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In early B and T cells, variable domains of anti-
gen receptors are somatically rearranged from 
V, D, and J gene loci by V(D)J recombination 
(1, 2). The lymphoid-specifi c factors recom-
bination-activating gene 1 (Rag1) and Rag2 
initiate V(D)J recombination by introducing 
a DNA double-strand break (DSB) at the junc-
tion between V, D, or J coding sequences and 
recombination signal sequences. DNA DSBs 
are then resolved by the nonhomologous end 
joining (NHEJ) DNA repair machinery, which 
is the main pathway for DNA DSB repair in 
mammalian cells. The following seven NHEJ 
factors have been identifi ed so far: the hetero-
dimer Ku70/Ku80, which forms the DNA–PK 
complex with the catalytic subunit of the DNA-
dependent rotein kinase, Artemis, Cernunnos/
XLF, XRCC4 (X4), and DNA ligase IV. The 
recently identifi ed Cernunnos/XLF factor, whose 
precise function is not known, is part of the 
X4–DNA ligase IV complex (3–5). Mutations 
in genes coding for Artemis, DNA ligase IV, and 
Cernunnos (3, 6–8) are responsible for human ra-
diosensitive severe combined immunodefi ciency. 

Likewise, gene inactivation of NHEJ factors in 
mice results in the absence of mature T and B lym-
phocytes and embryonic lethality in the case of 
X4 and DNA ligase IV (9–14).

Upon antigen recognition in secondary lym-
phoid organs, IgM-expressing mature B cells 
further diversify their repertoire through class 
switch recombination (CSR), which exchanges 
the IgM constant region (Cμ) with a downstream 
CH gene (γ, ε, or α), producing antibodies with 
a diff erent eff ector function (15). CSR involves 
large repetitive switch (S) region sequences 
located upstream of each CH gene, except for 
Cδ. Breaks are introduced in the DNA fl anking 
the two participating S regions, followed by 
their fusion, while the intervening sequence, 
including Cμ, is excised. CSR requires transcrip-
tion through the target regions, and is initiated 
by the activation-induced cytidine deaminase 
(AID) (16, 17). Several lines of evidence suggest 
that CSR, like V(D)J recombination, involves 
the generation of DNA DSB, and could poten-
tially involve NHEJ factors for DNA DSB repair: 
(a) an episomal circle is generated during CSR 
(15); (b) DNA DSBs have been detected by 
ligated mediated PCR (LM-PCR) assays in the 
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Sγ3 region in mitogen-activated B cells (18); (c) foci of the 
phosphorylated histone H2AX (γH2AX), which form around 
DNA DSBs, occur at the IgH locus in an AID-dependent 
manner in B cells activated for CSR (19); and (d) CSR is im-
paired in mice defi cient for H2AX, ATM, p53-binding 
protein 1 (53BP1) and Nbs1, which are early components of the 
DNA DSB response (20–26).

CSR cannot be directly analyzed in mice defi cient in 
NHEJ factors, as these mice lack a mature immune system. 
A monoclonal mature B cell compartment has been reconsti-
tuted by introducing rearranged IgH and IgL chain knock-in 
alleles (HL mice) in mice defi cient for NHEJ factors, except 
for X4 and DNA ligase IV, which are embryonic lethal. Ku70 
and Ku80-defi cient B cells have severely impaired CSR 
(20, 27, 28). Although this defect could result from a reduced 
proliferative capacity or an increased apoptosis when induced 
to undergo CSR (20, 27), Ku mutant Bcl-2  transgenic B cells 
that divide still do not undergo CSR (20). Confl icting results 
were reported concerning the role of DNA-PKcs in CSR 
(29–32). Finally, Artemis defi ciency doesn’t have any impact 
on CSR in such monoclonal B cell mice (33). Although some 
key NHEJ components seem to be required for CSR, one 
cannot exclude a role outside of NHEJ per se for these factors. 
X4 and DNA ligase IV are the only factors without a known 
function apart from NHEJ. Recently, Pan-Hammerström et al. 
showed that B cells from patients with hypomorphic DNA 
ligase IV mutations display an altered pattern of junctional 
resolution, with increased microhomology in Sμ-Sα junc-
tions (34),  suggesting a possible implication of the X4–DNA 
ligase IV complex during CSR in humans.

We developed a conditional X4 KO mouse model. We 
show that specifi c inactivation of X4 in mature B cells re sults in 
a partial defect in CSR in vivo and in vitro, revealing the possi-
ble usage of an alternative pathway in the absence of XRCC4.

RESULTS

Generation of lentiviral transgenic mice expressing 

mouse X4

X4-defi cient mice are embryonic lethal at the embryonic day 
(E) 16.5 stage of development, owing to defective neurogenesis 
manifested by extensive neuronal apoptosis (12). Moreover, 
X4 defi ciency in primary mouse cells results in the incapacity 
to support V(D)J recombination (12). To reverse these defects, 
we generated a transgenic mouse line expressing mouse X4 and 
crossed it onto the X4 KO background. To avoid the draw-
backs (low effi  ciency, multiple transgenic concatemers, over-
expression, or silencing) associated with classical transgenesis, 
we used lentiviral gene delivery to one-cell embryos (35, 36).

The lentiviral vector used to produce X4 transgenic 
mice (pTRIP-X4; Fig. 1 A) has the following characteristics: 
(a) the human ubiquitin C (UbiC) promoter as internal pro-
moter to drive the transgene expression; (b) a LoxP site into 
the ∆U3 of 3′LTR, as the duplication of the 3′LTR upon 
provirus integration results in the mouse X4 transgene being 
fl anked by two LoxP sites (fl oxed transgene; Fig. 1 B); and 
(c) the mouse X4 cDNA is cloned in fusion with a tandem 

affi  nity purifi cation (TAP) tag, followed by an ires sequence 
and the GFP reporter gene. Among various promoters tested 
(PGK and EF1α), the UbiC proved to have the most pleio-
tropic specifi city, including the hematopoietic system, and a 
high expression in the brain (unpublished data) (37), which is 
a prerequisite for the complementation of the embryonic 
 lethality in our model. Using this approach, we obtained 83% 
transgenic chimeras harboring 1–6 integrated proviruses, as 
determined by Southern blot and PCR analysis (unpublished 
data). We selected one chimera with a single integration to 
derive the X4 transgenic (X4T) line.

