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ABSTRACT

Since the emergence of high-throughput genome
sequencing platforms and more recently the
next-generation platforms, the genome databases
are growing at an astronomical rate. Tremendous
efforts have been invested in recent years in under-
standing intriguing complexities beneath the vast
ocean of genomic data. This is apparent in the
spurt of computational methods for interpreting
these data in the past few years. Genomic data in-
terpretation is notoriously difficult, partly owing to
the inherent heterogeneities appearing at different
scales. Methods developed to interpret these data
often suffer from their inability to adequately
measure the underlying heterogeneities and thus
lead to confounding results. Here, we present an
information entropy-based approach that unravels
the distinctive patterns underlying genomic data ef-
ficiently and thus is applicable in addressing a
variety of biological problems. We show the robust-
ness and consistency of the proposed methodology
in addressing three different biological problems of
significance—identification of alien DNAs in bacter-
ial genomes, detection of structural variants in
cancer cell lines and alignment-free genome
comparison.

INTRODUCTION

Never before have the boundaries of disciplines appeared
to have been so effaced than in this era of ‘omics’, which
has created unprecedented opportunities to unravel the
mysteries of life by decoding the wealth of information
obscured beneath assemblies of molecules that epitomize
a life. The advent of the era of genomics, proteomics,
transcriptomics or metabolomics has transformed the
science of life, the transformation being triggered by
recent advances in sequencing technologies. The vast

amount of genomic data generated from high-throughput
sequencing platforms has necessitated the development of
efficient computational methods to decode the biological
information underlying these data. However, interpreting
genomic data is notoriously difficult because of their
inherent complexities imparted by evolutionary factors
such as mutations, insertions, deletions, duplications,
gene transfers, etc.
One approach to interpret a yet uncharacterized

genome sequence is to move a window along the
sequence and study the local properties of the region
within the window (e.g. G+C content of DNA
sequence). This is one of the most popular and frequently
invoked approaches to study sequence characteristics,
owing to its simplicity and the ease in its implementation.
However, the scan window methods are sensitive to
window size—smaller windows increase stochastic vari-
ations, whereas larger windows diminish resolution.
Moreover, precise detection of locations of transition
from one property to another is not possible within this
framework. Probabilistic approaches to interpreting
genomic data gained momentum in early 1990s with the
adaptation and improvisation of methodologies such as
hidden Markov models (HMMs) (1–3). The probabilistic
methods were readily adapted to solving a host of biolo-
gical problems (4–7). Unlike frequently invoked heuristic
approaches, the HMMs have a strong theoretical
underpinning and are often used to search for optimal
partitioning of a sequence (or sequence data set) into
classes with distinctive properties. HMMs, however,
require to specify the model structure a priori (e.g. the
model order or number of distinct classes). Further,
HMMs often require a reliable set of training data for
learning the values of the model parameters, which may
not be available a priori.
A more flexible optimal partitioning is possible using

Bayesian methodology, which allows to draw inferences
on all unknown quantities of interest on the basis of pos-
terior distributions of these quantities (8,9). Inferences on
‘change points’ delineating compositionally different
regions within a genome sequence could be made
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feasible by the development of efficient sampling tech-
niques, namely, the Markov Chain Monte Carlo
(MCMC) methods (10–14). Variants of Bayesian
methods included those that obtain the posterior distribu-
tion of change point at each sequence position using
dynamic programing algorithms and then obtain the
optimal partition of the data by maximizing a score
function over all possible partitions (9,15). Unlike
HMMs, these methods treat each partition independently,
characterized by its own set of statistical parameters.
However, in reality, the number of distinct classes is
often much smaller than the number of all partitions.
Further, these methods generate numerous short
sequence segments of doubtful biological significance.
Further advances allowed characterizing all partitions by
fewer feature or data types, which, however, have to be
assigned a priori (16,17). Combined approaches,
integrating both HMM and Bayesian techniques, were
also developed to exploit the complementary strengths
of both methods (18). A salient feature of this method-
ology is to treat the model structure, namely, the model
order and number of feature types, also as unknown par-
ameters in the model and infer their values from the pos-
terior distributions obtained via an MCMC technique.
Though theoretically appealing, the combined method is
computationally demanding and cannot be applied to
genome sequences of length >60 kb. When applied to
bacteriophage lambda genome (size �50 kb), the optimal
partitioning recovered the strand identity by generating
segments with genes in the same direction of transcription;
beyond this, the usefulness of this method has not yet been
demonstrated.
Interpreting genomic data at the intrusive levels of

complexities is the objective of recursive segmentation
methods (19–23). Starting with the entire sequence data,
the complexity is decomposed successively by performing
a binary segmentation recursively until none of the
segments or regions can be divided further, thus
outputting regions that are homogeneous within but het-
erogeneous between, according to a certain criterion. This
recursive procedure can be accomplished within a hypoth-
esis-testing framework (21) or a model-selection frame-
work (24). Although this is not driven by the premise to
generate optimal partitioning of the data, the flexibility to
examine data complexity at different scales makes this
approach particularly attractive. The partitions were
indeed shown to correlate with known biological
features such as isochores, CpG islands or the origin
and terminus of replication (23). The recursive segmenta-
tion methods belong to the class of change-point methods,
designed to detect abrupt transitions in sequence
properties but not directly the functional or structural
features within the sequence data (25,26). Subsequent
studies aimed to group the segments into fewer numbers
of distinct classes; however, the biological significance of
the data decomposition was not clearly demonstrated (27).
A survey of the methods developed in the past two

decades for interpreting genomic data through segmenta-
tion illustrates their achievements, as well as pitfalls, in
decoding the information underlying the molecular data.
The recursive segmentation methods, designed to detect

the change points in a given genomic sequence, have
come a long way since it was first introduced to measure
long-range fractal correlations in DNA sequences (19).
Significant advances in the field include the generalization
of the segmentation method in the framework of Markov
chain model to account for short-range correlations within
DNA sequences (28,29). Although this improved the sen-
sitivity in detecting the change points, it did not address
the issue of identifying distinct sequence types within a
sequence of interest. The resulting compositionally homo-
geneous sequence segments are considered independent
entities, which may not be true. In reality, many of these
sequence segments may share similarities with other
non-neighboring segments. Therefore, the number of
sequence types could in fact be much less than the
number of sequence segments. The issue of identifying
different sequence or data types representing distinct
sources lies at the core of genomic data deconstruction
problems that go beyond the goal of detecting the
change points alone, currently the focus of most segmen-
tation methods. A meaningful interpretation of genomic
data is feasible only within an integrated framework for
change point detection, as well as source identification, the
former through segmentation and the latter through
classification.

Although sustained efforts to develop more robust and
sensitive segmentation methods are ongoing, now, the
focus is shifting to developing integrated methodologies
for data deconstruction through segmentation and classi-
fication simultaneously without prior assumptions about
the data. Although a number of such methods have
appeared in past few years (16–18,30,31), a comprehensive
assessment of their strengths and weaknesses is yet to be
accomplished. Additionally, as a consequence, a general
and widely applicable methodology for genomic data de-
composition, and their interpretation, has remained
elusive. Through this work, we have attempted to bridge
this gap by assessing the current state-of-the-art metho-
dologies on a test platform of artificial, as well as genuine,
genomic data, and also by developing a novel approach to
deciphering the organizational structures underlying
genomic data. This is, to the best of our knowledge, the
first comprehensive assessment of ‘segmentation and clas-
sification’ methods for deciphering genomic data
heterogeneities.

We posit that the recursive segmentation performed at a
rather relaxed stringency will allow precise localization of
the change points, and a non-hierarchical agglomerative
clustering procedure will allow removal of numerous un-
desirable splits created as a consequence of threshold re-
laxation. We further hypothesize that the clustering
procedure will aid not just in robust detection of change
points but also in deconstruction of the inherent hetero-
geneity by identifying non-contiguous homogeneous frag-
ments that share similar properties. To test this
hypothesis, we invoked recursive segmentation procedure
to iteratively dissect the complex data heterogeneities
through Shannon information entropy function and
followed this up with a two-step agglomerative clustering
procedure to reconstruct the organizational structure
underlying the data. Our proposed approach addressed
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the problems associated with both the segmentation
methods for detecting the change points and the
segmentation-classification methods for detecting not
just the change points but also different feature types
underlying the data. One of the major bottlenecks of the
recursive segmentation approach is often the difficulty in
establishing a threshold that can result in precise detection
of change points with fewer false positives. Relaxing the
threshold may help in precise delineation, yet this may
also generate many false positives. On the other hand, a
stringent threshold will tend to minimize the false positives
but will amplify the error in change-point detection. It is
hard to reconcile this trade-off to achieve both high reso-
lution and high specificity. We demonstrate that this is
achievable in the proposed integrated framework of seg-
mentation and clustering.

