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Simple Summary: The usage of artificial sweetener has been increased from year to year as the result
of pursuing healthy lifestyle. However, ironically, several studies suggest that the consumption of
artificial sweeteners cause sugar-related adverse effects (e.g., obesity, type 2 diabetes and cardio-
vascular disease). In this study, we explore the potential cardiovascular adverse effect of several
artificial sweeteners using zebrafish as animal model. We found that artificial sweetener at the highest
concentration found in nature only slightly alter the cardiovascular performance of zebrafish larvae.
Furthermore, no alteration of cardiac performance showed after longer incubation which support the
safety of artificial sweeteners.

Abstract: Artificial sweeteners are widely used food ingredients in beverages and drinks to lower
calorie intake which in turn helps prevent lifestyle diseases such as obesity. However, as their popu-
larity has increased, the release of artificial sweetener to the aquatic environment has also increased
at a tremendous rate. Thus, our study aims to systematically explore the potential cardiovascular
physiology alterations caused by eight commercial artificial sweeteners, including acesulfame-K,
alitame, aspartame, sodium cyclamate, dulcin, neotame, saccharine and sucralose, at the highest
environmentally relevant concentration on cardiovascular performance using zebrafish (Danio rerio)
as a model system. Embryonic zebrafish were exposed to the eight artificial sweeteners at 100 ppb and
their cardiovascular performance (heart rate, ejection fraction, fractional shortening, stroke volume,
cardiac output, heartbeat variability, and blood flow velocity) was measured and compared. Overall,
our finding supports the safety of artificial sweetener exposure. However, several finding like a
significant increase in the heart rate and heart rate variability after incubation in several artificial
sweeteners are noteworthy. Biomarker testing also revealed that saccharine significantly increase the
dopamine level in zebrafish larvae, which is might be the reason for the cardiac physiology changes
observed after saccharine exposure.
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1. Introduction

Artificial sweeteners or non-nutritive sweeteners are widely consumed as food addi-
tives due to their non-existent caloric content and sweeter taste than normal sucrose. They
are mainly used in beverages and other diet products as sugar substitutes by consumers
who seek a healthier lifestyle. With the increased popularity of non-caloric sweetener
usage and production, an increase in the amount of artificial sweeteners released into the
aqueous environment has also been confirmed from year to year [1]. Based on several
previous studies, several artificial sweeteners, e.g., saccharine, sodium cyclamate, neotame,
acesulfame K, and sucralose were found in various aquatic environments at concentrations
ranging from 3.5 ng/L to 0.12 mg/L, among which, according to Gan et al., sodium cycla-
mate has the highest concentration in the aquatic environment [2–5]. Artificial sweeteners
can get into the water cycle not only from industrial waste, but also from household and
even human excretion that enters into wastewater treatment plants through which in
most cases they pass without any changes. Furthermore, their high solubility in water
and resistance to degradation in nature make them emerge as persistent pollutants in the
aquatic environment [6].

Artificial sweeteners from the aquatic environment could easily come back to hu-
mans. Aside from the possibility of bioaccumulation by planktonic animals, the practice of
drinking water directly from the water source is widespread, especially in underdeveloped
countries [7]. Some studies even report that artificial sweeteners were detected in tap
water [6,8]. This might lead to a risk of accumulation in the human body and cause some
adverse effect because contrary to their designation as non-caloric alternatives to sugar,
artificial sweeteners have ironically been linked to the consumption of more calories due
to their ability to increase sugar cravings and dependence as well as impairing caloric
compensation leading to appetite stimulation [9]. Independent from this mechanism,
artificial sweeteners are associated with impaired glucose tolerance secondary to altered
gut microbiota [10,11]. These are some of the proposed mechanisms that despite artificial
sweeteners being non-caloric are associated with obesity, type 2 diabetes mellitus, and
cardiovascular diseases [12]. These associated life-style related diseases are clearly linked
to the development of atherosclerotic plaques which may cause ischemia and acute coro-
nary syndrome [13,14]. However, we hypothesized that artificial sweeteners may also
directly affect cardiac function and cause damage independent of plaque formation. This
is supported by studies done on Wistar albino rats wherein aspartame induced oxidative
stress in cardiac muscle and increased heart rate variability [15,16]. A study done in aquatic
animals also showed that aspartame could cause oxidative stress in the brain, gills, and
muscles of common carp [5]. Related diseases and published effects of artificial sweetener
exposure in humans and some animal models are listed below (Table 1).

