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The expeditious growth in spatial omics technologies enables the profiling of genome-wide molecular events at molecular

and single-cell resolution, highlighting a need for fast and reliable methods to characterize spatial patterns. We developed

SpaGene, a model-free method to discover spatial patterns rapidly in large-scale spatial omics studies. Analyzing simulation

and a variety of spatially resolved transcriptomics data showed that SpaGene is more powerful and scalable than existing

methods. Spatial expression patterns identified by SpaGene reconstruct unobserved tissue structures. SpaGene also success-

fully discovers ligand–receptor interactions through their colocalization.

[Supplemental material is available for this article.]

Spatial omics technologies map out organizational structures of
cells along with their genomics, transcriptomics, proteomics,
and epigenomics profiles, providing powerful tools for decipher-
ingmechanisms of functional and spatial arrangements in normal
development and disease pathology (Larsson et al. 2021; Longo
et al. 2021; Marx 2021; Deng et al. 2022; Dhainaut et al. 2022;
Ratz et al. 2022; Zhao et al. 2022). The collection of available ap-
proaches provides a wide spectrum of throughput and spatial res-
olution. Imaging-based approaches generally target preselected
RNA or proteins at molecular and single-cell resolution, whereas
sequencing-based approaches allow genome-wide profiling with
limited spatial resolution (Lewis et al. 2021; Zhuang 2021).
Recent advances in those approaches move the field rapidly into
the direction enabling genome-wide detection with single-cell or
subcellular resolution, presenting a significant computational
challenge for scalable and robust methods to derive biological in-
sights in the spatial context (Atta and Fan 2021).

One essential step in spatial omics analysis is to characterize
spatial expression patterns and colocalization. Several methods
have been developed to identify spatially variable genes (Edsgärd
et al. 2018; Svensson et al. 2018; Sun et al. 2020a; Anderson and
Lundeberg 2021; Miller et al. 2021; Zhu et al. 2021). Trendsceek
uses permutation test to detect significant dependency between
the spatial distribution of points and their expression levels based
on marked point processes (Edsgärd et al. 2018). Sepal ranks spa-
tially variable genes by the diffusion time with the rationale
that genes with spatial patterns require more time to reach a ho-
mogenous state than those with random spatial distributions
(Anderson and Lundeberg 2021). SpatialDE and SPARK both use
Gaussian process regression as the underlying data generative
model for spatial covariance structures. SpatialDE decomposes ex-
pression variability into spatial variance and noise, and estimates
statistical significance by comparing the likelihoods with and
without a spatial component (Svensson et al. 2018). SPARK ex-
tends SpatialDE via generalized linear spatial error models, with
the ability to directly model raw counts and adjust for covariates

(Sun et al. 2020a). SPARK-X examines the similarity of expression
covariancematrix and distance covariancematrix and tests wheth-
er they are more similar than expected by chance (Zhu et al.
2021). The statistical power of such methods highly depends on
spatial covariancemodels, that is, howwell theymatch true under-
lying expression patterns. Although multiple kernels, including
Gaussian, linear, and periodic kernels with different smoothness
parameters, are considered to ensure identification of various spa-
tial patterns, statistical power will be compromised substantially
for identifying spatial patterns poorly modeled by those prede-
fined kernel functions. Furthermore, spatial covariance models
are built on cellular distances, which would confound true expres-
sion variances with those driven by variances in cellular densities.
To take nonuniform cellular densities into consideration,
MERINGUE calculates spatial autocorrelation and cross-correla-
tion based on spatial neighborhood graphs to identify spatially
variable genes and gene interactions (Miller et al. 2021). Above
all, even equipped with computationally efficient algorithms, it
would still take days to months for most methods to analyze
large-scale spatial datawith genome-wide profiling in tens of thou-
sands of locations (Zhu et al. 2021), resulting in a high demand for
scalable and robust methods for characterizing spatial expression
patterns.

To address those limitations, we aim to develop a scalable and
model-freemethod for detecting spatial patterns.Withoutmaking
assumptions on spatial covariance models and data distributions,
the method will have more degree of freedom and also be more
computationally efficient in identifying spatial patterns than ex-
isting methods.

Results

Overview of SpaGene

SpaGene is built on a simple intuition that spatially variable genes
have uneven spatial distributions, meaning that highly expressed
cells/spots tend to be more spatially connected than random.
Given a set of spatial locations, SpaGene first builds the spatial
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network using k-nearest neighbors. For each gene, SpaGene then
extracts a subnetwork comprising only cells/spots with high ex-
pression of the gene from the k-nearest neighbor graph. SpaGene
quantifies the connectivity of the subnetwork by the Earth mov-
er’s distance between degree distributions of the subnetwork and
a fully connected one. Finally, SpaGene compares the observed
and the expected distances from random permutations. Genes
with significantly shorter distances than random are identified
to be spatially variable (Fig. 1A).

