
RESEARCH ARTICLE

Decreased complexity of glucose dynamics

preceding the onset of diabetes in mice and

rats

Xiaohua Douglas Zhang1☯¤a, David Pechter2☯, Liming Yang3, Xiaoli Ping4, Zuliang Yao2,

Rumin Zhang2¤b, Xiaolan Shen4, Nina Xiaoyan Li3, Jonathan Connick2, Andrea

R. Nawrocki2¤c, Manu Chakravarthy5, Cai Li2*

1 Department of BARDS, Merck Research Laboratories, Kenilworth, New Jersey, United States of America,

2 Department of Pharmacology, Merck Research Laboratories, Kenilworth, New Jersey, United States of

America, 3 Department of Diabetes, Merck Research Laboratories, Kenilworth, New Jersey, United States

of America, 4 Department of Laboratories Animal Resources, Merck Research Laboratories, Kenilworth,

New Jersey, United States of America, 5 Department of Translational Pharmacology, Merck Research

Laboratories, Kenilworth, New Jersey, United States of America

☯ These authors contributed equally to this work.

¤a Current address: Faculty of Health Sciences, University of Macau, Macao, China

¤b Current address: Eternity Bioscience Inc., 2005 Eastpark Blvd., Cranbury, New Jersey, United States of

America

¤c Current address: Janssen Pharmaceutical, Spring House, Pennsylvania, United States of America

* cai.li@merck.com

Abstract

Continuous glucose monitoring (CGM) is a platform to measure blood glucose (BG) levels

continuously in real time with high enough resolution to document their underlying fluctua-

tions. Multiscale entropy (MSE) analysis has been proposed as a measure of time-series

complexity, and when applied to clinical CGM data, MSE analysis revealed that diabetic

patients have lower MSE complexity in their BG time series than healthy subjects. To

determine if the clinical observations on complexity of glucose dynamics can be back-trans-

lated to relevant preclinical species used routinely in diabetes drug discovery, we performed

CGM in both mouse (ob/ob) and rat (Zucker Diabetic Fatty, ZDF) models of diabetes.

We demonstrate that similar to human data, the complexity of glucose dynamics is also

decreased in diabetic mice and rats. We show that low complexity of glucose dynamics is

not simply a reflection of high glucose values, but rather reflective of the underlying disease

state (i.e. diabetes). Finally, we demonstrate for the first time that the complexity of glucose

fluctuations in ZDF rats, as probed by MSE analysis, is decreased prior to the onset of overt

diabetes, although complexity undergoes further decline during the transition to frank diabe-

tes. Our study suggests that MSE could serve as a novel biomarker for the progression to

diabetes and that complexity studies in preclinical models could offer a new paradigm for

early differentiation, and thereby, selection of appropriate clinical candidate molecules to be

tested in human clinical trials.
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Introduction

Currently, there are several methods to measure blood glucose levels under basal conditions

and under states of physiologic and pharmacologic perturbations. However, many of these

approaches have limitations: large blood volumes and frequent sampling generally only pro-

vide a snapshot of glycemic variation. Even when sampled frequently, these methodologies

provide limited information on indices of glycemic variability and in particular, nocturnal gly-

cemic events. Continuous glucose monitoring (CGM) is able to provide real time glucose data

around the clock and over many days, while being minimally invasive and requiring negligible

sampling volumes. Indeed the availability of CGM in the clinic has been hailed to as a revolu-

tionary development in diabetes management [1]. As an example, two recent studies demon-

strated that among patients with type 1 diabetes treated with multiple daily insulin injections,

the use of CGM compared with conventional treatment resulted in lower HbA1c levels [2, 3].

Further, the use of CGM without confirmatory blood glucose monitoring measurements was

as safe and effective as using CGM adjunctive to blood glucose monitoring in well-controlled

adults with type 1 diabetes [4]. In aggregate, these recent clinical CGM data will likely catalyze

the wider adoption of this technology to better manage glucose levels of diabetic patients [5].