Table 1. Study of related disease and effect on biomarker after artificial sweetener exposure.

Related Disease Effect on Biomarker

Human
Obesity, diabetes, cardiovascular event (artificial

sweetener beverage) [17], hepatotoxicity (saccharine) [18],
nausea, vomiting, thrombocytopenia (aspartame) [19,20].

Lactate dehydrogenase ↑, acetylcholinesterase ↓
(sspartame) [21,22].

Rodent

Obesity, gut biota community shift (acesulfame K) [11],
vascular endothelial dysfunction (acesulfame K &

sucralose) [23], glucose intolerance (saccharine) [24],
thyroid tumor (acesulfame K) [25] (Rat).

Dopamine ↑, hydroxytryptamine ↑, norepinephrine
↑, epinephrine ↑ (acesulfame K) [26], xanthine
oxidase ↑, superoxide dismutase ↑, catalase ↑

(aspartame) [15] (rat).

Fish Swimming defect, inflammatory in brain and liver, growth
malformation (aspartame) [27,28] (zebrafish).

Reactive oxygen species ↑ (aspartame) [27]
(zebrafish), superoxide dismutase ↑, catalase ↑, lipid

peroxidase (sucralose) [5] (common carp).

↑means an increase and ↓means a decrease.
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Understanding the mechanism of artificial sweeteners on cardiovascular disease
requires models where the parameters of interest are easily measured but at the same
time can represent the complexity of the human heart. Danio rerio, also known as the
zebrafish, is a commonly used vertebrate model in physiologic, genetic, and regenerative
experiments on cardiac diseases [29–32]. Among the vertebrate species, it is particularly
favored because of its relatively short life span which allows investigators to monitor the
disease in an accelerated phase [33].

Like in humans, the cardiac cycle in zebrafish was also divided into two phases, systole
(contraction) and diastole (relaxation) [34]. Diastole is affected by decreasing the time that
it takes for blood to fill the ventricles. Conversely, at slower heart rates, left ventricular
end-diastolic volume is larger. It is also during diastole that blood flows to the coronary
arteries to supply the heart [35]. Increases in heart rate will decrease coronary perfusion
time, which was observed in patients with coronary stenosis and leads to tissue ischemia.
Furthermore, the elevation of heart rate adversely increases the demand for myocardial
oxygen [36]. Increases in heart rate also adversely cause pulmonary hypertension since it
worsens biventricular function [37]. Hence, artificial sweeteners that cause an increase in
heart rate should not be given to patients with coronary artery stenosis for it will further
lead to tissue ischemia.

In the context of our interest in providing in vivo models to study the effects of
substances in a variety of disease model systems [38–40], zebrafish were explored as an
animal model. In this study, we investigated the possibility of cardiovascular performance
alteration after exposure to eight different artificial sweeteners at 100 ppb concentration,
which is highest environmentally relevant concentration of artificial sweeteners according
to the Gan et al. report [2], by measuring the blood flow velocity and different cardiac
physiology parameters such as the stroke volume, cardiac output, ejection fraction, and
shortening fraction, along with heart rate, and heart rate variability as the change in
cardiovascular physiology is one of the indexes of cardiotoxicity [41]. Furthermore, we
also check several neurotransmitters related to stress and oxidative stress as those were
related to the changes in cardiac physiology [42,43].

