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Background: The immune landscape, prognostic model, and molecular variations of mantle cell lymphoma 
(MCL) remain unclear. Hence, an integrated bioinformatics analysis of MCL datasets is required for the 
development of immunotherapy and the optimization of targeted therapies.
Methods: Data were obtained from the Gene Expression Omnibus (GEO) database (GSE32018, GSE45717 
and GSE93291). The differentially expressed immune-related genes were selected, and the hub genes were 
screened by three machine learning algorithms, followed by enrichment and correlation analyses. Next, MCL 
molecular clusters based on the hub genes were identified by K-Means clustering, the probably approximately 
correct (PAC) algorithm, and principal component analysis (PCA). The landscape of immune cell infiltration 
and immune checkpoint molecules in distinct clusters was explored by single-sample gene-set enrichment 
analysis (ssGSEA) as well as the CIBERSORT and xCell algorithms. The prognostic genes and prognostic risk 
score model for MCL clusters were identified by least absolute shrinkage and selection operator (LASSO)-
Cox analysis and cross-validation for lambda. Correlation analysis was performed to explore the correlation 
between the screened prognostic genes and immune cells or immune checkpoint molecules. 
Results: Four immune-related hub genes (CD247, CD3E, CD4, and GATA3) were screened in MCL, 
mainly enriched in the T-cell receptor signaling pathway. Based on the hub genes, two MCL molecular 
clusters were recognized. The cluster 2 group had a significantly worse overall survival (OS), with down-
regulated hub genes, and a variety of activated immune effector cells declined. The majority of immune 
checkpoint molecules had also decreased. An efficient prognostic model was established, including six 
prognostic genes (LGALS2, LAMP3, ICOS, FCAMR, IGFBP4, and C1QA) differentially expressed between 
two MCL clusters. Patients with a higher risk score in the prognostic model had a poor prognosis. 
Furthermore, most types of immune cells and a range of immune checkpoint molecules were positively 
correlated with the prognostic genes.
Conclusions: Our study identified distinct molecular clusters based on the immune-related hub genes, 
and showed that the prognostic model affected the prognosis of MCL patients. These hub genes, modulated 
immune cells, and immune checkpoint molecules might be involved in oncogenesis and could be potential 
prognostic biomarkers in MCL.
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Introduction

Mantle cell lymphoma (MCL), a heterogeneous and 
invariably aggressive non-Hodgkin lymphoma (NHL), 
accounts for 5–7% of all lymphomas, with approximately 
70% of cases occurring in men and a median patient 
age of about 60–70 years (1). MCL possesses both 
indolent and aggressive NHL characteristics, with a 
median overall survival (OS) of about 3–5 years (2), and 
inevitably relapses following standard frontline therapies, 
such as immunochemotherapy and autologous stem cell 
transplantation (3). Although innovative agents have 
improved the therapeutic options for MCL patients, the 
identification of individual risk profiles based on MCL 
complex biology and the choice of combined targeted 
therapies remains challenging. Therefore, further 
understanding of the molecular genetic background and 
relative prognostic factors of MCL may aid in optimizing 
treatments and exploring new therapeutic targets.

A series of genetic variations have been reported to 
participate in the pathogenesis and prognostic prediction of 
MCL patients. Cyclin D1 overexpression, derived from the 
t(11;14)(q13;q32) translocation, is the known characteristic 
change and is accompanied by cell cycle deregulation (4). 
Several prognostic biomarkers have been identified in 
MCL: 6 genes (AKT3, BCL2, BTK, CD79B, PIK3CD, and 
SYK) mostly from the B-cell receptor pathway (5); hub 
genes, including KIF11, CDC20, CCNB1, CCNA2, and 

PUF60 (6); and 10 genes (KIF18A, YBX3, PEMT, GCNA, 
POGLUT3, SELENOP, AMOTL2, IGFBP7, KCTD12, 
and ADGRG2) related to the cell cycle, apoptosis, and 
metabolism (7). Based on genomic and transcriptomic 
profiling, four MCL molecular subsets were identified, 
which affected clinical outcomes and were involved in clonal 
evolution (8). However, the complex molecular mechanisms 
in MCL pathogenesis remain largely unexplored.