Our proposed integrative approach is designed to dis-
mantle the critical barrier in the field, namely, the number
of distinct classes (or clusters) that must be specified a
priori for the current methods to work. The proposed
method outputs both the change points and data classes
without requiring prior information about the data of
interest. Our integrative methodology is therefore a signifi-
cant advance over the existing segmentation methods
(19,21,22,29), and also over the present segmentation-
classification methods (16–18,30,31), as demonstrated in
the later sections. Notably, this relatively simple and
straightforward approach performed consistently well in
deconstructing artificially constructed, as well as genuine,
genomic data that included ‘raw’ genome sequences to
‘processed’ genome hybridization data.

In applications to solving a variety of problems in
biology, namely, the identification of ‘alien’ regions in bac-
terial genomes, the detection of structural variants in
human cancer genomes and the alignment-free genome
comparison, our proposed method performed either as
well as or outperformed the sophisticated state-of-the-art
methodologies, and emerged as a powerful statistical tool
for deciphering the organizational complexities of
genomic data. In what follows, we describe the proposed
methodology for genomic data deconstruction and how it
can be adapted to solving many different problems in
biology.

MATERIALS AND METHODS

The Jensen–Shannon divergence measure

The Jensen–Shannon divergence measure, Dðp1, p2Þ,
between two probability distributions p1 and p2 is
defined as (21,32):

Dðp1, p2Þ ¼ Hð�1p1+�2p2Þ � �1Hðp1Þ � �2Hðp2Þ, ð1Þ

where H :ð Þ ¼ �
P

x pi xð Þlog2pi xð Þ is the Shannon entropy
function, �i is the weight factor assigned to pi,

P
i �i= 1.

For each probability distribution pi,
P

x piðx)=1. Note
that �i signifies the importance that a user may want to
associate with probability distribution pi. The Jensen–
Shannon divergence measure is related to Kullback–
Leibler divergence and also shares the properties of
other information theoretic functionals, namely, Jensen

difference divergence and ’ divergence (21). The follow-
ing properties make this measure particularly interesting
and useful in diverse applications: (i) symmetricity:
D(p1,p2)=D(p2,p1); (ii) weighting: flexibility to as-
sign weights �i to probability distributions according
to their importance in a given context; (iii) bounds:
0�D(p1,p2)� 1; (iv) metricity: D(p1,p2) is the square of a
metric; and (v) generalization: Jensen–Shannon divergence
between n probability distributions, D(p1, . . . ,pn)=
Hð
Pn

i¼1 �ipiÞ �
Pn

i¼1 �iH pið Þ. In terms of Kullback–
Leiber distance, the Jensen–Shannon divergence between
n distributions can be written as Dðp1, p2, :::, pnÞ ¼Pn

i¼1 �iKLðpijj
Pn

i¼1 �ipiÞ, where KLðpjjqÞ ¼
P

j pðjÞ log2
pðjÞ
qðjÞ

for two distributions p and q.
P

i �ipi is interpreted as

the most likely source distribution that has given rise to

pi (i=1, . . . ,n) distributions (33). D(p1, . . . ,pn) can thus be

interpreted as the weighted mean of the divergence of the

distributions pi from the source distribution.
For symbolic sequence Si of length li represented by

alphabet A of size k, let pi(x) represent relative frequencies
fx of occurrence of symbols x “ A. If the weight factor �i
is assumed proportional to li, the Jensen–Shannon
divergence between two sequences S1 and S2 can be
obtained as:

DðS1,S2Þ ¼ HðSÞ �
l1
L
HðS1Þ+

l2
L
HðS2Þ

� �
: ð2Þ

Here, L= l1+l2, S=S1
L
S2, HðSÞ ¼ �

P
x
fx log2 fx;

(
L

denotes the concatenation of sequences). Note that
we use the annotation D(p1,p2) for divergence between
probability distributions p1 and p2, and D(S1,S2) for di-
vergence between sequences/data sets S1 and S2. For sim-
plicity, we also refer D(S1,S2) as D in the later sections.

Generalization of Jensen–Shannon divergence

The standard Jensen–Shannon divergence measure
quantifies the difference between distributions from inde-
pendent and identically distributed sources. In this
premise, for symbolic sequences, each of the symbols is
assumed to be generated independently from a source
specified by the probability distribution of the symbols.
However, in practice, the assumption of independence of
symbol occurrence is not valid, and this can be corrected
by reformulating the divergence measure to account for
order of occurrence of symbols. This is possible in a
Markov chain model framework, and the generalized
Jensen–Shannon divergence measure for a Markov
source of order m is defined as (28,29):

Dmðp1, p2Þ ¼ Hmð�1p1+�2p2Þ � �1H
mðp1Þ � �2H

mðp2Þ:

ð3Þ

Here, Hmð:Þ is the Shannon entropy function for
Markov source of order m,

HmðpiÞ ¼ �
X
w

PðwÞ
X
x2A

PðxjwÞ log2 PðxjwÞ, ð4Þ
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where x denotes the symbol that succeeds string w of m
symbols, P(xjw) is the probability of making transition
from w to x and P(w) is the probability of string w.
Hm(.) is thus a conditional entropy function measuring
the information content when the occurrence of a
symbol i depends on just preceding m symbols string.
The standard Jensen–Shannon divergence measure is re-
covered when model order m equals zero.
Again, as described for the standard measure earlier,

when weight factors �i are proportional to lengths li, the
generalized divergence measure becomes:

DmðS1,S2Þ ¼ HmðSÞ �
l1
L
HmðS1Þ+

l2
L
HmðS2Þ

� �
: ð5Þ

Here, HmðSiÞ is the conditional entropy function for Si

as defined in Equation (3). The values of transition and
marginal probabilities can be estimated from the counts of
strings w and wx in the sequence Si: P(w)&N(w) /
(li�m+1) and P(xjw)&N(w

L
x) / N(w), where N(.)

denotes the count.

Probability distributions of the divergence measures

The analytic approximation of the probability distribu-
tions of divergence measures is difficult to obtain, and
therefore, in many practical applications, an appropriate
threshold is established to assess the significance of values
of divergence measures. However, for the Jensen–
Shannon divergence measure, analytic expression for the
probability distribution was derived for a special case
when the weight parameters are proportional to
sequence lengths (Equations 2 and 5) (21,28). This
allowed to assess the statistical significance of the value
of Dm. It was shown that asymptotically, for large L, the
probability distribution of Dm approximates as:

P Dm � Xð Þ � �2� 2Lðln 2ÞXð Þ: ð6Þ

Here, �2� is the chi-square distribution function with
�= km(k� 1) degrees of freedom. Grosse et al. (21) and
later Arvey et al. (28) showed that the probability distri-
bution of maximum value of Dm over all possible binary
partitions of a given sequence can also be approximated
through a chi-square distribution function:

PðDm
max � XÞ � f�2�½2Lðln 2ÞX��g

Neff , ð7Þ

where � and Neff are the fitting parameters whose values,
for each m, were obtained by fitting the above analytic
expression to the empirical distributions obtained via
Monte Carlo simulations.