2. Materials and Methods
2.1. Animal Ethics and Artificial Sweetener Exposure

All experiments involving zebrafish were performed following the guidelines ap-
proved by the Institutional Animal Care and Use Committees (IACUCs) of the Chung Yuan
Christian University (Approval No. 109001, issue date 15 January 2020). In this study, wild
type AB strain zebrafish was used as a vertebrate model and maintained in a continuously
filtered and aerated water system. The temperature was maintained at 26 ± 1 ◦C with
14/10 h of light/dark cycle according to previously reported protocols [44]. After the
embryos were collected, they were reared in an incubator at 28 ± 1 ◦C until the time of
treatment.

In this study, eight artificial sweeteners (acesulfame K, alitame, aspartame, dulcin,
neotame, saccharine, sodium cyclamate, and sucralose) were tested for their potential
cardiovascular physiology alteration. All of the artificial sweeteners were purchased
from Aladdin Chemicals (Shanghai, China). Stock solutions of artificial sweeteners were
prepared with distilled water. During assays, the stock solutions were diluted to a testing
concentration of 100 ppb and applied to embryonic zebrafish (Table 2). MS222 (tricaine
methanesulfonate) with the concentration of 100 ppm and glucose with the concentration
of 100 ppb were used as the controls. MS222 has been used as an anesthetic for zebrafish
and is known to decrease cardiac performance [45,46], while glucose is known to increase
cardiac parameters [47,48].

For acute exposure, zebrafish larvae at 60 h post fertilization (hpf) was exposed to
various artificial sweeteners for 12 h and at 72 hpf the cardiovascular system was analyzed.
For the sub-chronic exposure, the larvae was already exposed to artificial sweetener at day1
and at day 8, the cardiovascular system was measured. The water was change every 2 days
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to keep the medium fresh. A schematic diagram that shows the detailed experimental
design can be seen in Figure 1. The experiments were done in triplicate with an average of
five individuals per compound for each replication.

Table 2. Molecular formula and acute toxicity information of the eight artificial sweeteners.

Number Artificial Sweetener Molecular Formula Aquatic Acute Toxicity

1 acesulfame K C4H4KNO4S LC50: 96 hr for fish: (mg/L): >1000

2 alitame C14H25N3O4S N.A.

3 aspartame C14H18N2O5 N.A.

4 dulcin C9H12N2O2 N.A.

5 neotame C20H30N2O5 N.A.

6 saccharine C7H5NO3S N.A.

7 sodium cyclamate C6H12NO3SNa N.A.

8 sucralose C12H19Cl3O8 N.A.
WHO GHS acute aquatic toxicity definition is 96 hr LC50 less than 1 ppm for fish or 48 hr EC50 less than 1 ppm
for Crustaceans. N.A. not available.
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to record zebrafish heartbeat and blood flow. To acquire better image contrasts and reso-
lutions, Hoffmann objective lenses with 40× magnification were used, and the video was 
recorded at 200 frames per second (fps) for 10 s according to our previously published 
protocol [49]. To calculate the blood flow velocity of zebrafish, the “Trackmate” plug-in 
in the ImageJ software was used, while heart rate analysis was done using the Time Series 
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Figure 1. Schematic diagram showing our experimental design for testing cardiovascular physiology (upper panel) and
biomarker alteration (lower panel) caused by eight artificial sweeteners in zebrafish embryos. hpf, hour post-fertilization;
AChE, acetylcholine esterase; ROS, reactive oxygen species; ELISA, enzyme-linked immunosorbent assay.

2.2. Cardiovascular Performance Measurement

To record zebrafish heartbeats and cardiac physiology parameters, 3% methylcellulose
was used as a mounting agent to minimize zebrafish movement during video recording. A
high-speed digital charged coupling device (CCD) (AZ Instruments, Taichung, Taiwan) was
mounted on an inverted microscope (Sunny Optical Technology, Yuyao, China) to record
zebrafish heartbeat and blood flow. To acquire better image contrasts and resolutions,
Hoffmann objective lenses with 40× magnification were used, and the video was recorded
at 200 frames per second (fps) for 10 s according to our previously published protocol [49].
To calculate the blood flow velocity of zebrafish, the “Trackmate” plug-in in the ImageJ
software was used, while heart rate analysis was done using the Time Series Analyzer V3
plug-in (https://imagej.nih.gov/ij/plugins/time-series.html (accessed on 15 June 2021))
to analyze the pattern of changes in dynamic pixel intensity [50,51]. Heart rate, expressed