Southern blot analysis with probe A (Fig. 1, B and C) 
revealed a 764-bp EcoNI–AvaII band common to all pos-
sible integrations, and an equimolar, unique, integration-
specifi c EcoNI band of 860 bp, attesting for the single provirus 
integration. Additional Southern blot analysis with probes 
B and C (Fig. 1, B and C) confi rmed the single integration 
(a single 633-bp AvaII band revealed by probe C) and the 
integrity of the transgene (a 3,089-bp AvaII band revealed 
by probe B). The integration was mapped to chromosome 16 by 
inverse PCR analysis, in the third intron of the Spag6 gene 

Figure 1. Creation of X4T transgenic mice. (A) Schematic represen-

tation of the pTRIP-X4 lentiviral vector. Restriction sites: E, EcoNI; A, AvaII. 

Filled circle, central DNA fl ap; fi lled box, X4 Orf. UbiC, human Ubiquitin C 

promoter. (B) Schematic representation of pTRIP-X4 provirus integrated in 

the genome of the X4T transgenic mouse line selected for this study. 

*, the positions of these sites are specifi c to the integration site. (C) South-

ern blot analysis of tail DNA shows a single integration of the trans-

gene in the genome of X4T mice. EcoNI–AvaII–digested DNA from 

X4T-positive and control littermate X4T-negative mice was hybridized 

with the 5′ fl anking probe A, the internal probe B, and the 3′ fl anking 

probe C as indicated in A. Refer to B for expected sizes of bands. (D) Anal-

ysis of X4T expression in transgenic mice. Western blot analysis of X4T 

(top) and endogenous X4 (bottom) expression in purifi ed splenic mature 

B cells and thymocytes of X4T mice and control X4T-negative mice (all on 

a wild-type background) revealed by anti-X4 antibody.
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(unpublished data). Western blot analysis on lymphoid organs 
confi rmed expression of the transgene in spleen and thymus 
(Fig. 1 D). Although the iresGFP cassette present in the 
pTRIP vector was functional in vitro, none of the transgenic 
chimeras expressed GFP in vivo, irrespective of the integra-
tion copy number (unpublished data).

X4T reverts the embryonic lethality and reconstitutes 

B and T cell development in X4-defi cient mice

X4T was introduced in the X4 KO background by crosses to 
derive X4T X4−/− mice, which were born at Mendelian 
frequency, thus demonstrating the reversal of X4−/− mice 
embryonic lethality.

X4−/− mice succumb to massive apoptosis of postmitotic 
neuron during development (12). This is characterized by a 
severe acellularity in the mantle layer of the brain, particularly 
the cortical plate (CP; Fig. 2, A and B), with the presence of 
many pyknotic nuclei (Fig. 2 C). In contrast, brain tissue sec-
tions of X4T X4−/− mice (Fig. 2, D–F) were indistinguish-
able from that of control X4+/− mice (Fig. 2, G–I), indicating 
that expression of X4T in the brain had, indeed, comple-
mented the neuronal apoptosis. FACS analyses of BM, spleen, 
blood, and thymus, demonstrate the complete immune system 
recovery in X4T X4−/− mice compared with X4T-negative 
(WT) littermate mice (Fig. S1, A and B [B cells] and C and D 
[T cells], available at http://www.jem.org/cgi/content/full/
jem.20070255/DC1). Because the phenotypes of B and T cells 
of 8–12-wk-old control littermates X4+/+ and X4+/− mice 
were not diff erent (as described by Gao et al. [reference 12]), 
we associated these mice in the WT (X4T-negative) group. 
The analysis of B cell subpopulations showed that the propor-
tions of transitional T1 (IgM+/CD21−/CD23−), T2 (IgM+/
CD21+/CD23+), marginal zone (MZ; IgM+/CD21+/
CD23−), and follicular mature (IgM+/CD21low/CD23+) B cells 
are not diff erent among the three groups of mice (Fig. S1, 
E and F). Lastly, absolute numbers of B and T cells are compara-
ble in the three groups of mice (unpublished data). The serum 
Ig levels (Fig. S1 G) in X4T X4−/− and control mice were 
not statistically diff erent, indicating that X4T expression allows 
B cells to develop into mature IgM-secreting cells and to se-
crete Ig of switched isotypes, like IgG1, IgG2b, and IgG3 and 
IgA. Altogether, these results demonstrate that X4T expression 
reverts the embryonic lethality and the B and T cell develop-
ment defect in X4−/− mice.

Conditional X4 deletion in mature B cells

To analyze the role of X4 during CSR, we crossed X4T 
X4−/− mice with CD21-Cre transgenic mice in which the 
Cre recombinase expression is driven by the CD21 promoter, 
specifi cally in mature B cells (38), to create ∆X4T X4−/−, 
which will be called ∆X4T from this point forward and 
will always be compared with Cre-negative X4T X4−/−, 
hereafter named X4T. PCR assay using primers fl anking the 
X4T integration site revealed a ∆X4T-specifi c PCR mainly 
in CD43-negative purifi ed splenic B cells and, to a much 
lesser extent, in total BM, but not in thymus or in DNA from 

Cre-negative animals (Fig. 3, A and B). Quantitative South-
ern blot analysis further established that X4T deletion was 
almost complete in isolated mature splenic B cells from mice 
expressing Cre recombinase, as demonstrated by the disap-
pearance of the 5.7-kb EcoNI–NdeI X4T-specifi c band and 
the concomitant appearance of a 2.3-kb ∆X4T-specifi c band 
in a mean proportion of 89% compared with TgWT allele 
(Fig. 3 C, lanes 7–9). No deletion was observed in liver (Fig. 
3 C, lanes 3 and 4), thymus (lanes 11 and 12), or in B cells in 
the absence of Cre (lanes 5 and 6). These results demonstrate 
a specifi c deletion of X4T in mature B cells in ∆X4T mice.