Simulation

We first applied SpaGene on two simulation data sets. One simu-
lation was generated from negative binomial distributions follow-
ing SPARK-X (Zhu et al. 2021), the other was sampled from real
data following Trendsceek (Edsgärd et al. 2018). Cells/spots with
higher expression (spiked cells) were located in one of those five
patterns: hotspot, streak, circularity, biquarter circularity, and
Purkinje layer in mouse cerebellum (Fig. 1B). The distinctness of
the pattern was determined by effect sizes, which were controlled
by the fold change (FC) of expression in spiked cells compared
with the background. The pattern size was determined by the per-
centage of spiked cells. Higher effect sizes and larger pattern sizes

generated more distinct and bigger patterns, which were easier to
be identified. Among the simulated genes, 500 genes display spa-
tial patterns (details in the Methods section). The area under the
curve (AUC) was used to measure the ability to distinguish be-
tween spatially and nonspatially variable genes.

We compared SpaGene with SpatialDE and SPARK-X.
SpatialDE and SPARK-X both achieved high-computational effi-
ciency and good performance in other studies and SPARK-X is
the only method applicable to data with sample size exceeding
30,000 (Zhu et al. 2021). As expected, effect sizes are themajor fac-
tor affecting performance. Larger effect sizes produced more dis-
tinct patterns, which were easier to be distinguished from
random spatial distributions and resulted in higher AUC values.
For hotspot and streak patterns, SpaGene, SpatialDE, and SPARK-
X successfully distinguished spatially from nonspatially variable
genes when patterns were distinct (AUC=1 at FC≥5 for hotspot
and AUC=1 at FC≥8 for streak patterns). For less distinct patterns,
SpaGene performed slightly better than SpatialDE and SPARK-X
for smaller patterns, which obtained AUC of 0.64, 0.52, and 0.55
for SpaGene, SPARK-X, and SpatialDE, respectively, at FC=2 and
size = 1 in hotspot patterns, although SPARK-X outperformed
SpatialDE and SpaGene for bigger patterns (size > 1) (Fig. 1C). For
circularity and biquarter circularity patterns, SpaGene achieved
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Figure 1. Schematic of SpaGene and simulation results. (A) Schematic of SpaGene. (B) Visualization of five spatial patterns. (C) Area under the curve
(AUC) plots of SpaGene (red), SpatialDE (gray), and SPARK-X (blue) in simulated data sets with different effect sizes (x-axis) and pattern sizes (point shapes)
and 10,000 genes and 1000 cells/locations. Simulated data were generated from negative binomial distributions.
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much better performance than SpatialDE and SPARK-X. For the
circularity pattern, SpaGene achieved AUC of 0.99 even for the
smallest pattern at FC=3 and AUC of 1 at FC≥5. In comparison,
SpatialDE only obtained AUCof 0.73 at FC=3, and SPARK-X failed
to distinguish spatially from nonspatially variable genes even at
FC =5 (AUC=0.5) for the smallest pattern (size = 1). SpaGene
and SpatialDE achieved AUC of 1 whereas SPARK-X only obtained
AUC of 0.72 at FC=8 and size = 1. Although the performance of
SpatialDE and SPARK-X improved with increasing pattern sizes,
SpaGene was more powerful than SpatialDE and SPARK-X (Fig.
1C). For the biquarter circularity pattern, SPARK-X failed even at
the largest effect size for the two small patterns (AUC=0.5 at FC
=10, size = 1 or 2), although SpaGene achieved AUC≥0.9 and
SpatialDE obtained AUC of 0.7–0.83 at FC≥3 for any pattern sizes
(Fig. 1C). For the Purkinje layer pattern, SPARK-X failed at any ef-
fect sizes (AUC=0.5), although SpaGene achieved AUC of 0.81 at
FC=2, 0.99 at FC=3, and 1 at FC≥5 (Fig. 1C). SpatialDE was not
applied in this setting because of long computational time. To
summarize, SpaGene achieved good performance for all spatial
patterns, which obtained AUC≥0.98 at FC≥3 for relatively big
patterns (size > 1) andAUC close to 1 at FC≥5 for any pattern sizes.
In comparison, SPARK-X seemed to be very sensitive to pattern
shapes, which worked well for hotspot and streak patterns, but
not for circularity, biquarter circularity, and Purkinje layer patterns
even when patterns were strongly distinct from the background.
Furthermore, SpaGene was more robust against pattern sizes
than SpatialDE and especially SPARK-X, which sometimes showed
more power to identify indistinct and large patterns than small dis-
tinct patterns. For example, SPARK-X obtainedAUCof 0.8 at FC=3
and size = 3, but AUC of 0.7 even at FC=8 and size = 1 for circular-
ity patterns. SpatialDE obtained AUC of 0.7 at FC=3 and size = 1,
but 0.82 at FC=2 and size = 5 for biquarter circularity patterns.

We also simulated scenarios with varying number of genes and
cells/locations (Supplemental Figs. S1–S5). We found that the per-
formance of SpaGene was less dependent on the number of cells/
locations compared with SpatialDE and SPARK-X. The evaluation
on the simulation data sets sampled from real data obtained simi-
lar results (Supplemental Figs. S6–S9).