The recursive segmentation and clustering method

A frequently invoked segmentation approach for under-
standing the organizational structure underlying genome
sequences is based on the Jensen–Shannon divergence
measure (19–22). The generalization of this measure to
account for short-range nucleotide ordering in the frame-
work of Markov models makes this a powerful tool for
mining genomic data (28,29). Briefly, the recursive seg-
mentation procedure proceeds as follows: (i) given as
sequence S, compute the difference between sequence

segments left and right to each sequence position in S
using Jensen–Shannon divergence measure (or its general-
ization); (ii) find the position of maximum divergence
between left and right sequence segments; (iii) if the
value of this maximum difference is significantly large,
the sequence is segmented at this position; (iv) repeat the
aforementioned procedure recursively until none of
the resulting sequence segments can be split further. The
final output from this procedure is thus a set of sequence
segments that are homogeneous within, but heterogeneous
between, according to a prespecified criterion. In our
proposed framework, in general, the data are hyperseg-
mented to allow accurate detection of transition points
or ‘break points’ followed by an agglomerative clustering
procedure at relatively relaxed stringencies in two steps:
first, the contiguous similar segments are identified, and
then, starting with as many number of these segment
clusters, grouping of similar clusters is followed recur-
sively until the difference between any two clusters
becomes significantly large, preventing further cluster
merger. Both the recursive segmentation and clustering
are performed within the hypothesis testing frame-
work—the former requires the P-value for the observed
Jensen–Shannon divergence between two sequence
segments to be less than the preassigned significance
level in order for the split to be deemed significant,
whereas for the latter, if the P-value for Jensen–Shannon
divergence between two clusters is less than the signifi-
cance threshold, the clusters are deemed statistically dif-
ferent, otherwise they are merged into a single cluster.
Note that recursive segmentation proceeds by first de-
ciphering the global heterogeneity, that is, it first splits
the given sequence into two and the split point thus
obtained guides the next round of segmentation and so
on. The earlier obtained segmentation boundaries may
not correspond to boundaries of biologically meaningful
domains, which may in fact be detected at later steps of
the recursive process. We allowed oversegmentation at a
relaxed stringency (we recommend any significance thresh-
old between 0.1 and 0.3) to increase the sensitivity of the
method in identifying the real break points. However, this
might have the undesirable effect of fragmenting the bio-
logical domains. To restore the segmental structure, we
follow the segmentation with clustering steps at a
relaxed clustering stringency (significance threshold< 0.1)
to first group the contiguous similar segments, and then
group the similar non-neighboring segments. This allows
detection of not just the break point points but also dif-
ferent structural or functional types in a given genome
sequence (see Figure 1 for an illustration of the
proposed procedure for deconstructing a chimeric
genome).

The compositional disparities within a genome sequence
have often been assessed directly from the values of
Jensen–Shannon divergence measure (34–38). What
makes this measure further interesting is the derivability
of its probability distribution for a special case: for large L
(length of the sequence) and with weight factors �i /
lengths li of the sequence segments i. Although a vast
amount of biological sequences tend to be sufficiently
long to validate this assumption (typically of the order
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of 103 bases or greater) and �i / li could be informative
priors in several cases thus allowing a direct assessment of
statistical significance of this measure, we show in the next
section that different forms of this measure could be
adapted to solve a variety of biological problems.

RESULTS

Problem 1: Deconstruction of Chimeric Genomes

Background
Microorganisms are arguably the most versatile creatures
on earth. They have the abilities to modulate their physio-
logical capacities through a multitude of evolutionary
processes, most notable among them are the lineage-
specific gene loss or the acquisition of genes from often
unrelated organisms (39–41). The latter, namely, the hori-
zontal gene transfer (HGT), is now recognized as a potent
force driving the evolution of microbial genomes
(39,42–44). The process of HGT transforms a microbial
genome into a chimera of genes with different ancestries.
Because the donor genomes have undergone different sets
of mutational pressures, the acquired genes appear com-
positionally distinct in the context of the recipient genome.
Understanding the mechanisms and consequences of the
process of horizontal gene flow requires deconstruction of
chimeric genomes through experimental or computational
means. As determining the evolutionary histories of
genomic components in laboratories is often not feasible,
understanding the microbial evolution has come to rely on
the fast growing computational methodologies.

Segmentation methods for deciphering the complex
compositional heterogeneities of DNA sequences have a
long history (25,26). The problem is essentially formulated
as detecting the points of transitions in sequence charac-
teristics. Earlier methods were looking for these change
points or break points by dividing a genome into compos-
itionally homogeneous segments or domains (9,19,20).
Each domain was considered as an independent entity,
described by its own set of sequence properties.
Subsequent methods were focused on not just detecting
the change points but also the sets of domains that
shared similar properties (17,18,27,30,31). The problem
of deconstruction of a chimeric genome was thus

reformulated as finding k domain sets given N domains
in a genome of interest. HMMs (1) provided a natural
framework for addressing this problem (3,30,45).
Subsequently developed methods were based on
Bayesian formalisms and other optimization techniques
(16–18,31).

Methods for segmentation and classification
Nicolas et al. (30) implemented an expectation–maximiza-
tion algorithm for estimating the parameters of an HMM,
which had the transition between hidden states (segment
or domain classes) governed by a first-order Markov
process; this also allowed to infer the most likely hidden
state at a sequence position from the posterior distribution
of hidden states. Contiguous sequence positions labeled
with the same hidden state represented a domain. This
method, called RHOM, requires to specify a priori the
model order and number of domain classes. Gionis and
Mannila’s K-H segmentation method (31) partitions a
sequence into K segments arising from H sources by
maximizing a likelihood function for fragmentation into
K parts. This was accomplished using a dynamic pro-
graming algorithm; note that this approach also requires
to specify a priori the values of K and H, and the ‘optimal’
combination is inferred through Bayesian information cri-
terion (BIC). Specifically, a given sequence is preprocessed
by dividing into equal length blocks, each block is repre-
sented by an n-dimensional frequency vector, where n is
number of all possible m-letter words (m=2 or 3). The
sequence of these data points (frequency vectors) serves as
the input to the K-H method. Boys and Henderson (18)
combines the strength of both, HMM and Bayesian tech-
nique, to infer all quantities of interest. Here, even the
model structure—the number of segment types and the
order of Markovian dependence—is also a parameter to
be inferred via MCMC technique. The final set of
estimated parameters is used to infer the segmentation
from the posterior distribution of segment types
obtained using the forward–backward algorithm. Keith’s
hierarchical Bayesian approach (16,17) is based on a
generalized Gibbs sampler, an efficient MCMC sampling
technique, that could make possible segmentation of large
data sets. The number of segment types has to be specified
a priori, and the final value is determined through BIC.

Figure 1. An illustration of the entropy-based technique for the deconstruction of a chimeric genome.
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Artificial genomes
To assess the performance of this class of methods,
including our proposed entropy-based method, we con-
structed artificial chimeric genomes by simulating gene
transfers from 10 artificial donor genomes into an artificial
Escherichia coli genome. Construction of artificial
genomes are described in detail in (46). Briefly, a conser-
vative core of a given genome representing the native
genes was extracted using a gene clustering method
based on Akaike information criterion. The core was par-
titioned into distinct gene classes using a k-means gene
clustering method that used relative entropy as the
distance measure for deciding the convergence of the al-
gorithm. Multiple gene models trained on distinct gene
classes representing the mutational proclivities of ancestral
genome complement were incorporated in the framework
of a generalized HMM. This HMM was then used to
generate a genome representing the major trends within
the ‘core’ of a genuine genome. The donor genomes were
modeled after Archaeoglobus fulgidus, Bacillus subtilis,
Deinococcus radiodurans, Haemophilus influenzae Rd,
Methanocaldococcus jannaschii, Neisseria gonorrhoeae,
Ralstonia solanacearum, Sinorhizobium meliloti,
Synechocystis PCC6803 and Thermotoga maritima
genomes. Approximately 25% of all genes in this
chimeric artificial E. coli genome was provided by the 10
donors. As the evolutionary histories of DNA sequences
(encompassing one or more genes) within this genome is
known with absolute certainty, it serves as a valid test bed

for assessing methods for genome heterogeneity decom-
position. These methods are expected to identify not just
the insertion points of foreign DNAs but also identify
regions originating from distinct source genomes.