Cancer immunotherapy has been an effective anti-
cancer treatment in recent years, and among them, the 
groundbreaking immune checkpoint blockade (ICB) 
therapies have improved the outcomes of patients with 
different tumors, including classical Hodgkin lymphoma 
and natural  ki l ler (NK)/T-cell  lymphoma (9-11). 
Nevertheless, in the majority of hematological malignancies, 
the clinical benefit from ICB therapies remains limited, 
even when used in combination therapy (9,12). In MCL, 
the effects of various immune checkpoint inhibitors (ICIs) 
are inconclusive, and the expressions of programmed 
death 1 (PD-1) and its ligands are almost undetectable 
(13,14). Moreover, the immune-response genes and stromal 
microenvironments have confirmed the major roles in the 
survival, progression, and chemoresistance of MCL (15-17).  
Therefore,  understanding the immune landscape 
and molecular variations in MCL is essential for the 
development of immunotherapy. Dufva et al. defined the 
multifaceted immune landscape of various hematological 
malignancies by integrating the data of genetic and 
epigenetic aberrations and the tumor microenvironment 
(TME) (12). A clinical immune-related prognostic model, 
including the predictors of B symptoms, platelet count, beta-
2-microglobulin (β2-MG) level, cluster of differentiation 
4 (CD4)+ T-cell count <26.7%, and CD8+ T-cell count 
>44.2%, could predict the OS of MCL patients (18).  
However, the immune-related hub genes, prognostic 
model, and underlying mechanisms of MCL require further 
elucidation.

In this study, we performed an integrated bioinformatics 
analysis of MCL datasets from the Gene Expression 
Omnibus (GEO) database to investigate the immune-related 
genes, immune infiltrated cells, and immune checkpoint 
molecules and identify MCL molecular clusters based 
on the immune-related hub genes. We also established 
a prognostic risk score model and explored the potential 
immune cell regulation and relative molecular mechanisms. 
The flowchart of this study is shown in Figure 1 .  
We present the following article in accordance with the 
TRIPOD reporting checklist (available at https://atm.
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amegroups.com/article/view/10.21037/atm-22-5815/rc).

Methods

Data selection and acquisition

The study was conducted in accordance with  the 
Declaration of Helsinki (as revised in 2013). The data in 
this study was respectively obtained from GSE32018 (19), 
GSE45717 (20), and GSE93291 (21) datasets in the GEO 
database (http://www.ncbi.nlm.nih.gov/geo). There were 
24 tumor samples and seven normal controls in GSE32018, 
five tumor samples and eight normal controls in GSE45717, 
and 123 tumor samples in GSE93291.

Expression and enrichment analyses of immune-related 
genes in MCL

The immune-related genes were obtained and downloaded 
from the GeneCards database (http://www.genecards.org/), 
using a keyword search of the term “immune”. Using the 
“limma (v3.42.2)” in R software package (https://www.
r-project.org/), the differentially expressed genes (DEGs) 
were selected between MCL tumor samples and normal 
controls in the GSE32018 and GSE45717 datasets. The 

threshold was defined as follows: adjusted P value <0.05 
and |log fold change (FC)| >0.585. The common DEGs 
were selected and visualized via “Venn Diagram (v1.7.3)” 
in R package. For the Gene Ontology (GO) and Kyoto 
Encyclopedia of Genes and Genomes (KEGG) enrichment 
analyses, functional and pathway enrichment analyses of the 
common DEGs were performed using “clusterProfiler (v4.0)” 
in R package, using P<0.05 and q<0.2 as the threshold. 

Screening of immune-related hub genes in MCL

The hub DEGs in MCL, which could distinguish 
cancerous from normal tissue, were screened in the much 
larger GSE32018 dataset, using three machine learning 
algorithms, respectively. Firstly, the hub genes were 
acquired using the support vector machine-recursive feature 
elimination (SVM-RFE) algorithm (https://github.com/
johncolby/SVM-RFE) via 10-fold cross-validation. 

Secondly, the hub genes were obtained by a random 
forest algorithm using the “RandomForest (v4.6-14)” R 
package, using ntree =50, and MeanDecreaseGini >0 as the 
threshold. Thirdly, the hub genes were selected through the 
least absolute shrinkage and selection operator (LASSO) 
algorithm using “glmnet (v4.0-2)” R package via 10-fold 
cross-validation for lambda. Finally, the common hub 
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Figure 1 Study flowchart. MCL, mantle cell lymphoma; DEGs, differentially expressed genes; SVM, SVM-RFE, support vector machine-
recursive feature elimination; RFS, Random forest; LASSO, least absolute shrinkage and selection operator.
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genes from three algorithms were demonstrated by the 
“Venn Diagram (v1.7.3)” R package. The String database 
(https://cn.string-db.org/) was employed for protein-
protein interaction (PPI) network analysis and functional 
enrichment analysis of these hub genes. The correlation 
among these genes was determined via Pearson’s correlation 
analysis. 

The location information of the screened immune-
related hub genes was displayed in a circos ideogram using 
“RCircos (v1.2.1)” R package. In the GSE32018 database, 
the correlation between these genes was demonstrated by 
Pearson’s correlation analysis, and scatter plots were utilized 
to display the gene pairs, using |correlation| >0.6. The 
expression of these genes between the cancer and normal 
samples was presented via a heatmap and scatter plot.