In terms of time complexity, SpaGene and SPARK-X aremuch
more computationally efficient than SpatialDE. SpatialDE requires
several orders of computational time than SpaGene and SPARK-X,
and its runtime increases linearly or cubically with the number of
genes and the number of cells/locations (Supplemental Fig. S10A).
For example, it takes SpatialDE 4045 sec to analyze a datawith 10,000
genes and 5000 cells/location, although it only takes SpaGene and
SPARK-X11 sec and 22 sec, respectively. Additionally, SpaGene and
SPARK-X require less memory than SpatialDE. SPARK-X and
SpaGene require 0.5 G and 0.6 G memory, respectively, whereas
SpatialDE demands 1.6 G memory to analyze a data with 10,000
genes and 5000 locations (Supplemental Fig. S10B).

Application to MOB by spatial transcriptomics

We applied SpaGene to spatial transcriptomics data frommain ol-
factory bulb (MOB) (Ståhl et al. 2016), involving 16,218 genes
measured on 262 spots. The MOB has a roughly concentric ar-
rangement of seven-cell layers (Nagayama et al. 2014). SpaGene
identified 634 spatially variable genes (adjusted P-value, adj P<
0.05), including genes known to be located in specific layers.
Several examples were shown in Figure 2A, such as Pcp4 in granule
cell layer (GCL) (adj P=3×10−6) (Sangameswaran et al. 1989),
Slc17a7 in mitral cell layer (MCL) (adj P=7×10−4) (Zhang et al.
2021), Cck in glomerular layer (GL) (adj P=2×10−3) (Sun et al.
2020b), Serpine2 in external plexiform layer (EPL) (adj P=4×10−3)
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Figure 2. Application of SpaGene to spatial transcriptomics of main olfactory bulb (MOB) data. (A) Visualization of five known spatially variable genes
located in specific MOB layers (high expression in red, and low in blue), with adjusted P-values from SpaGene. (B) Enrichment scores of markers in location-
restricted cell types by SpaGene, SpatialDE, and SPARK-X.
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(Mansuy et al. 1993), and Fabp7 in olfactory nerve layer (ONL) (adj
P=4×10−76) (Young et al. 2013). Based on those identified spatially
variable genes, SpaGene successfully reconstructed the underlying
seven-layered MOB structure (Supplemental Fig. S11). To be
noted, SpaGene identified a pattern corresponding to subependy-
mal zone (SEZ) (pattern 4 in Supplemental Fig. S11). SEZ was un-
identifiable by transcriptional profiles–based clustering, which
only discovered five distinct clusters (Supplemental Fig. S12A).
SEZ harbors neural stem cells. Sp9 is the top gene specifically locat-
ed in SEZ, which is a transcription factor that regulates MOB inter-
neuron development (Li et al. 2018).

We compared SpaGene with SPARK-X and SpatialDE. Over-
all, SpaGene and SpatialDE had more overlapping than SPARK-X
(Supplemental Fig. S12B). The original study highlighted 15
genes differentially expressed in different domains (Ståhl et al.
2016). SpaGene detected 12 of 15 genes, whereas SPARK-X only
found five and SpatialDE identified nine. Because cell clustering
based on transcriptional profiles alone uncovered cell types locat-
ed in MOB layers, genes highly expressed in each layer-specific
cell clusters should be identified to be spatially variable. Using
the top 20 markers from each of those cell clusters as the ground
truth, SpaGene achieved a higher true-positive rate than SPARK-
X and SpatialDE (Supplemental Fig. S12C). We also calculated
scores to measure the enrichment of those top markers in Spa-
Gene, SPARK-X, and SpatialDE. SpaGene obtained high-enrich-
ment scores in all layers, suggesting it successfully identified all
layer-specific marker genes as being very significant. In contrast,
SPARK-X obtained high scores in GCL layers but low scores in
other layers. SpatialDE achieved high scores in mitral cell layer,
but relatively low scores in GCL and EPL layers (Fig. 2B). More-
over, we compiled the top 50 genes with enhanced expression
in each layer of the MOB using the “differential search” in Allen
Mouse Brain Atlas, which obtained 222 genes in total. Using the
222 genes as the ground truth, SpaGene also obtained a higher
true-positive rate than SPARK-X and SpatialDE (Supplemental
Fig. S12D). Finally, we ranked spatially variable genes by each
method and carefully examined those genes identified to be
very significant by one method but insignificant by another
method. First, we ranked genes by SpaGene and listed the top
six genes with inconsistent results (Supplemental Fig. S13).
Kif5b, Atf5, Sorbs1, Plekhb1, and Mfap3l were detected to be
very significant by SpaGene (adj P<1×10−21), which were all spe-
cifically expressed in ONL (Supplemental Fig. S11). However,
none of them were found by SPARK-X, although Atf5, Plekhb1,
and Mfap3l were undiscovered by SpatialDE (Supplemental Fig.
S13). Another gene, Grb2, was identified by SPARK-X but missed
by SpatialDE, showing a very clear GCL pattern (Supplemental
Fig. S13). Then we ranked genes by SPARK-X and checked the
top six inconsistent ones (Supplemental Fig. S14). Camk2a,
Psd3, Meis2, Calm2, Arf3, and Stxbp1 ranked high by SPARK-X,
which displayed strong GCL patterns. All were identified by Spa-
Gene but none by SpatialDE, indicating SpatialDE had limited
power in identifying GCL-specific genes (Supplemental Fig.
S14). Finally, we ranked genes by SpatialDE and examined the
top six inconsistent ones (Supplemental Fig. S15). Spem1, Siglec1,
and Il12a only expressed in one or two spots, which were likely
to be false signals. Cck, Kif5b, and Apoe showed GL or ONL
patterns, which were identified by SpaGene but missed by
SPARK-X (Supplemental Fig. S15). These comparisons showed
that SpaGene successfully identified genes with visually distinct
patterns, whereas SPARK-X and SpatialDE missed some genes in
certain layers even though they showed distinct patterns.