CSR is reduced in conditional X4−/− mice in vivo

To explore the role of X4 in CSR, we quantifi ed the basal 
serum Ig levels of diff erent isotypes by ELISA in 8–12-wk-old 

Figure 2. X4T reverts neuronal cell death of X4−/− embryos. 

(A–I) Hematoxylin and eosin staining of littermate X4−/−, X4T X4−/−, 

and X4+/− brain sections. Coronal brain sections of E14.5 X4−/− 

(A–C) reveal a severe acellularity in the CP (small arrows) in the cerebral 

hemisphere. Higher magnifi cations show normal ventricular zone (VZ) 

of the mutant cortex, whereas numerous cells with pyknotic nuclei 

(dense hematoxylin stain, long arrow in C) are present in the intermedi-

ate zone (IZ) extending to the CP. In contrast, coronal brain sections of 

E14.5 X4T X4−/− mice (D–F) do not reveal signifi cant difference in 

cortical structure with cerebral hemisphere of X4+/− brain (G–I) and 

an absence of cells with pyknotic nuclei. LV, lateral ventricle; GE, gangli-

onic eminence. Boxed areas in B, E, and H are enlarged in C, F, and I by 

image processing. Bars: (A, D, and G) 150 μm; (B, E, and H) 40 μm; 

(C, F, and I) 20 μm.
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∆X4T mice. IgM concentration was not aff ected (Fig. 4), in-
dicating that X4T deletion in mature B cells does not modify 
their ability to undergo IgM secretion. In contrast, ∆X4T mice 
had lower levels of IgG1, IgG2b, and IgG3 (Fig. 4), the diff er-
ence being statistically signifi cant for IgG2b and IgG3 isotypes. 
Altogether, the titers were 76, 60, and 41% that of control mice, 
respectively. No diff erence in IgA secretion was noted in ∆X4T 
mice. These results demonstrate a CSR defect in ∆X4T mice 
in vivo.

CSR is reduced in 𝚫X4T mice in vitro

Given the specifi c CD21-Cre–mediated deletion in mature 
B cells, the CSR defect in ∆X4T mice is probably entirely 
caused by an intrinsic inability of B cells to undergo CSR. 
To verify this hypothesis, we induced CSR to diff erent iso-
types in vitro by stimulating purifi ed splenic CD43-negative 
mature B cells from ∆X4T mice with various polyclonal 
B cell activators. Surface Ig expression on B cells was  analyzed 
by FACS after 4 d of stimulation, and Ig secretion was quan-
tifi ed in day 5 culture supernatants. The frequency of switched 
mature B cells after 4 d activation was reduced in ∆X4T mice 
for all the isotypes analyzed (Fig. 5 A). The  diff erence between 
∆X4T mice and control mice was statistically signifi cant 
for IgG1 (P = 0.001) and for IgG2b and IgG3 (P = 0.05). 
The decrease in cell surface Ig expression on B cells from 

∆X4T mice was accompanied by a reduction of the respective 
Ig secretion in day 5 culture supernatants (Fig. 5 B). We noted 
a decrease in IgG1 (65% decrease), IgG2b (35%), IgG3 (63%), 
IgG2a (66%), and IgE (49%)  secretion in cultures from X4-
defi cient B cells, without any decrease in IgM secretion (Fig. 
5 B). We conclude that CSR is impaired in ∆X4T mice because 
of a B cell intrinsic defect.

X4 defi ciency does not alter B cell proliferation in vitro

Because the ability to undergo CSR is linked to B cell prolif-
eration (39), we analyzed the consequence of X4 deletion on 
B cell proliferation in vitro, fi rst through CFSE labeling coupled 

Figure 3. Conditional X4 deletion in mature B cells. (A) Schematic 

representation of the X4T locus before (X4T) and after (∆X4T) Cre recom-

bination and of a WT allele. Restriction sites: E, EcoNI; N, NdeI. (B) Analysis 

of X4T deletion by PCR using primers 1 and 2 located in A. Genomic DNA 

from total BM, purifi ed splenic mature B cells, and thymocytes from X4T 

X4−/− mice expressing Cre (+) or not (−) were used in the PCR 

re action. ∆X4T and WT fragments are indicated. Because of its large size, the 

X4T fragment is not detected in these PCR conditions. GAPDH-specifi c 

PCR was used as loading control. (C) Southern blot analysis of X4T 

deletion. DNA was prepared from liver, thymus, and from purifi ed splenic 

mature B cells from X4T X4−/− (CD21-Cre-), ∆X4T X4−/− (CD21-Cre+), 

and nontransgenic (WT) mice, digested with EcoNI–NdeI, and hybridized 

with chromosome 16 integration site-specifi c probe D (refer to A for 

 expected sizes of bands). Quantifi cation of deletion is indicated below 

lanes 7, 8, and 9 as the percentage of the amount of ∆X4T compared 

with WT allele.

Figure 4. Ig production is impaired in conditional X4 KO mice. 

Sera from ∆X4T and control X4T mice were collected and total IgM, IgG1, 

IgG2b, IgG3, and IgA were determined by ELISA (microgram/milliliter). The 

results of statistical tests are indicated; * indicates a statistically signifi cant 

difference (P < 0.05, two-tailed Mann-Whitney test).
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with Ig isotype determination (Fig. 5, C–G). The frequency 
of cells expressing various Ig isotypes was determined by fl ow 
cytometry after 4 d of stimulation in the overall B220+ B cell 
population, as well as among the various subsets of prolifera-
tive B cells according to CFSE intensity. The overall prolif-
erative capacity of B cells was not altered by the X4 deletion 
in culture stimulated with LPS/IL-4 and LPS (Fig. 5 D) or 
with anti-CD40/IL-4/IFNγ and anti-CD40/IL-4/TGFβ 
(Fig. 5 F), even in cells that underwent several cycles of cell 
division. Most importantly, the decrease in CSR to IgG1 and 
IgG3 (Fig. 5, E and G), IgG2a, IgG2b, and IgA (Fig. 5 G) was 
not restricted to the cells that had proliferated less. Interest-
ingly, the CSR defect, indeed, appears to increase with the 
extent of proliferation (see Discussion; Fig. 5, E and G). 
Moreover, cell survival, determined by propidium iodide 
staining on day 4, was not reduced in ∆X4T versus control 
mice (P = 0.86 for LPS stimulation; P = 0.45 for LPS/IL-4 
stimulation, two-tailed Mann-Whitney test).