Identification of MCL molecular clusters based on the 
immune-related hub genes

The expression matrix of immune-related hub genes in the 
GSE93291 dataset was analyzed by K-Means clustering 
using the “ConsensusClusterPlus (v1.50.0)” R package. 
The molecular clusters of MCL were recognized via the 
probably approximately correct (PAC) algorithm, and 
Kaplan-Meier survival analysis was performed. Principal 
component analysis (PCA) was conducted using “factoextra 
(v1.0.7)” and “FactoMineR (v2.4)” R packages. The 
expression of these hub genes in distinct molecular clusters 
was displayed in a boxplot and heatmap. 

The landscape of immune cell infiltration and immune 
checkpoint molecules in distinct MCL molecular clusters 
based on the immune-related hub genes

The distinct MCL molecular clusters based on the 
immune-related hub genes in the GSE93291 dataset 
was analyzed using hallmark gene sets in the Molecular 
Signature Database (MSigDB) (https://www.gsea-msigdb.
org/gsea/msigdb/, MSigDB v7.5.1) via single-sample gene-
set enrichment analysis (ssGSEA). The differences were 
detected using the wilcox.test R package. 

Immune cel l  inf i l trat ion in the TME of  MCL 
molecular clusters was revealed by the ImmuneScore, 
StromalScore, ESTIMATEScore, and TumorPurity 
using the “ESTIMATE (v1.0.13)” R package. The 
differences were detected using the wilcox.test R package. 

Next, the enrichment scores of immune infiltrating cells 
were calculated by the ssGSEA algorithm via the gene 
set variation analysis (GSVA) (v1.34.0) R package. In 
addition, immune cell infiltration was explored using the 
“CIBERSORT (v1.03)” and “xCell (v1.1.0)” R packages, 
respectively, and the differences were detected using the 
wilcox.test R package. The expression levels of familiar 
immune checkpoint molecules in the distinct MCL 
molecular clusters were displayed in a boxplot, and the 
differences were detected using the wilcox.test R package.

Identification of prognostic genes and development of a 
prognostic risk score model for distinct MCL molecular 
clusters

The DEGs of distinct MCL molecular clusters in the 
GSE93291 dataset were obtained using the “limma 
(v3.42.2)” R package. The threshold was defined as follows: 
adjusted P<0.05 and |logFC| >1. The prognostic genes 
were identified via LASSO-Cox analysis, followed by 
univariate Cox regression analysis of the DEGs that were 
significantly correlated with the OS of MCL patients, with 
a cut-off value of P<0.05. The prognostic risk score model 
was established by the screened prognostic genes using the 
“glmnet (v4.0-2)” R package via cross-validation for lambda. 
The minimum of 1-standard error of λ was employed, and 
the maxit was set to 1,000. The screened prognostic genes 
with non-zero coefficients were performed by multivariate 
Cox regression to calculate relative risk scores, using the 
enter method. The risk score of each sample was calculated 
using the following formula:

1
RScore exp βn

i ji jj=
= ×∑ 	 [1]

where exp refers to the expression level of the relative gene, 
β denotes the regression coefficient (coef) of the relative 
gene in LASSO regression, Rscore represents the risk score 
in each sample, n is the number of screened prognostic 
genes, i is the sample, and j is the gene.

To verify the efficiency of the prognostic risk score 
model, we performed a Kaplan-Meier survival analysis 
to compare the difference in OS between the high- and 
the low-risk score groups, as distinguished by the median 
Rscore in the GSE93291 dataset. Subsequently, the receiver 
operating characteristic (ROC) curve and area under the 
curve (AUC) was used to assess the prognostic model.

https://cn.string-db.org/
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Correlation between the screened prognostic genes and 
immune cell infiltration or immune checkpoint molecules 
in distinct MCL molecular clusters

The correlation between the screened prognostic genes in 
the GSE93291 dataset and immune infiltrating cells was 
demonstrated via Pearson’s correlation analysis. In addition, 
a similar correlation analysis was performed between 
the prognostic genes and familiar immune checkpoint 
molecules. 

Statistical analysis

Statistical analysis was performed using related R software 
packages and the bioinformatics databases mentioned 
above. The Wilcoxon test was utilized to compare two 
independent non-parametric samples. Survival analysis 
was performed using the log-rank test. The screened 
genes correlated with the relative cells or molecules were 
evaluated using Pearson’s correlation test. P<0.05 was 
considered statistically significant. 

