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Ischemic stroke after cerebral artery occlusion is one of the major causes of chronic
disability worldwide. Interleukins (ILs) play a bidirectional role in ischemic stroke through
information transmission, activation and regulation of immune cells, mediating the
activation, multiplication and differentiation of T and B cells and in the inflammatory
reaction. Crosstalk between different ILs in different immune cells also impact the outcome
of ischemic stroke. This overview is aimed to roughly discuss the multiple roles of ILs after
ischemic stroke. The roles of IL-1, IL-2, IL-4, IL-5, IL-6, IL-8, IL-9, IL-10, IL-12, IL-13,
IL-15, IL-16, IL-17, IL-18, IL-19, IL-21, IL-22, IL-23, IL-32, IL-33, IL-34, IL-37, and IL-38 in
ischemic stroke were discussed in this review.
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1 INTRODUCTION

Ischemic stroke after cerebral artery occlusion is one of the major causes of chronic disability
worldwide, and there is still a lack of effective methods to improve functional recovery after cerebral
stroke (1). After ischemic stroke, a severe shortage of blood supply to the brain leads to the
insufficient oxygen supply to the brain, which in turn leads to neuronal death. Inflammatory
responses at the blood-endothelial interface of brain capillaries are the basis of ischemic tissue
damage. Furthermore, inflammatory interactions at the blood-endothelial interface, including
adhesion molecules, cytokines, chemokines and white blood cells, are crucial for the pathogenesis
of tissue injury in cerebral infarction (2). Pathophysiological changes after ischemic stroke include
ion imbalance, neuroinflammation, and abnormal activation of immune cells, can lead to neuronal
death. However, despite extensive research work have been made, the exact mechanisms of stroke
damage are not fully understood. It is clear that ILs play a major role in the progression of ischemic
stroke disease.

IL, refers to a lymphocyte medium that interacts between white blood cells or immune cells. It is
a cytokine in the same category as blood cell growth factor. Both IL and hemocyte growth factor
belong to cytokines, and they coordinate and interact with each other to complete hematopoiesis
and immune regulation functions together. IL plays a crucial role in information transmission,
activation and regulation of immune cells, mediating the activation, multiplication and
differentiation of T and B cells and in the inflammatory reaction (3). There is a close relationship
between IL and the pathogenesis of ischemic stroke. This review is to discuss the inflammatory
effects of IL in the pathogenesis of stroke, the interactions between different IL-mediated pathways,
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the cell-type dependent effects of different mediators and how
different ILs regulate complex inflammatory cascades. The role
of IL-1, IL-4, IL-6, and IL-10 were discussed in more detail.
2 IL-1 FAMILY

IL-1, described earlier as a fever-causing protein called human
leukocyte pyrogen, is one of the pro-inflammatory cytokines
produced by monocytes, macrophages, and epithelial cells. The
IL-1 family consists of IL-1a, IL-1b, and specific receptor
antagonist (IL-1RN) (4). The IL-1 gene complex is located on
chromosome-14 and consists of three linked genes, namely IL-
1a, IL-1b and IL-b (5). IL-1a and IL-1b was regarded as pro-
inflammatory cytokines. The sequence homology of IL-1a and
IL-1b is not high, but they bind to the same receptor complex
and have similar biological activity. IL-1RN is a 16-18 kD protein
that binds competitively with IL-1 and its receptor to become an
important anti-inflammatory cytokine. There are five alleles for
IL-1RN, and IL-1RN*1 is the most common genotype, followed
by IL-1RN*2. The incidence of the remaining alleles (IL-1RN*3,
IL-1RN*4 and IL-1RN*5) is less than 1% (6). Among them,
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IL-1RN*2 polymorphism is considered to be a genetic risk factor
for coronary artery disease and atherosclerosis, which is closely
related to ischemic stroke.

2.1 Mechanism of Pleiotropic Effects of
IL-1 on Ischemic Stroke
IL-1 is a multifactorial cytokine with multiple biological effects in
many cell types, many of which are associated with stroke risk
and outcome. Downstream effects of IL-1 include increased
expression of cytokines, chemokines, and growth factors,
activation of matrix metalloproteinases, upregulation of
adhesion molecules, increased leukocyte infiltration, activation
of platelets, alteration of blood flow, increased angiogenesis,
decreased neurogenesis, and numerous other effects. We have
discussed some of all these effects and related mechanisms in
detail, and the rest can be found in the reviews (7, 8).