https://imagej.nih.gov/ij/plugins/time-series.html
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as beats per minute (bpm), was measured using the Peak analyzer function in OriginPro
2019 software (Originlab Corporation, Northampton, MA, USA) by determining the time
interval of each peak. The Poincare plot was generated using a Poincare plug-in from
the OriginPro 2019 software. Sd1 and sd2 extracted from the plots were recorded and
statistically analyzed to calculate heart rate. Stroke volume is determined by the assumption
that the heart chamber has an ellipsoid shape and is calculated by subtracting end-systolic
volume (ESV) from the end-diastolic volume (EDV). The volume of the heart chamber was
calculated using the heart chamber long (DL) and short-axis (DS) to compare the volume
difference between EDV and ESV [52]. Cardiac output was calculated by multiplying the
heart rate observed in the ventricle with stroke volume. Ejection fraction was likewise
calculated by dividing stroke volume with EDV while shortening fraction was determined
by obtaining the ratio of the length of the heart chamber at the end of the systolic phase
to the end of a diastolic phase, which represents muscular contractility of the heart [53].
Ejection fraction and shortening fraction was calculated using the following formulas:

EF(%) =
SV

EDV
× 100%

SF(%) =
Ds(EDV)− Ds(ESV)

Ds(EDV)
× 100%

2.3. Determination of Biomarker Content

Live embryos were collected at 72 hpf and four neurotransmitters or biomarkers
related to stress and oxidative stress like acetylcholine esterase (AChE), dopamine, cortisol,
and reactive oxygen species (ROS) were selected and their relative contents in the whole
larvae was calculated using commercial kits according to the manufacturer’s instructions
(Zgenebio Inc., Taipei, Taiwan). The whole-body of larvae was minced and homogenized
in phosphate buffer saline (PBS) using a tissue homogenizer and the total protein was
collected and calculated using BCA™ Protein Assay Kit (Thermo Scientific, Rockford, IL,
USA) according to the manufacturer’s instructions. The experiment was done with five
replicates per sample (n = 30/sample).

2.4. Biostatistics

Statistical analysis was done using GraphPad Prism (GraphPad Inc., La Jolla, CA,
USA). Normality test and relative standard deviation measurement was done before
statistical test in order to select statistical test. Either parametric or non-parametric ANOVA
tests were performed according to the normality of data distribution and the variance of
the data and the significance was calculated based on the appropriate post-hoc multiple
comparison test.

3. Results
3.1. Cardiac Performance in Zebrafish after Acutely Exposed to Artificial Sweeteners

None of the artificial sweeteners tested in this study induced any embryonic deaths or
cardiac deformation (like edema) in zebrafish (Figure A1 in Appendix A). Next, we asked
whether artificial sweetener exposure can induce cardiac performance alteration. Several
important parameters like blood flow, heart rate, cardiac interval, stroke volume, cardiac
output, ejection fraction, and shortening fraction were analyzed by using our previously
established ImageJ-based method [49,50]. Heart rate variability was calculated using a
Poincare plot to check cardiac rhythm after exposure to the different artificial sweeteners.

To measure the amount of blood pumped during for each systolic phase, stroke
volume was determined. No significant change was observed in zebrafish stroke volume
after incubation in low dose 100 ppb of all artificial sweeteners (p > 0.05) (Figure 2A).
Similar result also observed in cardiac output data as no significant change observed in
100 ppb concentration compared to the non-treated group (p > 0.05) (Figure 2B).
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Heart rate can be affected by hormones, temperature, or by exogenous compounds [54].
Low time intervals, as noted in increased heart rate, resulting in a reduced stroke volume
secondary to a decrease in the ventricular filling. Humans who train with high-intensity
exercise, show manifest longer time intervals between each beat that allows the ven-
tricle to fill with blood efficiently [55]. In this study, we observed that acesulfame K
(177.7 ± 12.83 beats per minute (BPM), p = 0.0048), neotame (175.8± 10.86 BPM, p = 0.0217),
saccharine (176 ± 9.27 BPM, p = 0.0223), and sucralose (177.4 ± 13.9 BPM, p = 0.0059) ex-
posure significantly increased zebrafish heart rate compared to the non-treated group
(Figure 2C).