Results

Expression and enrichment analyses of immune-related 
genes in MCL

A total of 818 immune-related genes with a relevance score 
≥5 were retrieved from the GeneCards database (available at: 
https://cdn.amegroups.cn/static/public/atm-22-5815-1.xlsx). 
In the GSE32018 dataset, 722 immune-related genes had 
available expression data, including 193 DEGs between the 
MCL tumor and the normal samples (Figure 2A, Table S1). 
In the GSE45717 dataset, 677 immune-related genes had 
available expression information and there were 211 DEGs 
(Figure 2B, Table S2). There were a total of 77 common 
DEGs in the GSE32018 and GSE45717 datasets (Figure 2C). 
Functional and pathway enrichment analyses of the common 
genes showed that they were mainly enriched in T-cell 
activation, leukocyte cell-cell adhesion, and the regulation of 
immune cell proliferation via GO analysis of the biological 
processes (BP); in the external side of the plasma membrane, 
plasma membrane receptor complex, and the membrane 
raft via GO analysis of the cellular components (CC); in 
cytokine receptor binding/activity, cytokine binding/activity, 
and tumor necrosis factor receptor (superfamily)/major 
histocompatibility complex (MHC) protein binding via 
GO analysis of the molecular functions (MF); as well as in 
cytokine-cytokine receptor interaction, hematopoietic cell 

lineage, T helper cell 17 (Th17) cell differentiation, T cell 
receptor signaling pathway, nuclear factor kappa-B (NF-
κB) signaling pathway, programmed death-ligand 1 (PD-L1) 
expression, and the PD-1 checkpoint pathway in cancer via 
KEGG analysis (Figure 2D-2G).

Screening of immune-related hub genes in MCL

By screening the 77 common DEGs, we obtained the 
immune-related hub genes in MCL using three machine 
learning algorithms in the GSE32018 dataset. Firstly, the 
top nine most accurate genes were selected via 10-fold 
cross-validation by SVM-RFE (Figure 3A). The average 
rankings of the 77 genes are displayed in Table S3. Next,  
26 genes were selected via MeanDecreaseGini using a 
random forest (Figure 3B,3C, Table S4). Then, 11 genes 
with a low mean-squared error were obtained via lasso.min 
using a LASSO algorithm (Figure 3D). Finally, the immune-
related hub genes among the three algorithms in MCL 
were demonstrated using a Venn diagram (Figure 3E). 

The four common hub genes (CD247, CD3E, CD4, 
and GATA3) were screened for further analyses. PPI 
network analysis demonstrated an interaction between 
these genes. GO enrichment analysis revealed that 
they were mainly enriched in the T-cell  receptor 
signaling pathway (GO:0050852), T-cell selection 
(GO:0045058), the regulation of interleukin-2 (IL-2) 
production (GO:0032663), the adaptive immune response 
(GO:0002250), and cytokine production (GO:0001816). 
The expression of these four genes exhibited a positive 
correlation (Figure 3F,3G).

The location of the four screened hub genes in the 
human chromosome is shown in Figure 4A. Pearson’s 
correlation analysis indicated that CD247, CD3E, and CD4 
had a significant positive relationship with |correlation| 
>0.6 (Figure 4B). The four hub genes in GSE32018 were 
also displayed in a volcano plot (Figure 4C); the expression 
of these genes in the tumor samples was markedly lower 
than that in the normal samples (Figure 4D,4E).

Identification of MCL molecular clusters based on the 
immune-related hub genes in MCL

Two MCL molecular clusters were recognized via a PAC 
algorithm in the GSE93291 dataset, followed by the 
unsupervised clustering of the expression matrix of four 
immune-related hub genes (Figure 5A-5D). The MCL 
patients in molecular cluster 2 had worse OS compared 

https://cdn.amegroups.cn/static/public/atm-22-5815-1.xlsx
https://cdn.amegroups.cn/static/public/ATM-22-5815-supplementary.pdf
https://cdn.amegroups.cn/static/public/ATM-22-5815-supplementary.pdf
https://cdn.amegroups.cn/static/public/ATM-22-5815-supplementary.pdf
https://cdn.amegroups.cn/static/public/ATM-22-5815-supplementary.pdf
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Figure 2 The immune-related genes in MCL. (A,B) Volcano plot and heatmap of 193 DEGs in GSE32018 and 211 DEGs in GSE45717. 
(C) Venn diagram of DEGs in GSE32018 and GSE45717. (D-F) GO analysis (BP, CC, and MF) of the 77 common genes. (G) KEGG 
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with those in cluster 1 (P=0.042) (Figure 5E). The overall 
expression of these hub genes in cluster 2 was lower than 
that in cluster 1 (Figure 5F,5G).