Altogether, these results demonstrate a diminution in CSR 
in B cells defi cient for X4 both in vitro and in vivo, which is not 
attributable to a reduced capacity of clonal expansion or a de-
crease in cell survival.

X4 defi ciency reduces CSR at the level 

of DNA recombination

The function of X4 in ligation of DNA DSB suggests that the 
observed defect in CSR could intervene at the level of DNA 
recombination, i.e., after induction of AID expression and 
germline transcription of the CH genes targeted for recombi-
nation, but before Ig circle transcripts production. To explore 
this hypothesis, we cultured purifi ed splenic CD43-negative 
mature B cells from conditional X4 KO and control mice for 
4 d with LPS and IL-4, which induces CSR to IgG1. Total 
RNA was isolated and analyzed by real-time quantitative RT-
PCR to quantify AID transcripts, μ and γ1 germline (sterile) 
transcripts (GT), and γ1 circle transcripts (CT). Fig. 6 shows 
the level for these transcripts in ∆X4T mice relative to the 
X4T control mice. Whereas the expression of μGT, γ1GT, 
and AID transcripts were not aff ected by the X4 deletion, the 
level of γ1CT transcript showed a mean threefold reduction 
in ∆X4T B cells compared with control B cells. This indi-
cates that the defect of CSR observed in B cells from condi-
tional X4 KO mice is the consequence of a decreased effi  ciency 
for ligation of DNA DSB produced in CSR after the induc-
tion of AID and germline transcription of CH loci targeted 
for recombination.

X4 defi ciency slightly increases the use of short 

microhomologies in S𝛍-S𝛄1 junctions

Although CSR is impaired in the absence of X4, some cells 
undergo switching, suggesting that an alternative pathway 
might develop to resolve CSR junctions when X4 function 
is impaired. As a possibility for an alternative pathway, Pan-
Hammarström et al. recently showed that patients carrying 
hypomorphic mutations in DNA ligase IV notably display a 
slight increase in donor/acceptor homology at Sμ-Sγ1 junc-
tions (34). We compared IgG1 CSR junctions from ∆X4T 
and X4T B cells after 4 d of stimulation with LPS and IL-4 
(Table I and Fig. S2, available at http://www.jem.org/cgi/
content/full/jem.20070255/DC1). Although the proportion 
of Sμ-Sγ1 junctions without any donor/acceptor homology 
was slightly decreased in ∆X4T mice (46 vs. 60%), the pro-
portion of junctions with short (1–3 bp) homologies was 
increased (48 vs. 34%), compared with X4T control mice, 
although not to statistical signifi cance (P = 0.22, Fisher’s ex-
act test). We conclude that the resolution of IgG1 CSR junc-
tions is slightly shifted to the use of short microhomologies in 
the absence of X4.

Why is the defect of CSR in 𝚫X4T B cells partial?

The CSR defect observed in the absence of X4 both in vitro 
and in vivo is partial. As shown in Fig. 3 C, X4T deletion 
effi  ciency is almost complete and so likely does not account 
for the partial nature of the CSR defect in ∆X4T mice. Given 
the structure of the X4T transgene, with LoxP sites fl anking 
the transcriptional unit upon virus integration (Fig. 7 A), the 
partial CSR defect observed in ∆X4T B cells could refl ect the 
persistence of X4T expression from the Cre-excised X4T cas-
sette in mature B cells. To explore this possibility, we per-
formed a Southern blot analysis using a probe specifi c for the 
third exon of the XRCC4 gene (Fig. 7 A, probe E), which is 
deleted in X4 KO mice (12). The 2.8-kb NdeI band revealed 
by probe E and specifi c for the X4 WT allele (Fig. 7 B, lane 13) 
was absent in all samples from mice defi cient for endogenous 
X4, as expected (X4T and ∆X4T mice; Fig. 7 B, lanes 1 to 12). 
In contrast, hybridization with probe E revealed the integrated 
X4T transgene as a 5.7-kb EcoNI–NdeI band in Cre-negative, 
X4T mice (Fig. 7 B, lanes 1, 2, 5, 6, and 10), as well as in 
liver and thymus from ∆X4T mice (lanes 3, 4, 11, and 12), 
but not in purifi ed mature B cells from ∆X4T mice (lanes 
7–9), where it is replaced by a 4.7-kb band. The size of this 
band was compatible with that of the Cre-excised X4T cas-
sette as a circular episome (Fig. 7 A, episomal X4T and eX4T). 

Table I. Increased microhomology at Sμ-Sγ1 junctions in B cells defi cient for X4

Perfectly matched homology Total n° of S junctions

Sμ-Sγ1 junctions 0 bp 1–3 bp 4–6 bp 7–9 bp ≥10 bp

X4T 30 (60%) 17 (34%) 2 (4%) 1 (2%) 0 (0%) 50

∆X4T 23 (46%) 24 (48%) 2 (4%) 1 (2%) 0 (0%) 50

Purified splenic mature B cells from ∆X4T and X4T mice were stimulated for 4 d with LPS and IL-4, and then Sμ-Sγ1 junctions were amplified by PCR and sequenced. 

Micro homology was determined by identifying the longest region of perfect donor/acceptor identity at the switch junction. See Fig. S2 for sequence data, available at 

http://www.jem.org/cgi/content/full/jem.20070255/DC1.
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Figure 5. CSR defect in X4-defi cient B lymphocytes in vitro. 