Application to mouse preoptic hypothalamus by MERFISH

We applied SpaGene to mouse preoptic hypothalamus data by
MERFISH (Moffitt et al. 2018), consisting of 161 genes measured
on 5665 cells. The 161 genes include 156 preselected markers of
distinct cell populations and five blank control genes. Cell cluster-
ing based on transcriptional profiles alone identified multiple cell
types, most of which were spatially localized in specific regions,
such as mature oligodendrocyte (OD), ependymal, mural, and
some inhibitory and excitatory neuron cell types (Fig. 3A).
SpaGene identified those markers from region-specific cell types
as top variable genes. Some representative genes were shown in
Figure 3B, such as Ntng1 in inhibitory neurons (adj P=5×10−108),
Mbp in mature OD (adj P=0), Cd24a in ependymal (adj P=0),
Adcyap1 in excitatory neurons (adj P=0), andMyh11 inmural cells
(adj P=4×10−24).

Comparing SpaGene with SPARK-X and SpatialDE, we
found their results were highly correlated in terms of significance
(R=0.92 between SpaGene and SpatialDE, R=0.74 between
SpaGene and SPARK-X, and R=0.82 between SPARK-X and
SpatialDE) (Fig. 3C). We also compared the number of positive
genes given the number of negative control genes identified (Fig.
3D). The results supported a higher power of SpaGene. For exam-
ple, SpaGene detected 149 true positives, whereas SpatialDE dis-
covered 144 and SPARK-X revealed 128, when one negative
control was detected (one false positive). Based on those identified
spatially variable genes, SpaGene successfully reconstructed the
underlying spatial organization (Supplemental Fig. S16).

Application to mouse cerebellum by Slide-seqV2

We applied SpaGene to mouse cerebellum data by Slide-seqV2
(Stickels et al. 2021), containing 20,141 genes measured on
11,626 spots. SpaGene identified 619 genes with spatial patterns
(adj P<0.05). The cerebellum is made of three layers, molecular,
Purkinje, and granular layers fromouter to inner, andwhitematter
underneath. SpaGene detected genes, known to be specifically lo-
cated in three layers and white matter, to be very significant, such
as Kcnd2 in granular layer (adj P=4e×10−253) (Varga et al. 2000),
Car8 in Purkinje layer (adj P= 0) (Miterko et al. 2019),Gad1 in mo-
lecular layer (adj P=2×10−64) (Kirsch et al. 2012), andMbp in white
matter (adj P=0) (Fig. 4A; Verity andCampagnoni 1988). Based on
those identified spatially variable genes, SpaGene successfully re-
constructed the tightly folded layer structure of cerebellum.
Patterns 1 and 3 corresponded to granular layer, patterns 2, 6,
and 8 represented molecular layer, patterns 4 and 5 stood for
Bergmann glia and Purkinje neurons in Purkinje layer, and pattern
7 imaged white matter (Supplemental Fig. S17).

We compared SpaGene with SPARK-X but not SpatialDE
because it would take hours to analyze such large-scale data.
SPARK-X discovered 530 genes, whereas 230 overlapped with
SpaGene (Supplemental Fig. S18). We examined carefully at those
genes detected to be very significant by one method but insignifi-
cant by the other one (Supplemental Fig. S18). Those genes specif-
ically located in Purkinje layer, such as Car8, Itpr1, Pcp2, and Pcp4,
were detected as being the most significant by SpaGene (adj P=0)
but undetected by SPARK-X, suggesting SPARK-X had limited pow-
er to identify the Purkinje pattern (Supplemental Fig. S19). In com-
parison, Catsperd, Ifit3, and Ptprt ranked top by SPARK-X, but
undetected by SpaGene, which did not seem to have obvious pat-
terns (Supplemental Fig. S20). SpaGene estimated Mog at a signifi-
cance level just below the cutoff (adj P = 0.05), whose expression
seemed to be dispersed in thewhitematter (Supplemental Fig. S20).
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Cell clustering based on transcriptional profiles alone found
localized cell types, such asmolecular layer neurons, Purkinje neu-
rons in the Purkinje layer, and granule cells in the granule layer
(Fig. 4B). We expected that markers in those spatially restricted
cell types were identified and ranked top by the methods. The en-
richment analysis found that SpaGene obtained high-enrichment
scores in all three layers, although SPARK-X got a high score in

granular layer, but low scores in other two layers, especially in
the Purkinje layer. This result further showed that SpaGene is
more robust to spatial patterns (Fig. 4C).