As an example, monitoring glycemic variability continuously around the clock in diabetic

patients taking different medications provided a much more complete picture on the glucose

effects of these agents [6–8]. Monitoring changes in average glucose levels during a 24-hr

period revealed that the DPP-4 inhibitor sitagliptin significantly lowered 24-h as well as day-

time mean glucose levels before breakfast and lunch, compared with the α-glucosidase inhibi-

tor voglibose, whereas the time from before dinner to peak postprandial glucose levels was

significantly longer with voglibose compared with sitagliptin [7]. Data like these have the

potential to help further understand the pharmacology of different classes of agents for a more

optimal glucose control.

However, despite tens of thousands of data points being collected during CGM, the full

spectrum of information encoded in such data is only just beginning to be elucidated. One of

the tools that has been developed for characterizing physiological time series is multiscale

entropy (MSE) and was succinctly summarized as follows[9], “MSE is based on the simple

observation that complex physical and biologic systems generally exhibit dynamics that are far

from the extrema of perfect regularity and complete randomness. Instead, complex dynamics

typically reveal structure on multiple spatial and temporal scales. These multiscale features,

ignored by conventional entropy calculations, are explicitly addressed in the MSE algorithm.”

The MSE algorithm is freely available on-line as C-code, along with many related data

resources[10]. MSE was developed to address limitations of earlier entropy measures and has

been applied to develop a range of biological time series, such as cardiac inter-beat intervals

and clinical CGM data[11, 12]. In the context of CGM, it was discovered that glucose levels in

healthy or diabetic subjects are not constant but undergo small fluctuations constantly, and

the information encoded in these fluctuations is significantly less complex in those with diabe-

tes [12, 13]. Thus, while the actual levels of glucose are high in the diabetic state, complexity of

glucose fluctuations is low. The complexity of glucose dynamics in CGM data is determined

by MSE analysis, which considers the sample entropy, a statistical measure of irregularity or

randomness, over multiple levels of granularity [11, 14]. Larger sample entropy values over

multiple time scales indicate greater complexity. Detrended fluctuation analysis of 206 patients

with essential hypertension, obesity or having a first-degree relative with a diagnosis of diabe-

tes suggested a prognostic value of such analysis for predicting the development of type 2 dia-

betes [15, 16].
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While CGM has been available in the clinic for more than a decade[1], it was not until

2014 that such a device became available for preclinical models [17]. Developed for preclini-

cal applications, the HD-XG model to perform CGM employs an electrochemical glucose

oxidase sensor placed directly in an artery. Glucose oxidase within the sensor serves as a

catalyst to convert glucose and oxygen into gluconic acid and hydrogen peroxide, which

in turn interacts with a noble metal electrode to give up electrons and create a current pro-

portional to the amount of glucose available. The availability of chronic CGM options in

preclinical species should allow detailed interrogation of CGM data to support diabetes

drug discovery. This novel telemetry device from DSI is designed for continuous monitor-

ing of temperature, locomotor activity, and plasma glucose levels in the arterial blood of

rodents.

Given the potential of glucose complexity studies as a new preclinical and translational tool

to drive innovation and develop differentiated diabetes therapies, it is critical to first determine

whether there is any difference in the complexity of glucose dynamics between healthy and

diabetic animals. Thus, in this study, we aimed to determine if reduced complexity of glucose

dynamics seen in patients with diabetes also holds true in two widely used diabetes animal

models, the C57BL/6 ob/ob mouse and the Zucker Diabetic Fatty (ZDF) rat.

Materials and methods

Animals

All testing protocols were reviewed and approved by the MRL Institutional Animal Care and

Use Committees in Rahway and Kenilworth, NJ. The Guide for the Care and Use of Labora-

tory Animals was followed in the conduct of all animal studies. Animals were maintained on a

12 h/12 h light-dark cycle with free access to food and water in an environment with tempera-

ture maintained at 22˚C. Three CGM experiments were performed either in ob/ob mice

(Experiment 1) or ZDF rats (Experiments 2 and 3). At the end of the experiments, animal were

euthanized with carbon dioxide and euthanasia confirmed, following harmonized IACUC

guidelines adopted at Merck Research Laboratories.