 Surface expression and secretion of switched isotypes. Purifi ed splenic 

mature B cells from ∆X4T and control X4T mice were labeled with CFSE and 

stimulated for 4 or 5 d with various polyclonal B cell activators for switching. 

(A) Percentage of total B cells expressing indicated isotypes of Ig, as 

determined by fl ow cytometry analysis, after 4 d of in vitro stimulation. 

(B) Secreted Ig (nanogram/milliliter) was analyzed in supernatants from 

splenic B cells cultures after 5-d in vitro stimulation. IgA was undetect-

able in supernatants. For A and B, the results of statistical tests are 

 indicated; * indicates a statistically signifi cant difference (P < 0.05, two-

tailed Mann-Whitney test). (C–G) Analysis of CSR in the various subsets 

of proliferative B cells according to CFSE intensity. (C) Plots show IgG1 

(top) and IgG3 (bottom) staining together with CFSE, on viable (PI−) 

lymphoid cells. The percentages of switched cells are given. 
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The X4T episome was further detected by PCR (Fig. 7 A, 
primers 1 and 2), specifi cally in purifi ed splenic mature B cells 
from mice expressing Cre recombinase, but not in thymus or 
liver from these mice (Fig. 7 C, left). The reduced intensity of 
the eX4T PCR product in B cells after 4-d activation (Fig. 7 C, 
right) suggests that although this episome is not degraded 
upon Cre-mediated excision, it is diluted out with cellular 
proliferation, which is a situation reminiscent of the TCR-α 
rearrangement excision circles in thymocytes (40). These results 
were confi rmed by a real-time quantitative RT-PCR using a 
probe specifi c for the second and third exon of the XRCC4 
gene, which demonstrates that, whereas the level of X4 tran-
scripts is comparable in purifi ed splenic mature B cells from 
X4T and ∆X4T mice (Fig. 7 D, d0), the amount of X4 tran-
scripts sharply decreases in B cells from ∆X4T mice after 4-d 
activation in vitro (Fig. 7 D, d4).

Together, these results indicate that whereas the X4T 
transgene is almost completely deleted from chromosome in 
mature B cells expressing Cre, the X4T transcriptional unit is 
not degraded and still expressed in early deleted cells. Even 
though this expression is lost upon episome dilution that occurs 
during B cell proliferation, it could mask or attenuate the CSR 
defect and a diff erential resolution of CSR junctions in B cells 
from ∆X4T mice.

D I S C U S S I O N 

Although mutant mice have implicated the NHEJ pathway in 
CSR (27, 28, 30), the direct demonstration of the participation 
of X4 in this process was lacking. This question cannot be ad-
dressed easily in X4-defi cient mice because of their embryonic 
lethality and V(D)J recombination defect (12). To overcome this 
limitation, we developed a lentiviral transgenic mouse line ex-
pressing one copy of the fl oxed mouse X4 transgene (named 
X4T), and crossed it onto a X4-defi cient background. The X4T 
transgene reverts embryonic lethality of X4-defi cient mice and 
allows for the normal development of a mature immune system. 

The transgenic line thus obtained is amenable to conditional 
inactivation through Cre-mediated excision of the LoxP-
fl anked cDNA transgene.

This experimental scheme presents several advantages 
over the classical conditional KO strategy by introducing LoxP 
sites in the genome. First, the lentiviral transgenesis is very 
effi  cient and much less eff ort/time demanding than homolo-
gous recombination in embryonic stem cells. It can be used in 
conjunction with all the already existing KO mice that were 
not primarily designed for conditional KO (which was the 
case for the X4 KO mice we used in this study). Second, the 
same strategy can also be applied to the ever-growing list 
of mutant mice obtained either through ENU (N-ethyl-N-
 nitrosourea) or insertional mutagenesis. Third, the use of 
TAP-Tag fused to cDNAs makes it possible to perform 
ex vivo proteomic studies from these transgenic animals. Lastly, 
the introduction of an iresGFP cassette should allow tracking 
of cells that have undergone Cre-mediated excision of the 
transgene, although, in our case, the ires sequence used in the 
X4T transgenic mice proved to be nonfunctional in vivo. One 
limitation of this strategy comes from the location of the LoxP 
site in the 3′LTR of the lentiviral vector. The Cre-mediated, 
excised episome is not degraded, and it still expresses the 
transgene in cells that carry it. It is ultimately lost by dilution 
upon cell proliferation. Although this may not represent a 
problem for rapidly dividing cells, it certainly constitutes a 
major drawback for studies in nonproliferating tissues (such as 
postmitotic neurons), and it may result in a hypomorphic 
CSR phenotype in ∆X4T mice. The repositioning of LoxP 
sites between the UbiC promoter and the cDNA in the lenti-
viral vector should eliminate this problem.

To study the role of X4 in CSR, we crossed X4T X4−/− 
mice to CD21-Cre transgenic mice (38), which lead to an al-
most complete deletion of the fl oxed X4T from the genome, 
specifi cally in mature B cells from the resulting ∆X4T mice. 
These mice demonstrate reduced CSR in vivo and in vitro, 
thus confi rming an intrinsic failure of X4-defi cient B cells to 
undergo CSR. Several studies have linked CSR to the capac-
ity of B cell to proliferate (39, 41, 42). The proliferative ca-
pacity of B cells from ∆X4T mice was not aff ected, arguing 
for the role of X4 during the CSR rearrangement process. 
The inverse correlation between the proliferation and CSR 
levels in B cells from ∆X4T mice, owing to the progressive 
loss of the eX4T episome (see below), further strengthens 
this conclusion.

CSR is strictly dependent on AID enzyme, and on the 
production of sterile germline transcripts (GTs) from the CH 
genes that are to be recombined, which may provide the ac-
cessibility of DNA to the recombination machinery. CSR 
leads to the production of post-switch circle transcripts (15). 
Induction of AID and expression of μGT and γ1GT tran-
scripts are normal in X4-defi cient B cells after stimulation 

Figure 6. Ig 𝛄1 circle transcript production is impaired in X4-

defi cient B cells. Purifi ed splenic mature B cells from ∆X4T and X4T 

mice were stimulated with LPS and IL-4 for 4 d, and μGT, γ1GT, γ1CT, 

and AID transcripts were quantifi ed by real-time RT-PCR. Each point 

represents the level for the indicated transcript in ∆X4T mice (which has 

been normalized to CD19 transcripts) relative to X4T mice analyzed in the 

same experiment. 