Although there were only 163 common genes between the
619 spatially variable and the top 2000 transcriptionally variable
genes, cell clustering derived from these two gene sets were similar
(Supplemental Fig. S21A). Clustering based on the spatially
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Figure 3. Application of SpaGene to MERFISH of mouse preoptic hypothalamus data. (A) Cell clustering based on transcriptional profiles alone. (B)
Visualization of five spatial variable genes (high expression in red and low in blue) with adjusted P-values from SpaGene. (C) Pairwise correlation of results
from SpaGene, SpatialDE, and SPARK-X. (D) Power plot shows the number of genes with spatial expression pattern (y-axis) identified by SpaGene,
SpatialDE, and SPARK-X versus the number of blank control genes identified at the same threshold.
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variable genes successfully found those cell types specifically locat-
ed in the white matter, molecular, Purkinje, and granule layers
(Supplemental Fig. S21B). We selected the top 2000 genes by inte-
grating the spatially and transcriptionally variable genes.
Clustering based on the integrative features improved clustering
slightly, which showed a higher percentage of locations expressing
cell type–specific marker genes (Supplemental Fig. S21C). The re-
sults suggested that spatially variable genes can serve as a comple-
ment to transcriptionally variable genes.

Application to MOB by HDST

We applied SpaGene to olfactory bulb fromhigh-definition spatial
transcriptomics (HDST) (Vickovic et al. 2019), involving 19,950
genes measured on 181,367 spots. HDST is extremely sparse, in
which only 21 spots have more than 50 genes detected. In this
case, SpaGene used an adaptive strategy to expand the neighbor-
hood search for genes with high sparsity. SpaGene identified 249
genes as being spatially variable. The most significant genes in-
cluded Ptgds (adj P=1×10−232), Gphn (adj P= 3×10−114), and
Camk1d (adj P=3×10−61). Although spatial patterns of those genes
were not visually distinct owing to high sparsity of the HDST data
(Supplemental Fig. S22), there were vague patterns showing Ptgds
localized in ONL, Gphn in MCL and EPL, and Camk1d in GCL
(Fig. 5A). Those specific localizations have been reported before
(Rees et al. 2003; Perera et al. 2020) and validated by in situ hybrid-
ization in the Allen Brain Atlas (Fig. 5B).

We compared SpaGene with SPARK-X but not SpatialDE
because it would take months to analyze such large-scale data.
SPARK-X detected 133 genes, which overlapped significantly
with SpaGene (90 in common). Among the 40 genes most associ-
ated with each MOB layer (top five genes in eight patterns in
Supplemental Fig. S11), SpaGene found 12 genes (Ptgds, Fabp7,
Gad1, Vtn, Kctd12, Kif5b, Apod, Pcp4, Gpsm1, Slc1a2, Nrgn, and

Map1b), whereas SPARK-X only detected six (Ptgds, Fabp7,
Kctd12, Kif5b, Apod, and Pcp4).

Identification of spatially colocalized ligand–receptor pairs

We extended SpaGene to identify cell–cell communications medi-
ated by colocalized ligand and receptor pairs. SpaGene found 35
ligand–receptor interactions from the MOB data by spatial tran-
scriptomics. The two most significant ligand–receptor pairs were
IGFBP5-CAV1 (adj P=3×10−31) and APOE-LRP6 (adj P=2×10−18),
both happening between ONL and GL. Apoe is known to be en-
riched in ONL and GL and also identified to be very significant
by SpaGene (adj P= 1×10−50). Most spots with high Apoe expres-
sion were surrounded with spots with high Lrp6 expression (Fig.
6A), suggesting potential interactions between them. However, a
number of spots with high Lrp6 expression were not adjacent to
those with high Apoe expression, indicating other ligands might
colocalize with Lrp6 as well. APOE-LRP6 mediates Wnt signaling,
which is important for the regulationof synaptic integrity and cog-
nition (Zhao et al. 2018). The identification of APOE-LRP6 be-
tween ONL and GL layers might be suggestive of the potential
regulation of Wnt signaling in the establishment of periphery–
CNS olfactory connections.