Ejection fraction and shortening fraction was analyzed to determine the heart muscular
contractility [53]. No significant change in the ejection fraction was observed among the
different artificial sweeteners when used on zebrafish at 100 ppb concentration compared to
the non-treated group (p > 0.05) (Figure 2D). However, a significant decrease was observed
in zebrafish shortening fraction after incubation with sodium cyclamate (12.53 ± 4.999%,
p = 0.0101) (Figure 2E).
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Figure 2. Cardiac performance endpoints for zebrafish after acute exposure to eight different artificial sweeteners at highest
environmental relevant concentration (100 ppb). Cardiac physiology endpoints like (A) Stroke volume, (B) Cardiac output,
(C) Heart rate, (D) Ejection fraction and (E) Shortening fraction were measured and compared. Data were presented as
mean ± SD and statistical significances were tested by Ordinary One-Way ANOVA test followed by Fisher’s LSD test as
post-hoc multiple comparison test (n = 15). Red asterisk shows significant increase while blue asterisk shows significant
decrease when compared to control. (* p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001).
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3.2. Heart Rate Regularity in Zebrafish after Acute Exposure to Artificial Sweeteners

Using the Poincare plots, the artificial sweeteners were checked to see whether they
cause alterations in the heart rate variability. A Poincare plot is a method that plots the
heartbeat interval between two successive heartbeats and has been used to study heart rate
variability in humans, rodents, and zebrafishes [56–59]. A higher standard deviation means
that the heartbeat is more irregular. In this study, significant increment was observed
after incubation in dulcin (0.01985 ± 0.0082 s, p = 0.034), saccharine (0.02251 ± 0.01198 s,
p = 0.0158), and sodium cyclamate (0.02197 ± 0.01372 s, p = 0.0426) at sd1 but showed no
significant difference with sd2 compared to non-treated group (Figure 3A,B).
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3.3. Blood Flow Velocity of Zebrafish after Exposure to Artificial Sweeteners

To further check the effect of artificial sweeteners on the cardiovascular system, blood
flow measurements were performed. Blood flow velocity is related to the ability of indi-
viduals’ heart contractility. Furthermore, by measuring blood flow velocity, other health
conditions like stress conditions also can be measured [49,60]. In our previous published
method, we found that the maximal and average blood flow rate showed more dynamic
changes after challenging with chemicals in the dorsal aorta of zebrafish embryos [49]. In
this test, we measured the maximal and average blood flow rate in zebrafish embryos after
acute exposure to artificial sweeteners. In line with the cardiac output data, no significant
change was observed in embryos after artificial sweetener exposure in terms of maximum
and average blood flow velocity (p > 0.05) (Figure 4), which suggests that artificial sweeten-
ers at highest the environmentally relevant concentration do not have any significant effect
on the vascular system of zebrafish.
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Figure 4. Comparison of maximum (A) and average (B) blood flow velocity in zebrafish larvae after acute incubation of
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mean ± SD and statistical significances were tested by Ordinary One-Way ANOVA test followed by Fisher’ LSD test as
post-hoc multiple comparison test (n = 15).
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3.4. Comparison of Stress and Oxidative Stress-Related Biomarkers in Zebrafish after Exposure to
Artificial Sweeteners