Telemetry device provides direct continuous blood glucose readings along with tempera-

ture and activity for 4 weeks or longer. Each rat was surgically implanted with glucose sensors

in the abdominal descending aorta and the telemetry device placed in the intraperitoneal cav-

ity. In the mouse, glucose sensors were placed in the carotid artery and the device placed on

the back subcutaneously. Continuous glucose readings were recorded with the Dataquest A.R.

T.v.4.35 data acquisition system for at least 28 days with periodic calibrations. Glucose toler-

ance tests were performed for multi-point calibrations by administering dextrose to 2–5 g/kg,

po or ip. Daily and GTT reference values were recorded with a non-clinical version of the Stat-

Strip Xpress glucometer and strips (Nova Biomedical, Waltham, MA) capable of measuring

blood glucose levels up to 900 mg/dL. Reference meter values were used for calibration in

Microsoft Excel based on the initial GTT data with baseline corrections and then on the daily

meter values thereafter.

Experiment 1

Six male lean C57BL/6 mice and six age- and sex-matched ob/ob mice were ordered from the

Jackson Laboratory (Bar Harbor, ME); date of birth of the mice were approximately on Dec.

29, 2015. Mice were received on Feb. 17, 2016 and acclimated. Surgery to implant the sensors

was on Mar. 7, 2016. Data acquisition started on Mar. 8, 2016 at the age of 72 days. Glucose

was recorded from age 72 days to age 84 days.
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Experiment 2 and 3

Four male ZDF and four age- and sex-matched lean control rats were ordered from CRL

(Williamston, MA) at the age of 11 weeks (Experiment 2) and 5 weeks (Experiment 3),

respectively. Younger rats at 5 weeks of age were used to determine the timing of the

decrease of MSE in ZDF rats. The earliest age ZDF rats become commercially available is at

5 weeks, when their glucose levels are still indistinguishable from lean controls. Surgery to

implant the sensors for Experiment 2 was conducted on Oct. 28–29, 2015 (DOB of rats:

week of Aug. 5, 2015) and CGM device turned on on Nov. 5, 2015 at 0:00 am (midnight is

12:00 AM; noon is 12:00 PM). Single point calibrations were performed on Nov. 5, 12, 19,

and 23, as well as Dec. 4 and 7. For Experiment 3, data acquisition started on Mar. 3, 2016 at

the age of 38 days.

Calibration of the HD-XG glucose sensor

An initial multi-point calibration was performed within 7 days of surgery and required taking

at least two reference points at glucose levels that vary by at least 100 mg/dL. This was accom-

plished by an oral glucose tolerance test in the lean mice (5 g/kg of 50% dextrose given in a

volume of 10 mL/kg) or an insulin tolerance test on ob/ob mice (1 U/mL of insulin dosed at

5 mL/kg to a final dose of 5 U/kg). Periodic reference measurements of tail blood glucose were

performed following the initial multi-point calibration and were taken at least twice per week

throughout the course of the study. BW was also taken when glucose levels were measured.

Animals were monitored continuously for at least 28 days. For ZDF and lean control rats, ref-

erence measurements were taken at a frequency of approximately weekly on Nov. 5, 12, 19, 23,

and Dec. 4 and 7, following surgery on Oct. 28–29. An ipGTT multi-point calibration was per-

formed on Dec. 4, 2015 by IP delivery of 2 g/kg of glucose and glucose levels read at 10, 20, 30

minutes and at 1 hour after glucose was delivered.

Data analysis

For calculating MSE we essentially adopted the C codes from Costa et al [12] although we

made a few minor changes for input and output to make it easier for them to be called in

R. We wrapped the execution of these C codes into our R functions and then conducted

analysis in R. Missing values commonly exist in the CGM data because animals need to be

removed from the cage for glucose sensor calibrations or cage changes. The C codes from

Costa et al are not able to handle missing values. Because there were only a few intervals of

missing values for each animal and each interval was only a few observations long, we

simply omitted those intervals from the data series before applying the calculation in the C

codes. For all analyses, we used MSE parameters of m = 2 and r = 0.15 (http://www.

physionet.org/)[12].