SpaGene found 13 ligand–receptor interactions from the
mouse cerebellum data by Slide-seqV2. The most significant pair
was PSAP-GPR37L1 (adj P=1×10−27) (Fig. 6B). Gpr37l1 was known
to be strongly expressed in Purkinje layer and also identified by
SpaGene (adj P=8×10−130). Psap, in contrast, was not as specifically
localized asGpr37l1 (adj P=6×10−8). PSAP-GPR37L1 protects neural
cells from cellular damage (Li et al. 2017). The identification of
PSAP-GPR37L1 between Purkinje layer and surrounding layers fur-
ther supports its important role in brain function. Additionally,
PTN-PTPRZ1, identified as the only interaction by MERINGUE
(Miller et al. 2021), ranked the top four by SpaGene (adj P=2×10−7).
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Figure 4. Application of SpaGene to Slide-seqV2 of mouse cerebellum data. (A) Visualization of four known spatially variable genes located in specific
cerebellum layers (high expression in red, and low in blue), with adjusted P-values from SpaGene. (B) Cell clustering based on transcriptional profiles alone.
(C) Enrichment scores of markers in location-restricted cell types by SpaGene and SPARK-X.
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Discussion

Recent advances in spatial omics technologies increase the de-
mand for scalable and robustmethods to characterize spatially var-
iable patterns. Here, we developed SpaGene, a fast and model-free
method to identify spatially variable genes. SpaGene has been ex-
tensively evaluated on seven data sets generated from a variety of
spatial technologies, ranging from low to high throughput and
spatial resolution. Additional analyses on breast cancer from spa-
tial transcriptomics, mouse brain from 10x Visium, and olfactory
bulb from Slide-seqV2 were shown in Supplemental Figures S23–
S33. The results consistently showed that SpaGene successfully
identified known spatially variable genes and also markers in spa-
tially restricted cell clusters. Simple factor analysis on those identi-
fied genes reconstructed underlying tissue structures, further
demonstrating the ability of SpaGene to characterize spatial
patterns.

SpaGene builds on a simple intuition that spatially variable
genes show uneven spatial distributions. As a model-free and dis-
tribution-free method, SpaGene is more robust to pattern shapes,
data distribution and sparsity, nonuniform cellular densities, and
the number of spatial locations than existing approaches. The
power of SpatialDE, SPARK, and SPARK-Xhighly depend on spatial
covariance models, that is, howwell those predefined kernel func-
tions match the true underlying spatial patterns. Moreover,
SpatialDE and SPARK use parametric modeling based on the as-
sumption of spatial data following Gaussian or Poisson distribu-
tions. Therefore, their performance would be compromised
significantly for those genes whose expressionmisalign the model
defined by those kernel functions and whose distribution violate
Gaussian or Poisson distributions. SpaGene, in contrast, is a mod-
el-free and distribution-free method. Without any assumption,

SpaGene is able to identify any spatial patterns and applied on
any spatial omics data, such as identification of spatially localized
clones and histone markers in spatial genomics and epigenomics
data. The significance from SpaGene reflects the distinctness of
spatial patterns rather than the extent of match to the defined
model. SpaGene uses neighborhood graphs to represent spatial
connections, making it more robust to nonuniform cellular densi-
ties common in tissues. Furthermore, SpaGene is highly computa-
tionally efficient in terms of runtime and memory requirement. It
only took SpaGene seconds to minutes to analyze large-scale spa-
tial transcriptomics data (Supplemental Fig. S10C), which required
hours, days, or even months for most methods (Zhu et al. 2021).

SpaGene uses equal weights by default. Its power can be fur-
ther improved if we adjust the weight parameter to assign unequal
weights to different degrees (Supplemental Figs. S34A,B). Because
clustered connections are more informative than scattered ones
in defining spatial patterns, putting more weights on higher de-
grees strengthen the ability of SpaGene to distinguish visually dis-
tinct patterns from vague ones. For example, Nppa displayed a
more distinct expression pattern than Smim36 (also known as
Gm45716). Nppa is locally expressed in a specific region, whereas
Smim36 is expressed everywhere. SpaGene with unequal weights
successfully ranked Nppa much more statistically significant (adj
P=1×10−35) to be spatially variable than Smim36 (adj P=
1×10−8). SpaGene with equal weights, however, ranked the oppo-
site (Supplemental Fig. S34C). Another example on Wfdc2 and
Zfp235was given in Supplemental Figure S34D. In general, the per-
formance of SpaGene is insensitive to the parameter k to build the
nearest-neighbor graph. The results were highly correlated across
four different k-values (4, 8, 24, and 48) on three large-scale spatial
transcriptomics data (Supplemental Fig. S35). For very sparse data,
SpaGene provides an option to tune k-values automatically based