In this study, the possibility of the alteration in neurotransmitters or biomarkers related
to stress was done by checking the acetylcholine esterase (AChE), cortisol, and dopamine
levels in whole fish lysates. The relative oxidative stress level was checked by measuring
reactive oxygen species (ROS). After incubation in artificial sweeteners for 12 h, we found
that saccharine significantly increased the dopamine level (13.08 ± 3.438 pg/mg, p = 0.0466)
in zebrafish compared to the control group (Figure 5C). However, no significant change
was observed in the other biomarkers tested (AChE, cortisol and ROS) (Figure 5A,B,D)
(p > 0.05), which suggests that acute artificial sweetener exposure does not cause stress to
zebrafish larvae.
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Figure 5. Comparison of neurotransmitter related to stress and oxidative stress in zebrafish embryos after incubation of eight
different artificial sweeteners at highest environmental relevant concentration (100 ppb). (A) AChE (acetylcholinesterase),
(B) cortisol, (C) dopamine and (D) ROS (reactive oxygen species). Data were presented as mean ± SEM and statistical
significances were tested by Brown-Forsythe ANOVA test followed by post-hoc unpaired t with Welch’s correction test as
multiple comparison test (n = 5). Red asterisk shows significant increase (* p < 0.05).

3.5. Cardiovascular Performance of Zebrafish Larvae after Sub-Chronic Exposure of
Artificial Sweetener

After the acute exposure data showed that artificial sweeteners have very little effect
on the cardiovascular system, a follow-up experiment was conducted to validate the
effect of sub-chronic incubation on the zebrafish cardiovascular system as the adverse
effects of artificial sweeteners usually become apparent after prolonged consumption.
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Interestingly, the significant increment observed in several cardiac performance parameters
after acute exposure was nowhere to be observed after sub-chronic exposure (p > 0.005)
(Figures 6 and 7). However, no data regarding the heart rate regularity can be extracted in
sub-chronic incubation as the fish are already strong enough to make a vibrating movement
inside the mounting solution, and thus can compromise the heart rate regularity data. These
data suggest that both acute and sub-chronic incubation with various artificial sweetener at
the highest environmental relevant concentration has very little effect on the cardiovascular
performance of zebrafish larvae.
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Figure 6. Cardiac performance endpoints for zebrafish after sub-chronic exposure to eight different artificial sweeteners at
highest environmental relevant concentration (100 ppb). Cardiac physiology endpoints like (A) Stroke volume, (B) Cardiac
output, (C) Heart rate, (D) Ejection fraction and (E) Shortening fraction were measured and compared. Data were presented
as mean ± SD and statistical significances were tested by Ordinary One-Way ANOVA test followed by Fisher’s LSD test as
post-hoc multiple comparison test (n = 15).
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4. Discussion

The effects of a number of substances in aquatic model animals such as zebrafish,
medaka, Daphnia, and Xenopus have long been investigated [61–65]. In order to address
the possible physiological alterations caused by commercial artificial sweeteners, we used
zebrafish cardiovascular physiology as a target, since it has been recognized as an excellent
and sensitive model for toxicity assessment [66–68]. After acute incubation with artificial
sweeteners, we measured several cardiovascular physiology endpoints and neurotransmit-
ters/biomarkers since that change is tightly associated with cardiac physiology and play
as an important index for cardiotoxicity assessment [41].

The key utility of this paper is to provide solid evidence to support the notion that
in vivo acute exposure to artificial sweeteners at the highest environmentally relevant
concentration causes very small degree of alteration on the zebrafish cardiovascular system.
One possible explanation for this observation may be associated with the metabolic fate of
artificial sweeteners. By nature, artificial sweeteners are not readily absorbed by the body
and most of them will be discharged in the urine and sweat which makes them have a
minimal effect on the body [25,69]. More information about the metabolic fate of artificial
sweeteners in humans is summarized in Table 3. Another interesting issue for artificial
sweeteners is the exposure time. In humans adverse effects of artificial sweeteners indeed
can be found after chronic exposure [70–72] which lead us to perform follow-up sub-chronic
exposure tests. Although our data suggest that no significant difference was observed, it
will be worth to note that the potential chronic toxicity of artificial sweetener exposure
cannot be ignored as some research suggest that artificial sweetener could accumulate
inside the body. A study has reported sucralose accumulation in blood plasma after
administration of water with added sucralose or diet soda containing sucralose [73]. Also,
more sucralose accumulation than of acesulfame K in the bile and gills has been reported in
Sparus aurata [74]. In addition, a study has suggested the accumulation of sucralose in the
tissue of zebrafish after two hours of exposure [75]. To address this speculation, in future
studies experiments using isotope labeling or chemically modified artificial sweeteners in
the zebrafish system could provide more direct evidence.
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Table 3. Absorption and metabolic fate of the eight artificial sweeteners used in the study.