(D–F) Percentages of total (D and F) and IgG1-switched (E, top) or IgG3-

switched (E, bottom) B cells that have undergone the indicated numbers 

of cell division, for ∆X4T (white) and X4T (gray) mice. (G) In each cell 

division, the decrease of CSR to IgG1, IgG2a, IgG2b, IgG3, and IgA, in B 

cells from ∆X4T compared with X4T mice is represented as a percentage 

of CSR defect.
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in vitro, whereas the amount of CSR as measured by circular γ1 
transcripts is reduced, indicating that X4 defi ciency impairs 
the ligation of broken S regions during CSR.

To explore the possibility that an alternative, X4-inde-
pendent pathway could account for the partial resolution in 
CSR junctions in ∆X4T mice, we analyzed Sμ-Sγ1 junction 
sequences in purifi ed mature splenic B cells after stimulation 
with LPS and IL-4, and found a slight increase in the use of 
microhomologies in ∆X4T B cells. Although this increase 
concerns only short microhomologies and is not statistically 
signifi cant, these results are reminiscent of the CSR junctions 
from a DNA ligase IV–defi cient patient (34) and from ATM-
defi cient mice (22) and of the existence of alternative end-
joining mechanisms using microhomologies, in V(D)J junctions 
in Ku86-defi cient mice, or in plasmid assays in DNA ligase IV 
or XRCC4-defi cient systems (43–47). Notably, Verkaik et al. 
developed an assay in which a DNA substrate is linearized in 
such a way that joining on a particular microhomology cre-
ates a novel restriction enzyme site; in this assay, XRCC4-
defi cient XR-1 cells and DNA ligase IV–defi cient N114 or 
180BR cells showed an increased microhomology use (44).

A residual expression of X4 transcripts after Cre dele-
tion could also participate in the partial CSR defect in this 
setting. Indeed, the Cre recombination process generates an 

episomal DNA that carries the X4T transcriptional unit 
(eX4T), which persists in nondividing mature B cells, can be 
transcribed, and is diluted out upon cell proliferation in vitro, 
leading to the concomitant decrease of X4 transcription. More-
over, the CSR defect increases in cells that have undergone 
several rounds of cell division as assessed by CFSE labeling 
coupled to Ig surface expression analysis (Fig. 5, E and G); 
as an example, B lymphocytes that have undergone zero 
versus six cycles of cell division show 28 and 57% CSR 
defect to IgG3, respectively. This was true for all analyzed 
isotypes. These observations support the idea that the CSR 
process is effi  cient to some extent in ∆X4T B cells ongoing 
few divisions because of the persistence of eX4T, but be-
comes less and less effi  cient as cells go through several cycles 
of proliferation and lose the episome. We propose that the 
partial defect of CSR observed after 4 d of stimulation in vitro is 
the result of the sum of these events. This interpretation im-
plies that we may underestimate the role of X4 in CSR in 
our experimental system.

A requirement for the NHEJ factors Ku70 and Ku80 dur-
ing CSR has been established in complemented KO mice har-
boring monoclonal B cell population (20, 27, 28). However, 
these factors also carry NHEJ-independent functions in DNA 
repair, probably through their interaction with ATM (48). 

Figure 7. Production of episomal DNA carrying X4T upon Cre-

mediated deletion. (A) Schematic representation of X4T locus before 

(X4T) and after (∆X4T) Cre recombination, of episomal form of X4T (eX4T) 

and of X4 genomic locus (WT). Restriction sites: E, EcoNI; N, NdeI. 

(B) Southern blot analysis of X4T deletion and eX4T detection, using X4 

third exon–specifi c probe E depicted in A. EcoNI–NdeI–digested DNA from 

total liver, thymus, or purifi ed splenic mature B cells from X4T X4−/− 

(CD21-Cre-), ∆X4T X4−/− (CD21-Cre+) and non transgenic (WT) mice, 

was hybridized with probe E (refer to A for expected sizes of bands). 

(C) Detection of eX4T by PCR using primers 1 and 2 located in (A), 

on genomic DNA from the following: (left) purified splenic mature 

B cells, liver and thymocytes from ∆X4T mice; (right) purifi ed splenic 

mature B cells from ∆X4T mice before (d0) and after (d4) 4 d of stimula-

tion with LPS and IL-4. eX4T fragment is indicated. Artemis- (left) or 

GAPDH-specifi c (right) PCR was used as loading control. (D) Real-time 

quantitative RT-PCR analysis of X4 transcripts in purifi ed splenic mature 

B cells from ∆X4T and X4T mice before (d0) and after stimulation with 

LPS and IL-4 for 4 d (d4). Bars represent the level of X4 transcript in 

∆X4T B cells relative to X4T B cells. Results are means of two indepen-

dent experiments.
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In contrast, X4 is not known to be involved in pathways other 
than NHEJ. The experimental system we describe in this study 
provides the fi rst evidences for a role of X4 in CSR. X4 belongs 
to the of X4/DNA ligase IV complex, together with the re-
cently identifi ed Cernunnos/XLF factor (3, 5). These three fac-
tors are essential for DNA end joining through NHEJ. X4, and 
probably DNA ligase IV and Cernunnos as well, play a role in 
CSR by promoting the fi nal joining of the two broken end 
regions, in agreement with the results from Pan-Hammar-
ström in patient with hypomorphic mutations in DNA ligase IV 
gene (34). This is also in accord with our observation that some 
Cernunnos-defi cient patients present a hyper-IgM syndrome, 
a hallmark of a CSR defect in humans (3). The development of 
DNA ligase IV and Cernunnos conditional KO mice should 
defi nitely accredit this conclusion. Our study also highlights the 
likely existence of an alternative pathway, which, in the absence 
of XRCC4, allows CSR to proceed to some extent.