The landscape of immune cell infiltration and immune 
checkpoint molecules in distinct MCL molecular clusters

A total of 26 out of 50 pathways of hallmark gene sets 

exhibited differences between the two MCL molecular 
clusters in the GSE93291 dataset. The top 10 alterative 
pathways included: APICAL_JUNCTION, APICAL_
SURFACE, ALLOGRAFT_REJECTION, WNT_
BETA_CATENIN_SIGNALING, IL6_JAK_STAT3_
SIGNALING, INTERFERON_GAMMA_RESPONSE, 
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PHOSPHORYLATION (Figure 6A).
Compared with those in cluster 1, the ImmuneScore 

and ESTIMATEScore were lower in the cluster 2 group, 
while the TumorPurity scores were higher (Figure 6B,6C). 
A total of 18 of 28 immune cell infiltrations in the TME 
had different scores between the two clusters. The activated 
CD8+ T cell, activated dendritic cell, natural killer T 
cell, and T follicular helper cell scores in cluster 2 were 
significantly lower than that in cluster 1 (Figure 6D). Similar 
differences were observed in the immune cell proportion 

of two clusters, which were analyzed by CIBERSORT and 
xCell, respectively (Figure S1A,S1B).

Forty-one of the 63 familiar immune checkpoint 
molecules had available expression information in the 
GSE93291 dataset (Table S5). The data showed that 25 
immune checkpoint molecules had different expression 
levels in the two MCL clusters. Compared with cluster 
1, only CD86 was higher in cluster 2, while the other 
24 molecules were lower, especially BTN3A1, BTN3A2, 
BTN3A3, CD200, CD274, CD28, ICOS, IDO1, IL2RB, and 

https://cdn.amegroups.cn/static/public/ATM-22-5815-supplementary.pdf
https://cdn.amegroups.cn/static/public/ATM-22-5815-supplementary.pdf
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TNFRSF9 (Figure 6E).

Identification of the prognostic genes and development of 
the prognostic risk score model for distinct MCL molecular 
clusters

In order to explore the prognostic DEGs of the two MCL 
molecular clusters, the 65 DEGs of the two clusters and 
coding relative proteins were obtained in the GSE93291 
dataset (Table S6), and the 20 DEGs significantly associated 
with the OS of MCL patients were screened by univariate 
Cox regression analysis (Table S7). Then, six DEGs 
(LGALS2, LAMP3, ICOS, FCAMR, IGFBP4, and C1QA) 
were selected to establish the prognostic risk score model 
via LASSO-Cox analysis (Figure 7A-7C). The poor OS 
was related to the increased IGFBP4 and C1QA expression 
groups; however, it was more likely to occur in the low 
LGALS2, LAMP3, ICOS, and FCAMR expression groups 
(P<0.05). The following formula was used: Risk Score 
= LGALS2 × (−0.1746) + LAMP3 × (−0.1413) + ICOS × 
(−0.1352) + FCAMR × (−0.1327) + IGFBP4 × 0.0356 + C1QA 
× 0.1987. MCL patients who had a higher prognostic model 
risk score had a poorer prognosis, as verified by Kaplan-
Meier survival analysis (P<0.0001) (Figure 7D). The AUCs 
at 1, 3, and 5 years were 0.8, 0.79, and 0.7, respectively 
(Figure 7E). Taken together, these results demonstrated that 
the prognostic model had a prominent efficiency.

Correlation between the screened prognostic genes and 
immune cell infiltration or immune checkpoint molecules 
for distinct MCL molecular clusters

The six screened prognostic genes (LGALS2, LAMP3, 
ICOS, FCAMR, IGFBP4, and C1QA) were correlated with 
the majority of the 28 immune infiltrating cells. Immune 
cells that were significantly positively correlated with the 
whole six prognostic genes were activated in CD8+ T cells, 
effector memory CD8+ T cells, natural killer T cells, and 
type 1 T helper cells. IGFBP4 was negatively correlated with 
effector memory CD4+ T cells and gamma delta T cells, 
while C1QA was negatively correlated with immature B 
cells (Figure 8A). Most of the immune checkpoint molecules 
were also correlated with the six prognostic genes. Also, a 
significant positive correlation with the whole six prognostic 
genes was observed in ICOS, CD200, TNFRSF9, IL2RB, 
CD274, and BTN3A1 (Figure 8B).

Discussion

In the present study, we initially compared 77 immune-
related differentially expressed genes (DEGs) in MCL 
samples with normal controls in both the GSE32018 and 
GSE45717 datasets. These genes were mainly enriched 
in T-cell activation, the plasma membrane, and cytokine 
receptor binding and activity by GO analysis, and in a series 
of pathways by KEGG analysis, including cytokine-cytokine 
receptor interaction and the NF-kappa B signaling pathway. 
A previous study showed that these two pathways were 
enriched in DEGs both in the GSE32018 and GSE9327 
datasets, which used normal and reactive lymph nodes as 
controls, respectively (22). This indicates that the enriched 
pathways in DEGs between tumor samples and controls 
might be a reason for the selection of targeted agents in 
MCL, such as bortezomib interfering with the NF-kappa B 
signaling pathway (1). 