Assessment on artificial genomes
We subjected the five methods described earlier, namely,
the HMM-driven Bayesian method (18), the HMM-
based method [RHOM, (30)], the generalized Gibbs
sampler-based Bayesian method (16,17), the optimization
method [K-H segmentation, (31)] and our proposed
Markovian Jensen–Shannon divergence (MJSD)-based
segmentation-clustering method, to deconstructing the
artificial chimeric E. coli genome. As the HMM-driven
Bayesian method can not handle sequences of length
>60 kb, we excluded it from this test. Figures 2–5 show
the cluster configuration generated from the four methods.
Ideally, a method should place ‘native’ segments in a large
cluster representing the native genome and ‘alien’
segments into several smaller clusters, each representing
a distinct donor source. In practice, however, more than
one cluster for a genome source may be generated.
RHOM, for example, generates several large clusters for
the native segments (Figure 2). It could identify only two
donors efficiently—M. jannaschii and N. gonorrhoeae. It
could also identify B. subtilis and T. maritima, though less
efficiently, because of the inability of the method in dis-
tinguishing between B. subtilis and H. influenzae segments,
and also between T. maritima and A. fulgidus segments. A
substantial fraction of alien segments arising from
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different sources was incorrectly assigned to a large native
cluster. The Bayesian method based on a generalized
Gibbs sampler also generated several large clusters for
native segments (Figure 3). It generated unambiguous
clusters for M. jannaschii only, and to an extent for N.
gonorrhoeae and A. fulgidus segments. Note that a signifi-
cant portion of the N. gonorrhoeae squences could not get
discriminated from the backbone (E. coli), yet two clusters
(# 11 and 13) had most of the sequences from this
organism. The K-H segmentation method performed
better in assigning alien segments; however, it generated
two large native clusters of equivalent size (Figure 4). It
could generate clusters of M. jannaschii and Synechocystis
segments more efficiently, whereas those of H. influenzae,
A. fulgidus, R. solanacearum, B. subtilis, S. meliloti and
T. maritima less efficiently. It couldn’t discriminate
D. radiodurans from R. solanacearum and N. gonorrheae
from the recipient E. coli.
In contrast to the aforementioned methods, MJSD

based segmentation-clustering method generated a single
large cluster for native segments, and also assigned alien
segments from different donors to respective source
clusters efficiently (model order=2, segmentation signifi-
cance threshold=10�1, clustering threshold=10�3; see
Figure 5). Notably, many of the clusters created by this
method contained segments from unique donor sources
only, namely, M. jannaschii, H. influenzae, A. fulgidus,
R. solanacearum and D. radiodurans. Even the clusters of
N. gonorrhoeae, Synechocystis and T. maritima were of
high purity. Clearly, the MJSD-based method performs

well in segregating compositionally distinct regions.
Overall, the method identified the recipient E. coli
genome and 9 out of 10 donors (by placing majority of
their genes or segments in smaller distinct clusters of high
purity). This compares favorably with K-H segmentation
that performed better than RHOM and Bayesian methods
but generated two large E. coli clusters. Note that, in
general, bacterial genomes have >60% native or ancestral
genes; the genome deconstruction methods are expected to
recover this structure of a bacterial genome by placing
majority of the genes into a single cluster and rest of the
genes into several smaller clusters representing the likely
donor sources. The native and alien composition of a
genome can thus be easily deciphered from the size of
the clusters (largest native and the rest alien). By construc-
tion, the artificial chimeric E. coli genome contained 75%
genes modeled after the ancestral E. coli genes. Only the
MJSD method could place most of these genes into a
single large cluster. Further, in comparison to the K-H
method whose ‘donor’ clusters were always contaminated
with the recipient E. coli sequences, the MJSD method
grouped the alien sequences more efficiently and generated
more clusters with greater purity. The MJSD method also
created distinct clusters for D. radiodurans and
N. gonorrheae, which couldn’t be identified by the K-H
method.

Although other methods require to specify a priori the
number of segments or the number of sources or both, the
MJSD-based method generates the number of segments
and their clusters corresponding to the inherent genomic
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heterogeneity. For this test genome, it generated �15
segment clusters (excluding 9 tiny clusters each of which
identifies unambiguously with a distinct source, see
Supplementary Table S1), which is close to the actual
number of genome sources (total=11). As we know a
priori the number of segments and their sources for the
test genome, we could specify this information for other
methods where needed; results were also obtained for
other combinations of these parameters including the spe-
cifications obtained from the MJSD method. We did not
observe any noticeable improvement by varying these par-
ameters (similar results were observed with experiments on
genuine genomes also as described later). Both Bayesian
and K-H segmentation methods use BIC for determining
these parameters; the parameter values that minimize the
BIC are selected. This postprocessing step imposes signifi-
cant computational load on the methods, in particular on
the K-H method, where one needs to obtain values of BIC
for different combinations ofK andH. Surprisingly, though
we did not find the BIC-inferred parameter values to be
reflective of the inherent heterogeneities of genomes. For
example, the optimal number of classes inferred from this
criterion was 3 for the Bayesian method, which is far less
than than the actual 11. This demonstrates the inherent
weakness of these methods in inferring the correct values
of these parameters. To test the HMM-driven Bayesian
method, we constructed several chimeric genomes of
length �60 kb; however, all test genomes remained unseg-
mented, although other methods could deconstruct these

genomes with similar relative performance as reported
earlier.
Notably, the proposed method is not overly sensitive to

the segmentation threshold. In Supplementary Figures
S1A and B, we show the cluster configurations generated
by the MJSD-based method at further relaxed stringenices
of segmentation, at the significance thresholds of 0.2 and
0.3, respectively. Segmentation at the significance thresh-
old of 0.1 generated 1107 segments, whereas segmentation
at the significance thresholds of 0.2 and 0.3 generated 1255
and 1391 segments, respectively. However, the subsequent
two-step clustering procedure yielded similar cluster con-
figurations for all three cases (compare Figure 5 with
Supplementary Figures S1A and B). Relaxing the segmen-
tation stringency further homogenizes the segmentation
map, that is, the resulting segments are still more homo-
geneous, but this comes at the cost of many more
segments. Enhanced homogeneity ensures that the
optimal clusters could be obtained without overly
relaxing the clustering stringency. This is apparent from
Figure 5 and Supplementary Figures S1A and B, which
display similar cluster configuration retrieved at lesser
relaxed clustering stringency as the number of homoge-
neous segments are increased by relaxing the segmentation
stringency.

Assessment on genuine genomes
We also assessed the methods in identifying alien regions
in the well-understood Salmonella enterica typhi CT18

Table 1. Assessment of the prediction methods in deciphering genomic islands in S. enterica typhi CT18 genome

Methods Segments Cluster configuration Cluster(s)
labeled alien

Percentage of
whole genome
identified alien

Percentage of
island genome
identified alienTotal

clusters
Largest
(% genome)

Others
(% genome)

MJSD 375 31 1 (69.3) 2–30 (30.7) 2–30 30.7 87.6
Bayesian 3 1 (86.5) 2–3 (13.4) 2–3 13.4 27.9
RHOM 2 1 (78.3) 2 (21.6) 2 21.6 44.4

3 1 (40.5) 2 (38.9), 3 20.5 40.1
3 (20.5) 2, 3 59.4 63.1

1, 3 61.0 77.0
4 1 (37.9) 2 (17.6), 1 37.9 33.6

3 (24.9), 2 17.6 11.1
4 (19.3) 3 24.9 16.5

4 19.3 38.6
1, 4 57.2 72.3

8 1 (22.4) 2 (3.7), 1 22.4 15.4
3 (4.5), 2 3.7 0.5
4 (12.9), 3 4.5 2.5
5 (12.9), 4 12.9 24.3
6 (12.9), 5 12.9 10.8
7 (12.9), 6 12.9 5.3
8 (12.9) 7 12.9 13.8