The CGM device record one value every 10 seconds in all the three experiments. For Exper-

iment 1, MSE analysis of CGM fluctuation was performed on data collected during the two-

week period from age 72 days to age 84 days. For Experiment 2, MSE analysis was performed

on data collected from Day 3 to Day 14, counting the start of CGM as Day 1. For Experiment

3, MSE analysis was performed on the glucose data separately for the period from age 38 days

to 41 days, and the period from 42 days to 48 days. This was based on the results that the daily

average glucose level in the young ZDF rat is not significantly different from the young lean rat

in each day before the age of 42 days but is significantly different in each day starting the age of

42 days.
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Results

Multiscale entropy is decreased in diabetic ob/ob mice compared to non-

diabetic lean controls

At the age of 72 days, glucose levels of ob/ob mice and control littermates were 365.1 +/-

94.6 mg/dL (Mean +/- SD, n = 6) and 141.9 +/- 18.7 mg/dL (n = 6), respectively (Fig 1A).

There are significant differences in glucose levels between the two groups for each day of the

Day 72 to Day 84 period. CGM data were recorded at a frequency of one data point for

every ten seconds. Data from Day 72 to Day 84 were used for MSE analysis (from 2016/03/

10 16:00:00 to 2016/03/23 17:05:50). To allow visual assessment of the complexity of the fine

structure of the glucose variability, the fluctuations in glucose values during a 24-hour

period as well as the magnification of a one hour period is shown (Fig 1B and inset) for a

healthy mouse. The time scales of the fluctuations depicted in the insert are closer to those

considered for MSE analysis. The MSE results for converted glucose levels for scales 10 to

400 seconds for the lean and ob/ob mice over Day 72 to Day 84 are shown Fig 1C. The

entropy of CGM time series was significantly (p<0.05, t-test) lower in the group of ob/ob
mice than in healthy controls (Fig 1C) for time scales ranging from 10 to 400 seconds. These

results indicate that dynamical complexity of CGM fluctuations was higher in lean controls

than in ob/ob mice.

Fig 1. (A). Glucose levels of ob/ob mice and age-matched lean controls used for the study. Error bars, standard deviation. N = 6 mice/

grouop. (B). Time series of blood glucose levels derived from CGM recordings of a non-diabetic lean mouse and a diabetic ob/ob mouse

during a 24-hr period (age day 70 to 71). The inset is magnification of a one hour glucose data in a non-diabetic lean mouse. (C). Multiscale

entropy analysis on converted glucose levels over Day 72 to Day 84 in ob/ob mice and lean controls (mean and standard deviation). The P

values in Fig 1C were calculated by performing unpaired t-tests for differences in mean sample entropy between the two groups of mice at

the time scales indicated.

https://doi.org/10.1371/journal.pone.0182810.g001
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Multiscale entropy is decreased in diabetic ZDF rats compared to non-

diabetic lean controls

Similar to the ob/ob mouse study describe above, multiscale entropy was determined in dia-

betic ZDF rats and lean littermate controls. At the start of the experiment on Day 1, glucose

levels of ZDF rats and control lean littermates were 323.0 +/- 134.7 mg/dL (Mean +/- SD,

n = 4) and 108.4 +/- 6.1 mg/dL (n = 4), respectively (Fig 2A). Glucose values from Day 3 to

Day 14 were used for MSE analysis. The entropy of CGM time series was significantly

(p<0.05, t-test) lower in diabetic ZDF rats than in lean littermate controls (Fig 2B). These

results indicate that dynamical complexity of CGM fluctuations was higher in lean controls

than in diabetic ZDF rats (Fig 2B). The p-values of unpaired t test for testing no difference

between the lean and ZDF rats at scale 10, 20, 30, 40 are 0.01, 0.006, 0.0013, 0.0003, respec-

tively, all being very small. The MSE in the lean rats is significantly higher than that in the ZDF

rats, demonstrating that the complexity of glucose dynamics in a lean rat is significantly higher

than that in a ZDF rat.