We then screened four common hub genes (CD247, 
CD3E, CD4, and GATA3) using three machine learning 
algorithms: SVM-RFE, random forest, and LASSO. 
Previous studies have revealed the biological functions and 
application prospects of these genes. CD247, which encodes 
the CD3ζ protein, regulates the immune response and 
participates in tumorigenesis (23). CD3E, which encodes 
the CD3-epsilon polypeptide, is a built-in multifunctional 
signal tuner in T-cell development (24). CD4, which 
encodes the CD4 membrane glycoprotein, assists the 
germinal center reaction and contributes to the activation, 
functions, and longevity of CD8+ T-cells and B-cells (25). 
GATA3, which encodes a protein of the GATA family of 
transcription factors, is an important regulator of T-cell 
development and may be a biomarker associated with poor 
prognosis in distinct subtypes of nodal peripheral T-cell 
lymphoma (26). We found that the hub genes were mainly 
enriched in the T-cell receptor signaling pathway, T-cell 
selection, the regulation of IL-2 production, the adaptive 
immune response, and cytokine production. These relative 
pathways were consistent with previous research (22). 
Moreover, CD247, CD3E, and CD4 exhibited a positive 
relationship with each other. Also, the whole expression of 
hub genes in MCL was significantly lower than that in the 
normal samples. These findings suggested that the reduced 
expression of the four immune-related hub genes, which 
were related to a series of immune signaling pathways, 
might participate in MCL tumor progression.

https://cdn.amegroups.cn/static/public/ATM-22-5815-supplementary.pdf
https://cdn.amegroups.cn/static/public/ATM-22-5815-supplementary.pdf
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A previous study observed that fewer immune escape 
genes, which are significantly expressed in diffuse large 
B-cell lymphoma and follicular lymphoma, were enriched 
in MCL samples (27). To further identify the four screened 
hub genes, we utilized unsupervised clustering of the 
expression matrix of hub genes and recognized two MCL 
molecular clusters in the much larger GSE93291 dataset. 
Interestingly, the patients in cluster 2 had a significantly 
worse OS and lower expression of the whole hub genes, 
compared with those in cluster 1. This indicated that 
the down-regulated expression of the four hub genes 
was unfavorable to the prognosis of MCL patients. 
Furthermore, we explored the landscape of immune cell 
infiltration and immune checkpoint molecules in the two 
MCL clusters. Several different pathways of hallmark 
gene sets were explored between the two clusters. The 
results were consistent with previous research on the 
immune landscape of MCL in terms of the cytolytic score-
related pathways, including INTERFERON_GAMMA_

RESPONSE,  ALLOGRAFT_REJECTION,  and 
INFLAMMATORY_RESPONSE (12). However, using 
the different classification methods from a recent study, 
which classified MCL into four clusters by whole-exome 
sequencing and relatively matched RNA sequencing (RNA-
Seq) data analysis (8), we also found that the active MYC 
pathway was involved in the MCL progression. 

Moreover, we observed that several immune scores 
reflecting the immune cell infiltration in the TME were 
different between the two MCL clusters. In cluster 2, the 
activated CD8+ T-cells, activated dendritic cells, natural 
killer T cells, and T follicular helper cells exhibited 
significantly lower scores. This indicated that a variety of 
activated immune effector cells were lower in cluster 2. 
Previous studies have shown that the various characteristics 
of immune cell infiltration affected MCL outcomes. Zhang 
et al. discovered the progressive dampening of CD8+ T cells 
in refractory MCL patients (28). The low absolute CD4+ T 
cell counts in peripheral blood were a significant predictor 

−0.32         −0.22        −0.12         −0.02          0.08           0.18           0.28           0.38           0.48           0.58           0.68

−0.33          −0.19          −0.06           0.07             0.2             0.34            0.47              0.6             0.73            0.87               1