8 12.9 27.0
4, 8 25.8 51.3

K-H 100 2 1 (87.4) 2 (12.5) 2 12.5 59.8
300 2 1 (84.1) 2 (15.8) 2 15.8 51.4
400 2 1 (82.7) 2 (17.2) 2 17.2 53.0

6000 2 1 (75.5) 2 (24.4) 2 24.4 51.3
6000 3 1 (49.7) 2 (11.9), 2 11.9 30.6

3 (38.2) 2, 3 50.1 70.6

Results are shown for second-order Markov models used in MJSD and RHOM.
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genome. Vernikos and Parkhill have compiled a high
confidence set of genomic islands (Supplementary
Table S2)—large regions with functionally related
genes acquired through the process of HGT (47). We
subjected all methods to identifying these compos-
itionally distinct regions in S. enterica typhi CT18
genomes. The 375 sequence segments generated by
the MJSD method were assigned to 31 clusters
(Table 1). The largest cluster contained �70% of the
genome, whereas the remaining 30% were distributed
in the 30 smaller clusters of potentially foreign origin.
Approximately 88% of island genome was found to
reside in the 30 alien clusters, clearly an indicator that
the method has segregated well the native and alien
regions. The optimal segmentation by the Bayesian
method with number of clusters inferred through
BIC results in �87% of the genome assigned to the
largest cluster and �13% to the remaining two smaller
clusters, which, however, contained only 27% of the
island genome. As RHOM does not determine the
optimal number of clusters a posteriori, we obtained
results from different numbers of clusters specified a
priori. When only two clusters have to be generated by
RHOM, 78% of the genome got assigned to one
cluster and the remaining 22% to the other cluster,
which, however, contained only 44% of the island
genome, implying that majority of the islands could
not be distinguished from the ancestral genome.
Increasing the number of clusters did not resolve this
issue, rather the method now seemed to be dividing
evenly the ‘native’ or the ‘alien’ clusters (see Table 1).
The K-H segmentation method also used BIC to infer
the optimal value of K (number of segments) and H
(number of classes); we found that the BIC-inferred
optimal value of K comes close to or is in fact the
number of data points, which is just unrealistic. We
have provided in Table 1, the results from various
combinations of K and H. Although BIC for
K=6000 and H=3 (or H=2) is less than the BIC
for K=100 and H=2 (implying that the former is a
better model for the given data), the latter has
aggregated twice the island genome in the alien
cluster of equivalent size. For K=6000 and H=2,
the size of the alien cluster doubled when compared
with K=100 and H=2, but it assimilated less
amount of island genome than the latter.
Undesirably, the sensitivity of the method did not
improve (rather declined) when the size of the alien
cluster increased (results are also shown for K=300,
400 which are close to the number of segments
generated by the MJSD method). Overall, the MJSD
method appeared more robust and sensitive in clas-
sifying the compositionally distinct regions in both
artificial and genuine genomes.
Although genomic islands present a picture of large

acquisitions through the process of HGT, alien genes
may arrive alone or in company of few other contigu-
ous genes. To assess the performance of the methods
in deciphering the genome composition at the genic
(or higher) level, we extracted a conservative set of
unique and native genes in S. enterica typhi CT18T
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from the list compiled by Arvey et al. (28). Unique CT18
genes are those which while present in the Salmonella
CT18 genome are absent from the genomes of its close
relatives (other Salmonella strains and the outgroup
taxa). These ‘unique’ genes of limited phylogenetic distri-
butions are likely to have been introduced through hori-
zontal transfer. Specifically, genomes of six Salmonella
strains and five non-Salmonella, outgroup taxa were
used (Supplementary Table S3). Genes in the CT18
genomes that had matches to all five members of the
outgroup taxa were classified as native genes. Here, we
assessed how these native (2 792 772 bp) and alien
(1 31 346 bp) genome are segregated into distinct classes
by different methods (Table 2). MJSD method generated
two native clusters—one large and the other relatively
much smaller cluster, both containing >99% of the
native genome. Seven alien clusters were created, which
were of high-level (>90%) to moderate-level (70–90%)
purity in terms of the abundance of alien genes in these
clusters. One hybrid cluster of low-level purity was also
created (native: 62%, alien: 38%). Other smaller native
clusters (11, with between 0.001�0.68% of the native
genome) were 100% pure but are not shown in Table 2

(see Figure 6 for the composition of all MJSD clusters).
The Bayesian method could not distinguish between
native and alien genomes, as is evident from the absence
of alien clusters in its cluster configuration. RHOM had a
similar problem, which persists irrespective of number of
distinct clusters. The K-H method was promising at
K=100, H=2, generating a native cluster and an alien
cluster, but its performance declined for higher K’s and
H’s (data are shown for values of K and H that results in
lower BIC and hence is considered ‘optimal’ by the
authors), where the method could no longer discriminate
between native and alien genome.
Recent studies have assessed the accuracy of parametric

methods in detecting alien regions as a function of phylo-
genetic distance of donor source from the recipient
organism (28,48). Expectedly, methods appeared less effi-
cient in discriminating genomic segments from phylogen-
etically similar organisms, such as E. coli and S. enterica.
However, a significant interest is in detection of genetic
material transfer between highly divergent organisms, par-
ticularly in the studies of host–parasite interactions. This
motivated us to test the proposed method in a host–
parasite setup. We selected N. gonorrhoeae, a bacterial
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Figure 6. Composition of the S. enterica typhi CT18 gene clusters labeled (A) native and (B) alien by the MJSD-based segmentation clustering
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pathogen that lives within human and causes gonorrhea,
and has recently been investigated for the presence of
human DNA within its genome (49). We performed two
experiments. First, a chimeric sequence was constructed
by joining equal sized fragments each from N. gonorrhoeae
and Homo sapiens, and then the MJSD method was
applied to identify the join point in this chimeric
genome. The mean error (difference between the segmen-
tation and join point) obtained from 5000 random repli-
cates was plotted as a function of chimeric sequence size
(Figure 7). We also obtained the mean errors for 20 kb
bacterial chimeras (E. coli sequences concatenated with
sequences from different bacterial species). The error
was maximum for the Escherichia–Salmonella chimera,
which shares �98% similarity in their ribosomal DNAs,
emphasizing that such transfers would be hard to detect.
The interfamily transfers (Escherichia–Vibrio, Escherichia–
Haemophilus) could be easier to detect, and perhaps the
interdomain transfers, though rare, could be identified
with the greatest precision (Figure 7). In the second ex-
periment, we simulated transfer of ten 10-kb segments
from human chromosome 22 into the N. gonorrhoeae

genome. The MJSD method performed well in grouping
the DNAs of the bacterial pathogen and its mammalian
host (Figure 8); �88% of the N. gonorrhoeae genome
was assigned to the largest cluster that was �100% pure
(that is, contained only N. gonorrhoeae segments). Note
that DNAs of both pathogen and host were apportioned
in several clusters owing to the heterogeneous composition
of these genomes (unlike artificial genomes that were rela-
tively homogeneous by design).

Conclusions
The MJSD-based segmentation-clustering method effect-
ively unravels the underlying segmental structure within
genomes, grouping genomic regions representing distinct
evolutionary patterns. This is accomplished independent
of gene information, making it a useful tool for decon-
structing yet characterized, just sequenced genomes.

Problem 2: Detection of Structural Variations in Cancer
Genomes

Background
Occurrences of many human diseases are attributed to
copy number variations (CNVs), a class of structural vari-
ations that changes copy number of DNA at genomic loci
(50–52) (note that in what follows, structural variations
and CNVs are used interchangeably, both implying amp-
lifications and deletions of DNAs in cancer genomes). The
genes responsible for cancers, namely, the oncogenes, and
the tumor-suppressing genes, are often localized in regions
undergoing copy number changes. Identification of struc-
tural variants causing gain or loss of DNA in a tumor
genome is thus a significant goal in cataloging cancer-
associated genes in human genomes. A normal individual

A

B

Figure 7. Assessment of the performance of MJSD-based segmentation
clustering method in finding the join point of a genomic fragment from
one organism concatenated with an equal sized fragment from an-
other organism. The mean error (difference between the segmenta-
tion and join point) was estimated from 5000 random replicates.
(A) H. sapiens concatenated with N. gonorrhoeae: the mean error is
shown as a function of chimeric sequence size, and (B) E. coli
concatenated with other bacterial species (in the order of their diver-
gence from E. coli); chimeric constructs were of size 20 kb.
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Figure 8. Assessment of the performance of the MJSD method in
discriminating the DNAs of a bacterial pathogen (N. gonorrhoeae)
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is diploid, carrying two copies of chromosomes; chromo-
somal aberrations within tumor cells can either increase
the copy number by amplification of chromosomal
segments or decrease the copy number by deletion of
chromosomal segments. Large-scale amplifications or de-
letions could be up to several megabases of genome, even
affecting the entire chromosomal arms. Advances in
microarray technologies have greatly advanced our under-
standing of the CNVs in human genomes. Development of
array comparative genome hybridization (aCGH) tech-
nique allowed direct assessment of copy number changes
in tumors (53); the DNAs from tumor cells are hybridized
against the array probes constructed from a reference
genome, and the copy numbers are inferred from hybrid-
ization (fluorescence) intensities at each probe, a higher
value of this measure implying an amplification and a
lower value signifying a deletion.

The advent of microarrays has produced new
opportunities for large-scale identification of CNVs at a
much better resolution; however, this has also brought
new challenges to decipher signals from noisy experimen-
tal data, and also, not just to predict the presence of CNVs
at genomic loci but to predict them precisely. This is a
significant computational challenge, and the interest in
this area of research is evident from the number of bio-
informatics methods developed in the past few years to
address this problem (54–62).