B

A

Figure 5. Application of SpaGene to high-definition spatial transcriptomics (HDST) data frommain olfactory bulb (MOB). Visualization of three spatially
variable genes. (A) Gene-expression levels fromHDST (high in red, low in blue), with adjusted P-values from SpaGene. (B) In situ hybridization results for the
three genes obtained from the Allen Brain Atlas.
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on the expression sparsity of each gene. Moreover, SpaGene can
incorporate the cell type information to find spatially variable
genes within the same cell type. For example, SpaGene identified
Aldoc as the most spatially variable gene within the Purkinje layer
(adj P= 4×10−90) (the function SpaGene_CT was provided in the
package), which has been demonstrated to show a regional enrich-
ment pattern that was consistent with the known paths of parasa-
gittal stripes across individual lobules (Kozareva et al. 2021).
Furthermore, SpaGene was easily extended to find colocalized
gene pairs. It successfully identified Psap-Gpr37l1 and Ptn-Ptprz1
in mouse cerebellum, and FN1-CD44 in invasive breast cancer re-
gions (Supplemental Fig. S33). The default neighborhood search
regions could be further adjusted to identify those long-distance
interactions. Finally, potential extensions of SpaGene to find com-
mon and specific spatial patterns across multiple samples would
further expand its application. SpaGene provides two functions
FindPattern_Multi and PlotPattern_Multi to detect and visualize
common and different patterns across samples. An example on
two mouse brain data sets from anterior and posterior regions is
provided at GitHub (see Software availability).

Although SpaGene is powerful in characterizing localized and
colocalized patterns, it has some limitations. SpaGene binarizes
gene expression into high and low, which increases the speed
but loses the quantitative information of expression abundances.
The binarization might underpower its performance on the iden-
tification of patterns with a gradient. SpaGene is able to identify

long-distance interactions with a large
k-value. However, it lacks the ability of
modeling the diffusivity properties of li-
gands and receptors and their activity
range.

Methods

Identification of spatially variable

genes

Spatially variable genes show uneven
spatial distribution of expression, in
which cells/spots with high expression
are more likely to be spatially connected
than random. SpaGene constructs the
k-nearest neighbor graph based on spa-
tial locations. For each gene, SpaGene ex-
tracts a subnetwork comprising only
cells/spots with high expression of the
gene from the k-nearest neighbor graph.
SpaGene quantifies the connectivity of
the subnetwork using the Earth mover’s
distance between degree distributions of
the subnetwork and a fully connected
one. The degree distribution is more
powerful and flexible than the total
number of connections (Ren et al.
2020) to define spatial connectivity.
The reason is that sparsely scattered con-
nections are less informative and impor-
tant than clustered ones in defining
spatial patterns. For example, it is hard
to shape a spatial pattern from a number
of scattered connections. The utilization
of degree distribution allows us to assign
different weights to different degrees
rather than treating them equally.

Earth mover’s distance (EMDg) quantifies the distance from
the observed degree distribution of the subnetwork of the gene g
to a distribution from a fully connected network (Equation 1).
Therefore, shorter EMD distances indicate higher spatial connec-
tivity. The degree distribution pgi is defined to be the fraction of
cells/spots with degree of i in the subnetwork for the gene g, wi

is the weight assigned to the degree of i, and k is the number of
nearest neighbors to build the spatial network. Because clustered
connections are more important than scattered ones in defining
spatial patterns, at least equal or more weights should be assigned
to higher degrees, that is, wi≤wj, if i≤ j. EMD with equal weights
(wi=1, i=0, 1,…2∗k) is reduced to the average number of noncon-
nections.

EMDg =
∑2∗k

i=0

wip
g
i (2 ∗ k− i). (1)

To generate the null distribution of EMD, the same number of
cells/spots is randomly sampled and the spatial connection of
those cells/spots is quantified as EMD′. The mean and the
standard deviation of EMD′ are estimated after random permuta-
tions (default: 500). The observed EMD is compared with the
null distribution of EMD′ to evaluate its significance. The
Benjamini–Hochberg procedure is used to adjust P-values for
FDR control.

P(x , EMDg ) = P z ,
EMDg −mean(EMD′)

Sd(EMD′)

( )
.

B

A

Figure 6. Extension of SpaGene to identify ligand–receptor interactions. (A) Visualization of IGFBP5-
CAV1 and APOE-LRP6 interactions for ST MOB data, with adjusted P-values from SpaGene. (B)
Visualization of the PSAP-GPR37L1 interaction for Slide-seqV2 mouse cerebellum data, with the adjusted
P-value from SpaGene. Left is the relative expression of the ligand and the receptor; right is the interaction
strength.
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Identification of spatial patterns

Non-negative matrix factorization is applied on spatially variable
genes detected by SpaGene to identify distinct spatial patterns.
NMF is implemented by the RcppML R package (DeBruine et al.
2021). It is challenging to choose the optimal number of NMF fac-
tors. Although several approaches have been proposed (Brunet
et al. 2004; Frigyesi and Höglund 2008; Hutchins et al. 2008),
the computation is very lengthy and results from different ap-
proaches are inconsistent. Therefore, selecting the number of
ranks based on the prior knowledge of the tissue structure is recom-
mended. For example, the number of ranks of eight to 12 is recom-
mended for ST MOB data with a rough arrangement of seven
layers. The Spearman’s correlation between expression of spatially
variable genes and cells/spots factor matrix from NMF is used to
find the most representative genes in each pattern.

Adaptive strategy to tune neighborhood search regions

SpaGene uses an adaptive strategy to expand neighborhood search
regions in very sparse data sets, in which a single k-value to build
the nearest neighbor graph will not work well for all genes.
To improve sensitivity, SpaGene increases the k-value for genes
with high sparsity. SpaGene groups genes into different bins
(bj, j=1, 2…J) based on the number of cells/spots with detected ex-
pression, in which different bins bj correspond to different k-val-
ues. In this way, SpaGene chooses the k-value automatically
based on the sparsity level of the gene.