MATERIALS AND METHODS
DNA constructs. The self-inactivating lentiviral vector pTRIP-Ubi-X4-

TAP-iresGFP-∆U3-LoxP (Fig. 1 A) used to produce transgenic mice was 

constructed as follows: the lentiviral pTRIP-Ubi-GFP-U3 was obtained by sub-

stituting the EF1α promoter for the human ubiquitin C promoter from pUbi-

JunB (provided by P. Angel, Deutshces Krebforschugszentrum, Heidelberg, 

Germany [reference 37]) in MluI and BamHI sites of pTRIP-EF1α-GFP-U3 

(49). A LoxP site (A T A A C T T C G T A T A A T G T A T G C T A T A C G A A G T T A T ) 

was inserted in the lentiviral ∆U3–R–U5 3′LTR fragment in PL plasmid (pro-

vided by P. Charneau, Institut Pasteur, Paris, France). This ∆U3–R–U5 LoxP 

fragment was used to replace the U3/R/U5 3′LTR in pTRIP-Ubi-GFP-U3, 

producing pTRIP-Ubi-GFP-∆U3-LoxP. The GFP fragment was replaced 

by a TAP-iresGFP cassette to obtain pTRIP-Ubi-TAP-iresGFP-∆U3-LoxP. 

The TAP sequence consists in the Ig-binding fragment of protein A fused to 

calmodulin-binding protein (50). Finally, the pTRIP-Ubi-X4-TAP-iresGFP-

∆U3-LoxP lentiviral vector was constructed by introducing the mouse X4 

ORF inframe with the TAP tag. We will refer to this vector as pTRIP-X4.

Virus production and titration. Lentiviral particles were produced by 

transient transfection of 293T cells, as previously described (49).

Mice. A volume of 10 pl of virus at 5 × 108 IU/ml was injected into the 

perivitelline space of one-cell stage B6D2F1 mouse embryos. Embryos were 

reimplanted into pseudopregnant females. A single-copy X4 founder line 

(see following paragraph) was selected for further analysis. Conditional X4 

KO mice were obtained by breeding the X4 transgenic line to X4 KO mice 

(provided by F. Alt, Harvard Medical School, Boston, MA) (12) and CD21-

Cre transgenic mice (provided by K. Rajewsky, Harvard Medical School, 

Boston, MA) (38). Progeny were screened by PCR on tail DNA. Mice were 

bred and maintained under specifi c pathogen-free conditions. All mice used 

in this study were 8–12 wk old. Mouse experiments were with the approval 

of institutional committee from the french ministry of agriculture.

Analysis of the number of proviral integrations by Southern blotting. 

The number of proviral integrations was analyzed by Southern blot (Fig. 1) 

on AvaII- and EcoNI-digested tail DNA, as previously described (49), using 

the following vector probes: 1,027-bp 5′ fl anking probe A (49), 638-bp in-

ternal GFP probe B, and 253-bp 3′ fl anking probe C (Fig. 1 B). The signal 

was quantifi ed using ImageQuant software.

Analysis of X4T deletion by Southern blotting. DNA from liver, thy-

mus, and purifi ed splenic mature B cells was digested with EcoNI and NdeI. 

Southern blots were hybridized with the 795-bp probe D (Fig. 3 A) and the 

327-bp probe E (Fig. 7 A) and quantifi ed using ImageQuant software.

Determination of provirus site integration by inverse PCR. 1 μg tail 

DNA from a X4T transgenic mouse was digested with MfeI and ligated 

with T4 DNA ligase (Invitrogen), and inverse PCR was performed with 

Platinium Taq DNA Polymerase High Fidelity (Invitrogen) in two-round 

reactions. The fi rst round used provirus-specifi c oligonucleotide primers 

(5′-G A C T C G G C T T G C T G A A G C -3′ and 5′-C G A G A G A G C T C C T C T-

G G T T T C -3′). Amplifi cation conditions were 4 cycles at 94°C (30 s), 65°C 

(30 s), and 68°C (2 min); 4 cycles at 94°C (30 s), 63°C (30 s), 68°C (2 min); 

and 27 cycles at 94°C (30 s), 60°C (30 s), 68°C (30 s + 10 s/cycle). 5 μl of 

the fi rst PCR product was reamplifi ed with an internal set of primers (5′-G G G-

G G A G A A T T A G A T C G C -3′ and 5′-C T T T C A A G T C C C T G T T C G G -3′), 
with 4 cycles at 94°C (30 s), 62°C (30 s), 68°C (2 min); 4 cycles at 94°C (30 s), 

60°C (30 s), 68°C (2 min); and 27 cycles at 94°C (30 s), 57°C (30 s), 68°C 

(30 s + 10 s/cycle). The resulting 2-kb PCR fragment was gel purifi ed, 

sequenced, and blasted against the mouse genome.

Analysis of X4T deletion and detection of episomal X4T by PCR. 

X4T deletion was analyzed by PCR on DNA from BM, thymus, and puri-

fi ed splenic mature B cells using primers designed in the genomic sequence 

fl anking the X4T integration site (K16F, K16R). GAPDH-specifi c PCR 

was used as loading control. The Cre-excised X4T episome was detected by 

PCR using primers 1 and 2 depicted in Fig. 7 A (3′F1, 5′R1). Artemis- and 

GAPDH-specifi c PCRs were used as loading controls. The PCR assay was 

performed on 20 ng of DNA (and one-third serial dilutions of DNA when 

indicated). The primers used were as follows: K16-F (5′-G C T G C T G G C-

C T G G T C T T A G T -3′), K16-R (5′-A A G C A T G G C A G G A C T C T C A T -3′), 
GAPDH-F (5′-A G T A T G A T G A C A A G A A G G -3′), and GAPDH-R 

(5′-A T G     G  T A T T C A A G A G A G T A G G G -3′); 3′F1 (5′-C C T G G C T A G A A G-

C A C A A G A G -3′) and 5′R1 (5′-C G A G A G A G C T C C T C T G G T T T C -3′); 
Artemis K5-5 (5′-T C C A T G A C C T T A T C C A C A G T G A G G C -3′) and K5.4 

(5′-T T C C T C C T T C C C T T C C C C C A C A T A G -3′).