Methods for CNV detection
Detection of CNVs is essentially a change-point problem,
that is, detecting the break points signifying the transition
from normal state to variant state in a genome of interest.
Venkatraman and Olshen (57,58) developed a circular
binary segmentation (CBS) method that searches recur-
sively for left and right break points for the CNVs in a
chromosome with ends joined together; the recursion is
continued until the successive break points are deemed
statistically significant using a permutation test.
However, finding two break points simultaneously in a
sequence makes this procedure computationally intensive.
Another class of methods that use HMMs to find the most
probable sequence of structure types (normal and different
classes of variants) underlying a given chromosomal
sequence in a probabilistic framework has been frequently
invoked to detect CNVs (55,61). A related approach is
based on conditional random fields (CRFs) (59);
however, despite the sophistications of these methods
and the implicit optimality of their solutions, their prac-
tical usefulness is constrained by the requirement of
training data. Further, they require to specify a priori
the model structure, such as the number of structure
types, etc., which are often unknown.

Several other approaches are based on a ‘local’ break
point procedure that measures variations in the regions
within windows along a chromosomal locus of interest
(63). Assessment of variations between regions lying
within windows of fixed size tends to be much faster
than recursive binary segmentation; however, scan
window methods are sensitive to window size and are in-
herently limited in their ability to delineate precisely the
break points. The precision of the break points is naturally

a function of window step size, as well as window size
(smaller size may help detect the break point better but
can also lower the signal-to-noise ratio) (28).
Chen et al. (64) have recently shown that the error in

measurement of hybridization intensity ratio follows a
Gaussian distribution function. Starting with each inten-
sity ratio value assigned to a cluster specified by a
Gaussian function, a pairwise Gaussian merging proced-
ure, named SAD, allows to recursively merge clusters
with similar Gaussian distribution; this process is halted
when the distributions are deemed statistically different.
The largest cluster corresponds to the normal state
and thus provides the baseline for identification of
amplified and deleted regions in the genome. However,
this process is prone to generate more false positives and
false negatives owing to the presence of outliers in the
aCGH data. This was addressed by including a postpro-
cessing step to eliminate the statistical outliers from the
final prediction.
As the entropy-driven approach proposed here does not

need training data and decodes genome heterogeneities
efficiently, it is tempting to apply this approach to de-
ciphering the structural variants in tumor genomes. This
problem presents altogether a different challenge to the
methodology proposed here—one, the rather continuous
numeric data from aCGH platform, which unlike the
symbolic sequences cannot be readily interpreted using
the Shannon entropy and its derived measures, and the
other, the size of the aCGH data—just a few hundreds
of data points (hybridization intensity ratios) violates the
assumption (sufficiently large data set) implicit in the der-
ivation of probability distribution of divergence measure
D (Equations 6 and 7). Here, we show that this approach
could still be applied with remarkable success.

Assessment of the proposed entropic method
We assessed the entropic method on the Coriell data set
with intensity ratio values for 15 cell lines from aCGH
platform (65); this validated data set has frequently been
used for evaluating disparate computational methods
for copy number variant detection. Given a sequence of
hybridization intensity ratio values T

R, where T and R stand
for tumor and reference clones for a given cell line, the
segmentation procedure proceeds by recursively
maximizing the entropic divergence between intensities
in the two resulting sequence segments (see Equation 1).
The probability of being a part of a cancerous genome,
PT, or a normal genome, PR, was estimated directly from
the intensity ratios T

R for a given sequence segment. That is,
given a segment of length N with intensity values

M1, . . . ,MN, PT =

PN

i¼1
RiMiPN

i¼1
Ri+RiMi

and PR =

PN

i¼1
RiPN

i¼1
Ri+RiMi

(note that here Ri’s equal 1). If the maximum value of
the entropic divergence exceeds an established threshold,
the sequence was split at that point and the process
repeated recursively. In contrast to significance threshold
used for large data sets, here, the threshold was a value of
entropic divergence that maximized the accuracy of CNV
detection (see later for the accuracy measures used for
assessment). Finally, copy number variants of similar
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types were grouped together; note that this data set has
broadly three types of structural variations—neutral (copy

number=2), amplification (copy number >2) and
deletion (copy number <2).

Results from the application of the entropic method to
the Coriell data set are shown in Figure 9 and
Supplementary Figures S2A–K (segmentation thresh-
old=0.000001, clustering threshold=0.002). Clearly,
the method identified most of the variants without
generating any false positive. The performance in detect-
ing the variants’ boundaries was quantified through three
accuracy measures—Sensitivity, which is the fraction of
variants’ boundaries correctly detected by a method;
Specificity, which is the fraction of predicted boundaries
matching the actual boundaries and F-measure, which
is the harmonic mean of Sensitivity and Specificity,

F-measure= 2�Sensitivity�Specificity
Sensitivity+Specificity . Because of the noisy test

data, we allowed offset by a few data points (clones) of
the predicted break points from the ‘actual’ boundaries.
The values of the accuracy parameters generated by the

entropic method are given in Table 3. Also shown along-
side are the values of F-measure for three popular
methods—CBS (57,58), HMM-based CNA-HMMer (62)

and CRF based CRF-CNV (59). Note that like entropy
method, CBS also falls in the class of change-point
methods that do not require training data; however, it

searches for two break points at a time by maximizing
the difference using a t-statistics and therefore is compu-

tationally more intensive. CBS remains to date the most
frequently used method for CNV detection, mainly owing
to its unsupervised nature. Our proposed method signifi-

cantly outperforms the CBS method—F-measure=0.96
and 0.51 for the former and latter, respectively, for detect-
ing within four data points of the actual boundary. It

performed comparably with the more sophisticated
supervised methods, namely, CNA-HMMer and CRF-

CNV, when the allowed boundary mismatch approached

four data points [Table 3, see also (59)]. Note that this

level of performance was achieved without resorting to

data smoothing or other postprocessing procedures that

are routinely used in most current methods.
The recently proposed recursive clustering method,

SAD, was shown to perform as well as or outperform
several existing methods of CNV detection including
CGHseg (66), GLAD (56), CBS (57), SW-ARRAY (67)
and CNVFinder (68). SAD was shown to outperform
both GLAD and CBS on the Coriell data set. Therefore,
we assessed our entropic approach vis-à-vis SAD within
the similar framework as in SAD; this was accomplished
by skipping the segmentation step and directly implement-
ing the clustering procedure but now starting with as
many clusters as the number of data points (intensity
ratios) as suggested in Chen et al.’s article (64). This
helped in identifying more precisely the break points,
but both the normal and variant regions appeared frag-
mented because of the presence of numerous outliers.
Postprocessing to remove outliers was needed to restore
the actual segmental structure of the genome. Results
from both methods are given in Table 4. The entropic
clustering method performs comparably with SAD. It is
outperformed by SAD for exact boundary match, whereas
it performs as well as SAD for one boundary mismatch
and outperforms SAD for two boundary mismatches.
Interestingly, the prediction output from SAD included
a single intensity ratio variant, which was supposed to
be filtered during postprocessing and therefore was not
considered while computing the accuracy parameters
(and as this is a true positive, its inclusion slightly in-
creases the F-measure to 97.7% for one and two
boundary mismatch tolerance).

Conclusions
Our entropy-based approach could be easily adapted for
deciphering heterogeneities within array CGH data. On

Table 3. Performance of the CNV detection methods in localizing the variants’ boundaries in genomes from 15 different cancer cell lines

Boundary
mismatch

Entropy-based method Circular binary
segmentation

CNA-HMMer CRF-CNV

Sensitivity Specificity F-measure F-measure F-measure F-measure

0 0.62 0.67 0.65 0.33 0.87 0.63
1 0.74 0.80 0.77 0.50 0.94 0.91
2 0.81 0.87 0.84 0.51 0.94 0.94
3 0.88 0.95 0.91 0.51 0.94 0.96
4 0.93 1.0 0.96 0.51 0.94 0.96

Table 4. Performance of the two clustering-based CNV detection methods in localizing the variants’ boundaries in genomes from 15 different

cancer cell lines

Boundary
mismatch

Entropy-based clustering method Chen et al. SAD method

Sensitivity Specificity F-measure Sensitivity Specificity F-measure

0 0.837 0.857 0.847 0.883 0.863 0.873
1 0.953 0.976 0.964 0.976 0.954 0.965
2 0.976 1.0 0.988 0.976 0.954 0.965
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tests on experimentally validated data from 15 cancer cell
lines, the proposed method performed comparably with
other segmentation methods—outperforming CBS and
achieving similar performance with supervised methods
within four data points of an actual boundary. Within
the ‘clustering only’ framework to compare with
clustering-based methods, the entropic method performed
better in delineating boundaries but required
postprocessing to reconstruct the segmental structure.