Number Artificial Sweetener Absorption in Humans Metabolic Fate in Humans

1 acesulfame K <1% [76] Not metabolized [76]
2 alitame 100% [76] Rapidly metabolized [76]

3 aspartame 100% [69] Metabolized into methanol, aspartic acid, and
phenylalanine [69]

4 dulcin N.A. Metabolized into 4-aminophenol [77]
5 neotame 100% [76] Rapidly metabolized [76]

6 saccharine 0% [69] Bind to plasma protein and distributed via blood
without metabolized [69]

7 sodium cyclamate Poorly absorbed [78] Metabolized into cyclohexamine [76]
8 sucralose <10% [76] Not metabolized [76]

In this study, we observed that acesulfame K, neotame, saccharine and sucralose
induced some increase in zebrafish heart rate. Although in this study no significant change
in ROS level after artificial sweetener exposure was observed, a previous study showed that
sucralose treatment caused oxidative stress in the brain by increasing malondialdehyde
(MDA) levels and decreasing neuron cells in rat [79]. Studies by Crus-Rojas et al. and
Saucedo-Vence et al. also reported that acesulfame K and sucralose increase the oxidative
activity in the brain of common carp [5,80]. Heart rate is controlled by signals from the
brain, therefore, damage in the brain may cause alterations in heart rate regulation [81–83].
A previous study in common carp also suggested lower antioxidant capacity after sucralose
exposure [84]. A decrease in antioxidant and an increase in catalase is a marker for ROS
levels, which can cause tissue damage, especially in sensitive organs such as the heart.

Cardiac function is mediated by the sympathetic and parasympathetic nervous sys-
tems [85]. The sympathetic nervous system acts on adrenergic receptors (AR) which are
G-protein-coupled receptors (GPCR) [86]. Stimulation on β1ARs and β2ARs in the heart
increases cardiac contractility, frequency, rate of relaxation, acceleration of impulse con-
duction through the atrioventricular node as well as increased pacemaker activity from
the sinoatrial node by increasing intracellular Ca2+ concentration [87]. Previous studies
reported that aspartame can increase brain adrenergic neurotransmitters in various parts of
the mouse brain [88]. Furthermore, aspartame increases sympathetic activity within half an
hour after consumption either in the form of diluted water or in aspartame-sweetened diet
drinks in humans [89]. These findings suggest the possibility of artificial sweeteners alter-
ing the sympathetic nervous system and finally inducing cardiac performance alterations
in zebrafish.

After incubation with saccharine, the heart rate and dopamine level were significantly
elevated in zebrafish. Dopamine is one of the hormones that acts as a neurotransmitter,
which functions primarily in the central nervous system and is usually related to happiness.
The role of dopamine in mediating food reward and stimulating palatability is well-
established. Sucrose induces dopamine release in rats [90]. Also, the uptake of saccharine
increases dopamine levels in rats which similar to our finding in this study [91]. Among
the reasons for the increase of dopamine release is related to the food reward system that
is induced by sweet taste [92]. The positive effect of dopamine on heart rate and muscle
contractility has been observed in animal models, such as dogs [93] and rats [94], thus
corroborating our results that the increase in the heart rate was due to the increase of
dopamine level induced by those artificial sweeteners.