Multiscale entropy is decreased prior to the onset of diabetes and

undergoes further rapid decline during the onset of frank diabetes in ZDF

rats

We noted that glucose levels of one of the four ZDF rats were only starting to increase during

the period of MSE analysis (Fig 2A, rat ZDF 5). However, entropy values of ZDF 5 were not

different from the other three ZDF rats that were already frankly diabetic during the same

period (Fig 2B). This observation raised the possibility that decrease in complexity of glucose

dynamics in a genetic model of diabetes could occur prior to the onset of overt diabetes.

These young rats were implanted with CGM sensors and glucose levels recorded at the age

of Day 38. From Day 38 to Day 41, glucose levels were not statistically different. From Day 42

to Day 48, glucose levels of ZDF rats started to rise and become statistically different from lean

controls (Fig 3A), although the values of glucose are still much lower than that seen in frankly

diabetic ZDF rats (Fig 2A).

MSE values were calculated during the period of Day 38–41, when glucose levels of ZDF

rats were not different from lean rats and during the period of Day 42–48, when the glucose

Fig 2. (A). Glucose levels of diabetic ZDF rats and age-matched lean controls used for the study. Glucose levels of each rat is shown from

Day 1 to Day 30 of study. N = 4 rats/grouop. (B). Multiscale entropy analysis on converted glucose levels over Day 3 to Day 14 in ZDF rats

and lean littermate controls (mean and standard deviation). The P values in Fig 2B were calculated by performing unpaired t-tests for

differences in mean sample entropy between the two groups of mice at the times scales indicated.

https://doi.org/10.1371/journal.pone.0182810.g002
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levels of ZDF rats just started to become significantly different from lean controls. Though glu-

cose levels have not separated between ZDF rats and lean controls between D38 and D41 (Fig

3A), complexity of glucose dynamics is already significantly different (Fig 3B). Further, when

ZDF rats progress to become hyperglycemic, complexity of glucose dynamics declines further

with the onset of overt diabetes (Fig 3C).

Discussion

In this report, we demonstrated that complexity of glucose dynamics, as determined by MSE

analysis, is reduced in diabetes in two commonly used preclinical models, the ob/ob mouse as

well as the ZDF rat. This observation noted in 2 distinct species was similar to that found in

humans [12, 13], suggesting that MSE is likely an evolutionarily conserved feature. A novel

finding of this study was the decrease of MSE (i.e. decreased complexity of glucose dynamics)

prior to the onset of overt diabetes, which to the best of our knowledge has not been reported

to date in any preclinical species. This observation suggests a predictive value of MSE analysis

as a potential new biomarker of diabetes development. The rapid decline of MSE while transi-

tioning to diabetes suggests that the metabolic changes during this period may have a direct

impact on MSE. This discovery supports a new paradigm [12] for the diagnosis and/or treat-

ment of diabetes by controlling the complexity of glucose dynamics. For example, treatments

could be targeted to restore the complexity of glucose dynamics in pre-diabetes to prevent the

onset of overt diabetes. It could also lead to better diagnostics using complexity or by combin-

ing complexity with current static measures (e.g. FPG or HbA1c), instead of just these static

measures alone, the current standard-of-care.

Our current finding on loss of complexity of glucose dynamics in diabetes is consistent

with earlier studies in other physiological systems. There is a large body of literature demon-

strating metabolic inflexibility when one transitions from healthy to insulin resistance or

frank diabetes in various tissues [18–21]. These data are similar in nature to the MSE analysis

reported here. The transition from healthy to diabetes is likely the manifestation of loss of

metabolic flexibility, with MSE analysis being a method to quantify the differences in healthy

and diabetic states.