Problem 3: Alignment-free Genome Comparison

Background
Evolutionary relationships among organisms are often
inferred by quantifying the similarity (or dissimilarity) of
their molecular sequences through sequence alignment
methods (2). However, the efficiency of sequence align-
ment methods deteriorates when the related sequences
have diverged at multiple loci through the evolutionary
processes such as genomic arrangements, insertions or de-
letions. Genomic rearrangements, in particular, disrupt
the genomic segment contiguity, which is exploited by
sequence alignment methods for reconstructing
phylogenies. Frequent rearrangements obfuscate the
phylogenetic signals relied on by sequence alignment
methods. Coupled with other evolutionary processes,
this renders comparison of fast-evolving sequences
beyond the limits of these methods. Also, although
conserved, mainly, protein-coding or RNA sequences are
used for inferring phylogeny, they constitute a small per-
centage of genome in higher eukaryotes. For example,
only �1% of human genome is known to encode
proteins or RNAs; a significant proportion of the other
99% is known to be conserved and functionally active.
Therefore, for reconstructing reliable genome phylogenies,
methods must look beyond this 1%. This is a significant
computational challenge for alignment methods. The
rapidly growing sequence database necessitates develop-
ment of efficient alternative methods for sequence
comparison.

Methods for alignment-free genome comparison
The alignment-free genome comparison methods have a
relatively recent history (38,69,70); the importance of this
approach is apparent from substantial efforts invested in
the past few years. These methods mainly exploit the
distributions of oligomer frequencies in measuring the
similarity or dissimilarity between genome sequences.
The frequently invoked distance measures include
Euclidean distance (71), Kullback–Leibler divergence
(72), Mahalanobis distance (73), Pearson correlation coef-
ficient (74) and the Kolmogorov complexity metric (75).
More recently, genome comparison using Jensen–
Shannon divergence measure was reported a better alter-
native to alignment techniques among the existing
alignment-free methods (35–38). One of the main contri-
butions of this work is determining the limits to the
oligomer size in describing a given sequence. After initial
assessment on synthetic and mitochondrial genomes, this
technique was subsequently applied in deducing
phylogenies of viruses, prokaryotes and mammals.

Advances in the development of alignment-free
methods are mainly directed toward establishing an
optimal range of the word or oligomer size appropriate
for comparing genomes of different sizes (38,76). Short
oligomers provide better statistics, yet longer oligomers
have better predictive value. The optimal resolution
range balancing this trade-off is essentially a function of
the sequence length, and was reported to be between 7 and
14 bp for a genome of size �16 kb (38). The number of all
possible oligomers of length l is 4l, and for l=7, this
number is 16 384, which means most of the oligomers
will either be missing or occur only once in a sequence
of size 16 kb. This scenario will get worse with increasing
oligomer length (l> 7). We want to emphasize here that
the usage of higher-order oligomers should be done with
caution, and show that our approach can achieve compar-
able or better accuracy even with oligomers of size �2.

A proposal for genome complexity decomposition before
comparison
Current methods assume distribution of oligomers of size l
as a representation of a genome sequence. The difference
between these distributions for two genomes of interest
is assessed directly, without regard to the inherent
heterogeneities within genomes, which are typically
chimeras of segments with different ancestries and/or evo-
lutionary constraints, and therefore should be represented
by multiple oligomer distributions. A single distribution
can have the unwanted effect of ‘averaging out’ evolution-
ary signals, or in fact, it may not represent any major
evolutionary trend in a genome. We posit that this issue
can only be resolved if the genome complexity is
decomposed first and the similarity is then assessed by
comparing the compositionally homogeneous domains
within the genomes of interest. To address this issue in
the alignment-free genome comparisons, we used our
proposed entropic dissection tool and assessed it against
the recently proposed feature frequency profiles (FFPs)
method by Sims et al. (38), which was shown to outper-
form several popular methods including ‘Average
Common Substring’ and Gencompress. Pairwise genome
comparison was done using a metric similar to that sug-
gested by Sims et al. (38): given genomes G1 and G2 with
M and N classes of similar segments, the genome-wide
difference (GWD) between the two genomes can be
assessed as:

GWD ¼
1

2

1

M

XM
i¼1

min D Gi
1,G

1
2

� �
, . . . ,D Gi

1,G
N
2

� �� �"

+
1

N

XN
j¼1

minfDðG1
1,G

j
2Þ, . . . ,DðGM

1 ,Gj
2Þg

#
;

where DðGi
1,G

j
2Þ refers to the Jensen–Shannon divergence

between classes i and j of genomes G1 and G2.

Assessment
Although the alignment-free methods are expected to out-
perform alignment driven methods on rapidly evolving
sequences, these methods are also expected to perform
not much worse than alignment methods on highly
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Figure 10. Reconstruction of phylogenetic relationship of E. coli with other members of the Enterobacteriaceae family and two outgroup taxa
(represented by genera Vibrio and Haemophilus) by the recursive segmentation clustering method and the FFP method. The phylogenetic relationship
inferred from a tree based on ribosomal RNA gene is depicted at the bottom. On y-axis is shown the GWD between Escherichia and other organisms
obtained using an alignment-free approach, while the order of divergence of organisms from Escherichia is shown along the x-axis.
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conserved sequences that are well suited for the applica-
tion of the latter methods. Highly reliable organismal re-
lationships have been elucidated using alignment methods,
particularly in prokaryotic domain, and we selected one
such well-studied bacterial family, Enterobacteriaceae, for
reconstructing the phylogenetic relationships among a
host of organisms belonging to this family. The represen-
tative genomes from this family belonging to the genus
Escherichia, Salmonella, Klebsiella, Erwinia and Yersinia
were segmented followed by identification of distinct
classes of similar segments using the procedure described
earlier. Genomes from two outgroup taxa, namely, of
genus Vibrio and Haemophilus belonging to Vibrionaceae
and Pasteuraellaceae family, respectively, were also
included in this study. In Figure 10, we show the GWD
between Escherichia and other genomes, signifying the evo-
lutionary divergence of Escherichia from other organisms
within and outside of its family. The evolutionary relation-
ships among these organisms are well established through
phylogenetic analysis; an illustrative dendogram based on
the ribosomal RNA phylogeny of Enterobacteriaceae
family is shown at the bottom of Figure 10. The organisms
in order of divergence from Escherichia (GC& 51%) are
Salmonella, Klebsiella, Erwinia, Yersinia, Vibrio and
Haemophilus (GC& 52, 57, 51, 48, 48 and 38%, respect-
ively). Salmonella and Klebsiella share the most recent
common ancestor with Escherichia, and therefore could
be considered tied in this order. Note that the frequently
invoked G+C composition is not a reliable indicator of
organismal relationships, and perhaps, this has led re-
searchers to exploit the power of higher order k-mer com-
position (k defining the oligomer length) in inferring
organismal relationships.
Our proposed methodology (top panel) is able to re-

construct this relationship unambiguously. However,
irrespective of the oligomer size used, the FFP method
could not robustly reconstruct this relationship. The
performance was worst at 2-mer resolution as expected,
with Erwinia identified closest to Escherichia and
Klebsiella farthest from it among organisms in the
Enterobacteriaceae family. The outgroup taxon Vibrio
was placed within the Enterobacteriaceae family, above
Yersinia and Klebsiella. The only improvement observed
at 3-mer resolution was the swapping of places between
Yersinia and Vibrio, which, however, still remained
grouped within the Enterobacteriaceae family. At higher
resolutions of 10-mer and 11-mer, which could be con-
sidered within optimal range, suggested in Sims et al.
and in several subsequent studies (35,36,38,70), the
outgroup taxa were correctly placed, but Klebsiella still
could not be correctly aligned.
We repeated this experiment with representative

genomes from different taxonomic grouping, including
the phylum Cyanobacteria, the family Pseudomonadaceae
and the genus Mycoplasma. The GWD between
Synechocystis sp. PCC and other organisms from the
phylum Cyanobacteria is shown in Supplementary
Figure S3A (note that the organisms are arranged in
order of increasing ribosomal RNA dissimilarity from
Synechocystis on the x-axis), between Pseudomonas
syringae tomato and other organisms from the family

Pseudomonadaceae in Supplementary Figure S3B and
between Mycoplasma pneumoniae and other organisms
from the genus Mycoplasma in Supplementary Figure
S3C. In all instances, we observed segmentation clustering
approach to be outperforming the FFP method,
reiterating that genome composition deconstruction is a
critical step in robust inference of organismal
relationships.

