrated cells of OL-miR-200c-OE-vector and OL-miR-200c-OE-Sec23a-OE in transwell migration assay, bar = 60 μm.
(f) quantification of transwell migration assay of OL-miR-200c-OE-vector and OL-miR-200c-OE-Sec23a-OE. (g) representative images of invaded cells of OL-miR-200c-OE-vector and
OL-miR-200c-OE-Sec23a-OE in transwell invasion assay with matrigel, bar = 60 μm. (h) quantification of transwell invasion assay with matrigel of OL-miR-200c-OE-vector and OL-
miR-200c-OE-Sec23a-OE. (i) representative images of agar colony formation assay of OL-miR-200c-OE-vector and OL-miR-200c-OE-Sec23a-OE. (j) quantification of agar colony
formation assay of OL-miR-200c-OE-vector and OL-miR-200c-OE-Sec23a-OE. (k) metastatic nodules in the lungs were shown by H&E staining of whole-lung images, arrows indicate
the metastatic nodules, bar = 5 mm. (l) quantification of metastatic nodules in the lungs. (**P b .01, ***P b .001).
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metastasis by enhancing immune response [50,51]. Therefore, it is rea-
sonable to conclude that reductions of these tumor metastasis suppres-
sors upon Sec23a down-regulation by miR-200c overexpression will
elicit multi-factorial and multi-functional effects on tumor cell-
microenvironment interactions that augment to oligometastatic to
polymetastatic progression.

Among the identified secretary proteins regulated by Sec23a,
S100A8, a regulator of autophagy, may be of particular importance.
S100A8 promotes autophagy by competing with BCL-2 binding to
BECN1, resulting in the increase of the BECN1-PI3KC3 complex forma-
tion and subsequent autophagosome maturation [52]. The role of au-
tophagy in inhibiting tumorigenesis and metastasis has been widely
demonstrated, but the underlyingmechanisms have not been fully elu-
cidated. Future investigations have been initiated to explore the role of
Sec23a in metastasis-related autophagic events.

In summary, our work presented here have provided a new theoret-
ical framework for future research to explore the translational potential
for using Sec23a as a biomarker for selection of oligometastatic patients
for therapies of curative intent. Since many secreted proteins affecting
tumor progression can be regulated by Sec23a, whether Sec23a can be
a therapeutic target for the development of oligometastasis-based ther-
apies merits further investigation.
Supplementary data to this article can be found online at https://doi.
org/10.1016/j.ebiom.2018.10.002.
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