Analysis of transgene expression by Western blotting. Whole-cell ex-

tracts were prepared from thymus and spleen according to standard protocols. 

X4T and endogenous X4 were detected with rabbit polyclonal anti-XRCC4 

antibody (AHP387; Serotec), followed by HRP-goat anti–rabbit antibody 

(GE Healthcare).

Histological analysis of mouse brain sections. Embryos were fi xed in 

4% paraformaldehyde, embedded in 15% sucrose and 7.5% gelatine in PBS, 

serially sectioned (16 μm), and stained with hematoxylin and eosin, as previ-

ously described (12).

Flow cytometry analysis of lymphocyte populations and Ig CSR. 

Cell phenotype was performed on blood, thymic, splenic, and BM lymphoid 

populations by four-color fl uorescence analysis according to standard proto-

cols. The following antibodies were used: FITC, PE, or APC anti–mouse 

B220, CD21, CD23, CD3, CD8, and CD4 (all from BD Biosciences); Cy5 

anti–mouse IgM (Jackson Immunoresearch Laboratories). For analysis of 

CSR, cells were stained with PE anti–mouse B220 (BD Biosciences); biotin 

anti–mouse IgG1, IgG2a, IgG2b, IgG3, IgA, and IgE  (Southern Biotech-

nology Associates); and APC-streptavidin (BD Biosciences). Cells were ana-

lyzed using a FACSCalibur immediately after incubation with 5 μg/ml 

propidium iodide to exclude dead cells.

Purifi cation and activation of splenic mature B cells in vitro. Mature 

B cells were purifi ed from spleen and labeled with CFDA-SE, as previ-

ously described (20), and stimulated for 4 or 5 d with 25 μg/ml LPS 

from Escherichia coli (Sigma-Aldrich), 20 ng/ml IL-4 (R&D Systems), and 

0.5 μg/ml anti–mouse CD40 (BD Biosciences), 1 ng/ml human TGFβ1 

(R&D Systems), 0.5 μg/ml recombinant mouse IFNγ (PeproTech France) 

for 4 and 5 d, in the following combinations: LPS for IgG2b and IgG3 

switching, LPS/IL-4 for IgG1 and IgE switching, anti–mouse CD40/

IL-4/IFNγ for IgG2a switching, and anti–mouse CD40/IL-4/TGFβ 

for IgA switching.
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Antibody detection by ELISA. Total IgA, IgG1, IgG2a, IgG2b, IgG3, 

IgE, or IgM levels were measured in serum from 8–12-wk-old mice, and in 

supernatants after 5 d of stimulation, as previously described (22). The wells 

were developed with Fast OPD substrate (Sigma-Aldrich). Absorbance was 

measured at 490 nm. Levels of Ig were determined by comparison with a 

standard curve using purifi ed IgA, IgG1, IgG2a, IgG2b, IgG3, IgE (all from 

Southern Biotechnology Associates), and IgMκ (Sigma-Aldrich).

Sequencing of 𝛍/𝛄1 switch recombination junctions. Genomic DNA 

was prepared from sorted IgG1+ B cells after 4 d of stimulation with LPS and 

IL-4, and Sμ/Sγ1 switch junctions were amplifi ed by PCR as previously 

described (20). PCR products were cloned using pGEM-T vector kit 

(Promega) and sequenced using SP6 and T7 universal primers. Sequence 

analysis was performed using Blast2 sequences in comparison with mouse 

Sμ (MUSIGCD07) and Sγ1 (MUSIGHANB) regions.

Quantitative real-time RT-PCR analysis of CSR transcripts. cDNA 

was prepared form total RNA extracted from B cells after 4 d of stimulation 

with LPS and IL-4, and μGT, γ1GT, γ1CT, and AID transcripts were 

quantifi ed using GAPDH for normalization, as previously described (20, 22, 

51). For each sample, the level of CSR transcripts was normalized to CD19 

transcript. Primers used for CD19 transcripts quantifi cation were CD19F 

(5′-C C A T C G A G A G G C A C G T G A A -3′) and CD19R (5′-T C C A A T C C A-

C C A G T T C T C A A C A G -3′) (52).

Quantitative real-time RT-PCR analysis of X4 transcripts. Quantita-

tive real-time PCR was performed on 20 ng cDNA using Taqman Universal 

Mastermix (Applied Biosystems) and Assays-on-Demand reaction (Applied 

Biosystems) including forward and reverse primers and the 6-carboxy-fl uor-

escein (FAM)–labeled probe for the target gene (assay for mouse X4 exons 

2–3 was no. Mm01283065_m1; for 18S, it was Hs99999901_s1). Conditions 

for PCR amplifi cation and detection were: 50°C (2 min), 95°C (10 min), 

and 40 cycles at 95°C (15 s), 60°C (60 s). Each sample was amplifi ed in quad-

riplicate. mRNA levels were calculated with the sequence detector SDS2.1 

software (Applied Biosystems), using the comparative cycle threshold method, 

and normalized to the endogenous control 18S.

Online supplemental material. Fig. S1 shows B and T cell development 

in X4−/− mice complemented with X4T. FACS analysis and serum Ig 

level determination show the complete immune recovery in X4T X4−/− 

mice compared with X4T-negative (WT) mice. Fig. S2 illustrates the 

Sμ-Sγ1 junction sequence data (25 bp upstream and downstream of each 

junction) in X4-defi cient B cells. Sequence analysis was performed using 

Blast2 sequences in comparison with mouse Sμ (MUSIGCD07) and Sγ1 

(MUSIGHANB) regions. The online version of this article is available at 

http://www.jem.org/cgi/content/full/jem.20070255/DC1.
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