C1QA
FCAMR

ICOS
IGFBP4
LAMP3

LGALS2

C1QA

FCAMR

ICOS

IGFBP4

LAMP3

LGALS2

B
TL

A
B

TN
1A

1
B

TN
2A

1
B

TN
2A

2
B

TN
3A

1
B

TN
3A

2
B

TN
3A

3
B

TN
L2

B
TN

L3
B

TN
L8

B
TN

L9
C

D
20

0
C

D
20

0R
1

C
D

27
C

D
27

4
C

D
27

6
C

D
28

C
D

40
C

D
80

C
D

86
C

E
A

C
A

M
1

H
A

V
C

R
1

H
H

LA
2

IC
O

S
ID

O
1

IL
2R

B
K

IR
3D

L1
LA

G
3

LA
IR

1
N

C
R

3L
G

1
P

V
R

S
IG

LE
C

10
S

IG
LE

C
15

S
IG

LE
C

9
TI

G
IT

TM
IG

D
2

TN
FR

S
F1

8
TN

FR
S

F9
TN

FS
F1

4
TN

FS
F1

8
V

TC
N

1

A
ct

iv
at

ed
 B

 c
el

l

A
ct

iv
at

ed
 C

D
4 

T 
ce

ll

A
ct

iv
at

ed
 C

D
8 

T 
ce

ll

A
ct

iv
at

ed
 d

en
dr

iti
c 

ce
ll

C
D

56
br

ig
ht

 n
at

ur
al

 k
ill

er
 c

el
l

C
D

56
di

m
 n

at
ur

al
 k

ill
er

 c
el

l

C
en

tr
al

 m
em

or
y 

C
D

4 
T 

ce
ll

C
en

tr
al

 m
em

or
y 

C
D

8 
T 

ce
ll

E
ffe

ct
or

 m
em

or
y 

C
D

4 
T 

ce
ll

E
ffe

ct
or

 m
em

or
y 

C
D

8 
T 

ce
ll

E
os

in
op

hi
l

G
am

m
a 

de
lta

 T
 c

el
l

Im
m

at
ur

e 
B

 c
el

l

Im
m

at
ur

e 
de

nd
rit

ic
 c

el
l

M
ac

ro
ph

ag
e

M
as

t c
el

l

M
D

S
C

M
em

or
y 

B
 c

el
l

M
on

oc
yt

e

N
at

ur
al

 k
ill

er
 c

el
l

N
at

ur
al

 k
ill

er
 T

 c
el

l

N
eu

tr
op

hi
l

P
la

sm
ac

yt
oi

d 
de

nd
rit

ic
 c

el
l

R
eg

ul
at

or
y 

T 
ce

ll

T 
fo

lli
cu

la
r 

he
lp

er
 c

el
l

Ty
pe

 1
 T

 h
el

pe
r 

ce
ll

Ty
pe

 1
7 

T 
he

lp
er

 c
el

l

Ty
pe

 2
 T

 h
el

pe
r 

ce
ll

A

B

Figure 8 Correlation between the screened prognostic genes and the immune infiltrating cells or immune checkpoint molecules in MCL 
(GSE93291). (A,B) The correlation between the six prognostic genes and the immune infiltrating cells or immune checkpoint molecules. ***, 
P<0.001; **, P<0.01; *, P<0.05. MCL, mantle cell lymphoma.
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of unfavorable OS in MCL patients, regardless of whether 
they received rituximab treatment (29). Similarly, we found 
that central memory CD4+ T cells were decreased in cluster 
2, with a poor outcome. Rodrigues et al. reported that 
the infiltrations of CD163-, PD-L1-, and FoxP3-positive 
cells were indicative of a worse outcome in MCL patients, 
independent of established risk factors (30). 

In this study, only CD86 was higher among the 25 
differentially expressed immune checkpoint molecules 
in cluster 2, as compared with cluster 1. Also the most 
significantly decreased molecules were BTN3A1, BTN3A2, 
BTN3A3, CD200, CD274, CD28, ICOS, IDO1, IL2RB, and 
TNFRSF9. Previous studies have evaluated the expression 
of several immune checkpoint molecules and explored 
their effects on the prognosis of MCL and other B-cell 
lymphomas. The addition of heterodimeric BTN2A1 and 
BTN3A1 could promote granzyme B-mediated killing of 
CD19+ lymphoma cells when co-cultured with Vγ9Vδ2+ 
T cells (31). Also, CD200 expression in MCL indicated a 
better prognosis and was associated with CD23 expression, 
frequent immunoglobulin heavy chain variable region 
(IGHV) mutations, and the absence of SOX11 expression 
(32,33). The majority of MCL patients had no or low 
expression of PD-1 and PD-L1 (14), while co-culturing of 
primary MCL cells with T-cells could induce PD-L1 surface 
expression (34). The generation of Tregs, which is a key role 
in the pathogenesis of follicular lymphoma, was associated 
with inducible costimulator (ICOS)/ ICOS Ligand (ICOSL) 
engagement (35). IL2RB, which is regarded as a hub gene, 
might be related to the pathogenesis and prognosis of 
MCL, as determined by the top-weighted network analysis 
performed in the GSE93291 dataset (6). TNFRSF9 and 
its ligand TNFSF9 were applied to trigger innate immune 
activation, involving therapies such as chimeric antigen 
receptor (CAR) T-cells and bispecific T-cell engagers in 
MCL and other B-cell lymphomas (36). Therefore, further 
investigations are needed to examine how the immune 
checkpoint molecules contribute to the pathogenesis of 
MCL and evaluate the value of these molecules.