T1R and T2R are receptors expressed on taste buds that belong to a superfamily
of GPCRs mediating sweet stimuli in humans and are highly expressed in the olfactory
system, especially in the tongue [95,96]. Those receptors have also been isolated and
characterized in fish as well, which share high conservation with human T1R and T2R
counterparts [97]. T1R homolog in zebrafish responds to artificial sweeteners by increasing
dopamine concentration [98]. Therefore, we proposed this might be one of the reasons
explaining why some artificial sweeteners increase zebrafish dopamine levels.
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Although acesulfame K, neotame, and sucralose exposure at 100 ppb caused an
increment in heart rate, no change in biomarker level was detected for those artificial
sweeteners. Aside from the trait of acesulfame K as sweetener, a persistent bitter aftertaste
was also noted as the trait of this sweetener and it also increases as the concentration
increases [99–101]. While sweetness increases dopamine release via the food reward system,
aversive bitterness can decrease the release of dopamine [102]. Furthermore, previous
studies also suggest that the sweetness potency of some sweeteners will decrease as the
sweetener level increases, which might be the reason for the fact no alteration was observed
with acesulfame K and neotame [103–105]. An epidemiology study collected by Dietrich
et al. also showed that saccharine has a lower taste threshold compared to the other three
sweeteners, which might be the reason for the dopamine level increment [6].

Another interesting finding was the fact that the significant difference in cardiac
performance parameters observed after acute exposure was not shown after sub-chronic
exposure. This might be related to the increase of leptin after sub-chronic incubation. Leptin
is a hormone that regulates the sensitivity of sweet receptors present in oral cavity via the
leptin receptor and an increase of leptin concentration will reduce the sweet sensitivity. It
is normally produced in adipose tissue and creates a negative feedback loop for sweet taste
stimuli [106]. A previous study by Sigala et al. showed that the consumption of aspartame
and sucrose caused some increase in plasma leptin levels after 2 weeks, which might be the
reason why a significant increment of cardiac performance parameter was not observed
after chronic incubation [107].

γ-Aminobutyric acid (GABA) is a neurotransmitter that plays an important role in
inhibiting neuronal activity. In vertebrates, including zebrafish, the heart rate is controlled
by GABA signaling [108,109]. For example, the activity of the dopamine D2 receptor
modulated AKT signaling and altered GABAergic neuron development and motor behavior
in zebrafish larvae [110]. The addition of dopamine significantly increased the variability of
sd1 in zebrafish larvae [111]. Therefore, we hypothesized the heart rate in both zebrafish is
mediated by the GABA system, and the administration of artificial sweeteners can trigger
similar heart rate variability in zebrafish larvae.

Although no significant change was observed in the AChE and cortisol levels in
zebrafish after artificial sweetener exposure, those two biomarkers are biomarkers that are
related to stress which has a direct impact on heart rate [112–114]. Acetylcholinesterase
is an enzyme that will break down acetylcholine into acetic acid and choline which is
primarily found in neuromuscular junctions. Acetylcholine usually is released under stress
conditions and binds to the M2 muscarinic receptor to decrease the heart rate, thus an
increase in AChE levels will cause a lower acetylcholine level which makes the heart rate
consistently be at a higher rate compared to normal conditions under stress [115]. An
increase in cortisol level is a response to stress and will increase the heart rate and blood
pressure which if the condition is prolonged, will result in various cardiovascular-related
deseases [116].

5. Conclusions

Our study aimed to elucidate the physiological effects of artificial sweetener exposure
at high environmentally relevant concentrations on the cardiovascular system of zebrafish
larvae. The absence of significant phenotypic changes (like edema) during the experiments
and minimal effects on the cardiovascular system after both acute and sub-chronic artificial
sweetener exposure support the safety of artificial sweeteners for zebrafish larvae. The
result of the biomarker assays showed that the cardiac physiology alteration observed after
saccharine exposure is associated with dopamine content elevation. The overall biomarker
test did not favor stress elevation in zebrafish after 12 h incubation of artificial sweeteners.
In the future, chronic exposure experiments are considered necessary and important to be
done as follow-up experiments in order to fully recapitulate the potential biological effect
of artificial sweeteners in zebrafish system.
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