Conclusions
We show here that the difficulties of whole-genome com-
parison lie partly within the current approaches that
overlook the inherent heterogeneities of genomes. To
demonstrate this unambiguously, the only difference
between our approach and the approach taken by FFP
methodology was the genome heterogeneity decompos-
ition in the former. That this difference is critical in
measuring the GWD between organisms is evident from
the results by MJSD-based segmentation clustering
method, which could reconstruct the organismal relation-
ships by exploiting just the 2-mer frequencies (Markov
model of order 1). Note that GWD was also obtained at
the 2-mer resolution. Our objective here was not to develop
new methods for genome comparison but to merely dem-
onstrate the usefulness of genome complexity decompos-
ition in inferring organismal relationships. Before
reconstructing complex phylogenies, an alignment-free
method must have demonstrated its ability to reconstruct
simple and well-established organismal relationships such
as the ones suggested here. Inclusion of genome hetero-
geneity decomposition step in the pipelines of novel
alignment-free methods can help achieve this goal, as
indicated by the outcomes of this study.

DISCUSSION

We show here that when Jensen–Shannon divergence
measure (or its generalization) is used in a flexible
integrated framework of a recursive segmentation and ag-
glomerative clustering procedure, it unravels a wealth of
biological information encoded within the genomic data.
In contrast to the methods that used either segmentation
to detect large acquired regions (28) or clustering to infer
alien genes (48,77), the proposed methodology integrates
both approaches in a flexible framework that allows not
just to assess the genomic heterogeneity without regard to
gene information but also to deconstruct the mosaic or-
ganizational structure within the genomic data.

The superior performance of our integrative method is
achieved in part because of its ability to detect the break
points with greater precision. The method is not highly
sensitive to the segmentation threshold, which needs to
be relaxed to detect the break points more precisely. In
principle, the optimal performance is achieved when all
the break points are precisely identified at a certain thresh-
old without incurring false predictions. Relaxing the strin-
gency may divide the segments further, creating more split
points in addition to the actual break points. In practice,
however, the ‘optimal’ threshold is not known, and
further, a method, even at its best, may not detect all
break points. Relaxing the segmentation stringency is a
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way to improve the sensitivity; however, this comes at the
cost of specificity. The design of our proposed method
allows achieving high sensitivity without sacrificing the
specificity. Embedded in the proposed methodology is
the flexibility to perform segmentation within a broad
range of relaxed stringency and follow this up with a clus-
tering procedure to help recover the segmental structure
by eliminating spurious split points. Indeed, this proced-
ure, with segmentation performed at significance thresh-
old of 0.1 (Figure 5), 0.2 (Supplementary Figure S1A) and
0.3 (Supplementary Figure S1B), yielded similar cluster
configurations demonstrating the method’s robustness in
deciphering the segmental structure irrespective of the
choice of segmentation stringency, and, perhaps, because
of this, in robustly grouping the similar segments.

Indeed, the classic recursive segmentation procedure,
also sometimes called 1 to 2 segmentation or binary seg-
mentation, has often been criticized for being too simple
and inherently limited in identifying short variants lying
within large homogeneous segments. Olshen et al.’s (57)
CBS was developed to circumvent this limitation of being
able to detect just one change point at a time. CBS detects
two change points at a time and thus augments the power
of recursive segmentation in localizing the change points.
However, simultaneous localization of two change points
makes CBS much more computationally intensive than
the binary segmentation. In assessment of CBS with our
proposed method that actually used the binary segmenta-
tion (but allowing hypersegmentation) in combination
with a two-step recursive clustering procedure, we
observed that the validated break points were identified
much more efficiently by the latter (Table 3). This clearly
demonstrates the power of the proposed integrative
approach in robust localization of change points within
complex genomic data.

Although Bayesian methodology is often invoked for
mining biological data, its success depends critically on
the prior distribution on the data. The sets of priors
used by the two Bayesian techniques tested here were
not clearly helpful in deciphering the genome
heterogeneities. The HMMs are useful tools; however,
often the prior information on the model structure is not
available, and also their performance is a function of the
quality of training data. Further, the optimal parse
provided by HMMs may not adequately represent the
multilayer inclusive complexities underlying evolutionary
data. These discrepancies were in part addressed through
the entropy-based methodology, which does not need any
prior information or training data. Our approach consum-
mates both top-down and bottom-up information theor-
etic approaches yielding a robust integrative methodology
for deconstructing genomic data. Importantly, the data
heterogeneity was addressed by using multiple stringencies
in the segmentation and clustering procedures, allowing
hypersegmentation to detect precisely the change points
followed by clustering in a non-hierarchical fashion to
restore the inherent segmental structure of the data.

Although the usefulness of the Jensen–Shannon diver-
gence measure in interpreting evolutionary relationships
among organisms has been demonstrated in a sequel of
articles published in the PNAS magazine recently (35–38),

we have shown how this interpretation could be con-
founded by not taking into consideration the inherent
compositional heterogeneities within the genome se-
quences being compared. We emphasize here that it is
critical to deconstruct the intragenome heterogeneities in
first place before directly comparing two or more genomes
using divergence measures. This helps in drawing the
bigger picture of evolutionary patchiness and how the
parts of the disparate genomes have coevolved leading
to fateful evolutionary events including speciation.
A faithful deconstruction is feasible within the framework
proposed here; this was clearly demonstrated by our ex-
periments on both artificial and genuine genomes in de-
ciphering the compositionally distinct regions.
Although the proposed methodology is readily applic-

able to symbolic sequences, we have shown here how
easily it can be adapted to be applicable to numeric se-
quences, which are often the case for plethora of biological
data including the probe intensity data from aCGH (53)
and single-nucleotide polymorphism (SNP) arrays (78), or
raw read counts from next-generation sequencing (NGS)
platforms (79). Note that the latter two are more recent
technologies; development of SNP array technology
follows the discovery of millions of SNPs; this platform
outputs not just the hybridization intensities but also the
relative frequencies of the two alleles (78). More recently,
rapid advances in ultra high-throughput NGS techno-
logies have dramatically enhanced the resolution of
CNV detection (79,80). After aligning the short reads, typ-
ically few tens of bases long, to a reference genome, the
amplifications or deletions can be inferred by the increase
or decrease in the number of sequence reads at genomic
loci relative to the genomic background. Both these
technologies bring in essentially a similar set of challenges
in detecting CNVs, as is encountered with the aCGH tech-
nology. Apparently, CNV detection remains mathematic-
ally or computationally the same problem in these
instances also; one notable difference is the large
volumes of data generated from these platforms, which,
however, could be an advantage considering the asymp-
totic assumptions implicit in the proposed methodology.
Future work could focus on the adaptation of this meth-
odology for interpreting data from emerging technologies
including NGS technologies.
An alternative to usage of postprocessing, particularly

on more complex data sets that may have contiguous
outliers as in case of structural variants, could be the ap-
plication of recursive segmentation to first determine the
span of different structural types and then use a clustering
procedure similar to one proposed here or as in Chen
et al.’s article (64) to refine the break points.
Further, what makes this methodology particularly

interesting and widely applicable is its ability to interpret
the data without learning the behavior from training data,
which are scarcely available in most instances.
Additionally, perhaps, because of its unsupervised charac-
ter, it serves as an exploratory tool for mining yet
unknown biological entities. Future work should be
directed toward further exploitation of the potential and
flexibility of this approach in interpreting biological data
of different kinds and sizes.
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SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online:
Supplementary Tables 1–3 and Supplementary Figures
1–3.
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