A series of prognostic genes in MCL have been 
identified (5-7). However, the clinical application of these 
potential biomarkers as new targets in MCL treatment 
requires further exploration. In this study, we selected six 
DEGs (LGALS2, LAMP3, ICOS, FCAMR, IGFBP4, and 
C1QA) in two MCL clusters, which are associated with 
OS, to establish an efficient prognostic risk score model. 
Poor OS was related to increased IGFBP4 and C1QA 
expression, while the worse prognosis was more likely to 

occur with low LGALS2, LAMP3, ICOS, and FCAMR 
expression. Also, patients with higher prognostic model risk 
scores had a markedly poor prognosis. The six prognostic 
genes directly and indirectly participated in the immune 
response in numerous tumors, for instance, LGALS2 in 
triple-negative breast cancer (37), LAMP3+ dendritic 
cells in nasopharyngeal carcinomas (38), ICOS in the 
generation of Tregs in follicular lymphoma (35), FCAMR 
in lung squamous cell carcinoma (39), IGFBP4 in ewing’s  
sarcoma (40), C1QA in skin cutaneous melanoma (41). A 
previous study has suggested that IGFBP4 is associated with 
poor outcomes in glioblastoma (42). Interestingly, in diffuse 
large B cell lymphoma (DLBCL) patients, the C1qA[276] 
polymorphism of the A/A allele is an independent favorable 
prognostic factor for rituximab plus cyclophosphamide, 
doxorubicin, vincristine, and prednisone (R-CHOP) as 
first-line therapy (43), while the expression level of LGALS2 
was not associated with OS but was lower in tumors than in 
normal samples (44). LAMP3 is over-expressed in various 
tumors and is correlated with the poor or good prognosis 
of different patients (45). The different prognostic effects 
of these genes might relate to the different types of tumors, 
although their exact roles and mechanisms in MCL should 
be further explored. 

We also performed Pearson’s correlation analysis to 
assess the relative immune cells and immune checkpoint 
molecules of the above six prognostic genes. Most types 
of immune cells were positively correlated with the genes, 
including activated CD8+ T cells, effector memory CD8+ 
T cells, natural killer T cells, etc. Meanwhile, effector 
memory CD4+ T cells and γδT cells exhibited a negative 
correlation with IGFBP4, and immature B cells were 
negatively correlated with C1QA. It is known that γδT cells 
can produce abundant cytokines and exert a therapeutic 
response against infection, autoimmunity, and cancer (46). 
The modulation of immune cells correlated with the six 
prognostic genes might explain the regulatory mechanisms 
in the TME of MCL to some extent. As for the immune 
checkpoint molecules, ICOS, CD200, TNFRSF9, IL2RB, 
CD274, and BTN3A1 displayed significantly positive 
correlations with the whole six prognostic genes. Taken 
together, these findings suggested that the accommodation 
of immune checkpoint molecules might participate in the 
pathogenesis of MCL. 

Conclusions

In conclusion, we screened four immune-related hub genes 
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(CD247, CD3E, CD4, and GATA3) in MCL, which were 
mainly enriched in the T-cell receptor signaling pathway and 
exhibited lower expression in tumors compared with normal 
samples. Subsequently, we recognized two MCL molecular 
clusters based on the hub genes. Patients in cluster 2 had 
a significantly worse OS compared with those in cluster 1; 
the hub genes were down-regulated, a variety of activated 
immune effector cells declined, and the majority of immune 
checkpoint molecules decreased. Moreover, we established 
an efficient prognostic risk score model using six prognostic 
genes (LGALS2, LAMP3, ICOS, FCAMR, IGFBP4, and 
C1QA) that were differentially expressed between the two 
MCL clusters. Patients with higher prognostic model risk 
scores had a significantly poorer prognosis. Although several 
biomarkers for the prognosis of MCL patients have been 
reported, few researches focused on the immune-related 
prognostic genes and the prognostic model developed by 
the DEGs of immune-related molecular clusters of MCL. 
This study suggested that these immune-related hub genes, 
the modulated immune cells, and the immune checkpoint 
molecules might be involved in oncogenesis and could be 
prognostic biomarkers in MCL. These immune-related 
biomarkers (four immune-related hub genes, six prognostic 
genes, and the relative molecules) will enrich the prognostic 
scoring system of MCL and provide preliminary basis for 
the clinical application of immunotherapy, including the 
immune checkpoint blockade therapies.

Further research should be carried out to examine the 
regulatory mechanisms through which the immune-related 
hub genes contribute to tumorigenesis, verify the efficiency 
of the prognostic model in larger MCL cohorts, and 
explore potential therapeutic targets that enhance the effect 
of immunotherapy.
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