J = round(log2(nmax/nmin))+ 1,
b1 = (+1, nmax],

bj = [nmax∗2−( j−1), nmax∗2−( j−2)), j = 2, 3 . . . J,

k j+1 = kj + 8∗j, k1 = 8,

where J is the number of bins, determined by the maximum and
the minimum number of cells/spots with detected expression
that users set (nmax and nmin). bj is the bin j that one gene is
assigned to by the number of cells/spots with the gene expression
detected and kj is the corresponding k-value for the bin j. For
example, if one gene has the number of cells/spots with detected
expression greater than nmax, this gene is grouped into b1 with
k1 = 8.

Identification of ligand–receptor interactions

SpaGene is extended to identify ligand–receptor interactions. For
each ligand–receptor pair, SpaGene estimates the spatial connec-
tivity of the subnetwork comprising only connections between
cells/spots with both high expression of the ligand and the recep-
tor. SpaGene uses the Earth mover’s distance based on the degree
distribution of the subnetwork to quantify its spatial connectivity.

Enrichment analysis of cell type–specific marker genes

Cell clustering based on transcriptional profiles alone discovers
cell types localized in specific spatial regions. Therefore, marker
genes in those spatially restricted cell types should be identified
as spatially variable genes. The gene set is built from the top mark-
ers based on the fold change between the expression in the cell
type comparedwith others. Top 20 are selected for STMOB,where-
as top 50 are chosen for other data sets. The results from SpaGene,
SpatialDE, and SPARK-X are ranked from the most to the least sig-
nificant. Unweighted gene set enrichment analysis (Subramanian
et al. 2005) is implemented to evaluate the enrichment of the gene
set in the high ranking of preranked gene lists of SpaGene,
SpatialDE, and SPARK-X.

Simulation designs

We followed simulationdesigns of SPARK-X andTrendsceek. Briefly
we generated two data sets with five spatial expression patterns: lo-
cal hotspot, streak, circularity, biquarter circularity, and mouse
Purkinje layer. For the first four patterns, spatial locations of cells
were generated by a random-point-pattern Poissonprocess. The spa-
tial locations of the pattern of mouse Purkinje layer was obtained
from Slide-seqV2 mouse cerebellum data. The expression values
were either generated from negative binomial distributions follow-
ing SPARK-X or bootstrap-sampled from spatial transcriptomics
MOB data following Trendsceek. Simulation data sets varied on a
number of parameters: (1) the number of genes varied from 1000,
3000, and 10,000, of which 500 genes are spatially variable; (2)
the number of cells varied from 300, 1000, 2000, and 5000 except
for the Purkinje layer pattern; (3) the fold change of expression in
the spatial region compared with those in the background. For
the negative binomial distribution, the fold change varied from 2,
3, 5, 8 to 10. For the resampled real data set, the expression of spiked
cells were generated from65%, 70%, 80% to 90%quantile of the ex-
pression distribution; (4) the number of spiked cells except for the
Purkinje layer pattern. For the hotspot and the streak patterns, the
percentage of spiked cells varied from 5%, 10%, 20% to 30%. For
the circularity and biquarter circularity patterns, the width of circu-
larity varied between 0.05, 0.075, 0.1, 0.125, and 0.15.

Spatial transcriptomics data sets

SpaGene was applied on seven spatial transcriptomics data sets,
covering a variety of platforms with low and high throughput
and spatial resolution. Two spatial transcriptomics data from
mouse olfactory bulb and human breast cancer contained ge-
nome-wide expression profiles on only hundreds of spots (low spa-
tial resolution) (Ståhl et al. 2016). MERFISH on themouse preoptic
region of the hypothalamus targeted only 160 genes at single-cell
resolution (Moffitt et al. 2018). 10x Visium on the mouse brain
comprised whole transcriptomics on thousands of spots with a
spatial resolution of 55 µm, which can be downloaded from
the 10x Genomics website (https://support.10xgenomics.com/
spatial-gene-expression/datasets). Two Slide-seqV2 from mouse
cerebellum and olfactory bulb contained whole transcriptomics
on tens of thousands of spots with a spatial resolution of 10 μm
(Stickels et al. 2021). HDST from mouse olfactory bulb measured
whole transcriptomics on hundreds of thousands of spots with a
spatial resolution of 2 µm (Vickovic et al. 2019).

Software availability

SpaGene, an R package (R Core Team 2021), is freely available at
GitHub (https://github.com/liuqivandy/SpaGene). Source codes
and seven transcriptomics data are also available as
Supplemental Code. Vignettes on seven spatial transcriptomics
data with raw data, codes and results, including spatial variable
genes identification, pattern identification and visualization, colo-
calized ligand–receptor pairs identification and visualization, are
also available at the SpaGene GitHub repository.
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