Fig 3. (A). Glucose levels of young ZDF rats and age-matched lean controls used for the study. Daily mean glucose levels of ZDF rats or

controls from the age of 38 days through the age of 48 days were plotted. N = 4 rats/grouop. D38-41, age Day 38 to Day 41; D42-48, age

Day 42 to Day 48. Glucose levels were not significantly different between ZDF rats and lean controls during the age of Day 38 to Day 41

(D38-41) but were statistically different during the age of Day 42 to Day 48 (D42-48). (B). Reduced multiscale entropy in ZDF rats compared

with age-matched controls when glucose levels were not different at the age of D38-41. (C). Further decline of multiscale entropy in ZDF rats

compared with age-matched controls during the transition to hyperglycemia at the age of D42-48. The P values in Fig 3B and 3C were

calculated by performing unpaired t-tests for differences in mean sample entropy between the two groups of mice at the times scales

indicated.

https://doi.org/10.1371/journal.pone.0182810.g003
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Compared with the clinical CGM, the DSI HD-XG glucose sensor may offer a number of

advantages. Specifically, clinical CGM devices require calibrations every 12 hours, and the sen-

sors typically last 3–7 days only. In contrast, the DSI HD-XG sensor required calibrations no

more than twice a week and lasts for up to two months, allowing the collection of uninter-

rupted data during this entire period. Most importantly, HD-XG reports blood glucose data

every ten seconds from arterial blood, while clinical CGM generates data at an interval every

five minutes from interstitial fluid and not from blood vessel. Glucose in the interstitial fluid

may not accurately reflect blood glucose levels in real time, especially during periods of acute

glucose changes such as after a meal or during an acute stress response. These advantages of

the preclinical HD-XG system allowed the comparison of sample multiscale entropies from a

very small number of animals.

In an observational study of 37 non-diabetic volunteers age 12–65 years and 49 adults with

longstanding type 1 diabetes, multivariate analysis of CGM data revealed low complexity of

CGM profiles associated with insulin resistance in both non-diabetic subjects and patients

with type 1 diabetes [22]. In non-diabetic subjects, low complexity could be an earlier marker

of glucose regulation failure [15, 16, 22].

Physiological data captured in a time series is often fractal in nature. The complexities of

such data are amenable for MSE analysis, which has led to a much deeper understanding of

these complex physiological processes [11], ranging from heart beats, intracranial pressure, as

well as blood glucose control. In one instance, the complexity of intracranial pressure corre-

lates with outcome after traumatic brain injury [23]. Another study demonstrated that heart

rate complexity is reduced with a significant decreasing trend as assessed by R-R interval

entropy prior to the onset of atrial fibrillation [24]. Along with the findings of lower complex-

ity of glucose in diabetes, additional physiological readouts expressed as time series may add to

our collection of existing associations between complexity and health [25].

The observed decreases of complexity in both diabetic rodents (ob/ob mice and ZDF rats)

as well as diabetic patients suggest that multiscale entropy analysis could serve as a novel bio-

marker for diabetes development, as well as in the selection of potential therapies earlier in the

drug development process. Decrease in complexity prior to the onset of diabetes in pre-dia-

betic ZDF rats suggests that multiscale entropy values could serve as a predictive biomarker of

diabetes development. An interesting and yet unanswered question is the directional changes

in multiscale entropy upon pharmacological treatment to normalize glucose levels. For exam-

ple, will complexity be restored upon glucose lowering by different classes of diabetes thera-

pies? If complexity does increase with glucose lowering, will the increase occur prior to, in

parallel with, or subsequent to an observable decrease of glucose levels? The answers to these

fascinating questions can substantively impact diabetes drug discovery. For instance, by incor-

porating MSE analyses in routine preclinical evaluation, it is conceivable to select one drug vs.

another by choosing the one that restores complexity for clinical development, even if both

drugs were to lower BG to similar levels as measured by conventional methods such as FPG or

HbA1c. Differentiation between drug candidates could also be considered based on the magni-

tude of complexity restoration. Our work in these preclinical species is in full agreement with

the earlier work of Costa et al that suggested “. . .these findings support consideration of a new

framework, dynamical glucometry, to guide mechanistic research and to help assess and com-

pare therapeutic interventions, which should enhance complexity of glucose fluctuations and

not just lower mean and variance of blood glucose levels"[12].

In summary, while the need and value of a novel diabetes therapy to restore complexity of

glucose dynamics on top of standard BG lowering remains to be established, our study and

prior work suggest that the complexity of glucose dynamics may have the potential to become
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a new preclinical and translational tool to drive innovation to develop much-needed differenti-

ated therapeutics for the prevention and treatment of diabetes.
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