Stroke-related comorbidities and risk factors are associated
with elevated systemic inflammation, mediated in part by IL-1.
As shown in Figure 1, in acute phase, the increase of IL-1 in the
brain after stroke mediates the harmful the inflammatory
process, including up-regulation of IL-6, TNF-a, MMP-9 and
chemokines in astrocytes; inhibition of neurogenesis (9); increase
FIGURE 1 | Mechanisms of the role of IL-1 in ischemic stroke. IL-1, elevated after ischemic stroke or other risk factors, can target astrocytes and up-regulate the
expression of IL-1, IL-6, TNF-a, MMP-9, and chemokines. IL-1 target astrocytes to promote the NGF, proliferation, astrogliosis, and glial scar formation, which
ameliorate ischemic injury. IL-1 targets endothelial cells and increases the E- and P-selection, CCL-2, ICAM-1, NO, adhesion molecules, neutrophil infiltration, blood
flow decrease and BBB breakdown, which exacerbate ischemic stroke. When targets neurons, IL-1 increases the GABAergic inhibition and NGF, which rescue
ischemic injury, while IL-1 also increases glutamate release and Ca2+ entry NMDAR phosphorylation, which cause more damage in ischemic stroke. Leukocytes can
be regulated by IL-1 to secret more MMPs, PGE2, NO, and IL-1. In addition, microglia can be regulated by IL-1 to elevate the expression of IL-1, IL-6, NO, PGE2
and TNF. Oligodendrocytes can also be regulated by IL-1 for differentiation maturation.
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of adhesion molecules and neutrophil infiltration, decrease of
BBB integrity and blood flow by acting on endothelial cells,
leading to worse outcomes. Moreover, IL-1 stimulates the
proliferation and activation of astrocytes, leading to astrocyte
hyperplasia, which is a typical response to brain injury. Data
reported in many studies confirm that IL-1 upregulates a large
number of genes in astrocytes, which encode neurotoxic factors
including MMPs, chemokines, pro-inflammatory cytokines such
as IL-6 and TNFa, but also survival-promoting mediators such
as NGF (nerve growth factor) (10). IL-1 also exerts its effects on
cerebrovascular endothelial cells to increase the production of
chemoattractant and adhesion molecules such as CCL2 (CC
chemokine ligand-2), ICAM-1 (intercellular adhesion
molecule-1), and E- and P-selectin, and even promotes the
breakdown of BBB, events that are associated with recruitment
of leukocytes (11). IL-1 can act directly on neurons through an
alternative signaling mechanism involving ceramide production
and activation of Src kinase that phosphorylates the NMDAR
[NMDA (N-methyl-D-aspartate) receptor] subunit 2B, leading
to enhanced calcium entry and increased vulnerability to
additional injury (12). IL-1 may also induce neurotoxicity
indirectly through its action on the vascular endothelium to
promote the recruitment of leukocytes, especially neutrophils
that damage the neurovascular unit through the release of MMPs
and reactive oxygen species (ROS) (11).

However, in the subacute and chronic phases post-stroke, some
of the effects of IL-1may be beneficial. For example, IL-1 promotes
the glial scar formation and enhances angiogenesis, thereby
promoting ischemic stroke recovery (13). In addition, IL-1 is
not toxic to pure neurons in culture and can even promote
survival through enhancement of synaptic GABA(g-
aminobutyric acid)ergic inhibition or production of NGF (14, 15).

2.2 The Mechanisms of IL-1b-Induced
Brain Damage in Ischemic Stroke
In acute ischemic stroke, blood perfusion to the brain is reduced.
In cerebral infarction, when blood flow is 10%-25% lower than
normal, nerve cells will suffer irreversible damage or even death,
and inflammatory cells in the tissue will release inflammatory
factors. As one of the most powerful pro-inflammatory
cytokines, IL-1b exerts an essential role in ischemic stroke
mainly through the following mechanisms.

2.2.1 IL-1b Aggravates the BBB Dysfunction
After ischemic stroke, increased secretion of IL-1b activates
phospholipase A2 to degrade arachidonic acid and destroy the
phospholipid bilayer (16). Moreover, the metabolites,
prostaglandin and leukotriene, can promote the increase of
microvascular permeability, resulting in blood-brain barrier
(BBB) dysfunction and the formation of vasogenic brain
edema (17). Meanwhile, after ischemic stroke, the reduction of
glucose and oxygen supply, insufficient ATP production, and
enhanced glycolysis, lead to the occurrence of cytotoxic brain
edema. The interaction between the vasogenic brain edema and
cytotoxic brain edema causes cranial pressure increase,
secondary injury of brain tissue, and the possible occurrence of
Frontiers in Immunology | www.frontiersin.org 3
cerebral hernia in severe cases, endangering the life of the patient.
In addition, IL-1b also aggravates ischemic injury by promoting
the expression of adhesion molecules between endothelial cells,
inducing leukocyte migration to the ischemic area to trigger
inflammatory response (18).

2.2.2 IL-1b Mediates the Inflammatory Response in
Ischemic Stroke
IL-1b stimulates the activation of microglia, which, as the main
effector cells in the neuroinflammatory response, aggravates the
inflammatory response and leads to secondary brain damage by
secreting and releasing a series of potential neurotoxic
substances, such as TNF-a and iNOS. IL-1b activates IkB
kinase through the IRAK pathway, resulting in the
phosphorylation and ubiquitination of IL-1b-mediated IkB-a,
which ultimately upregulates the expression of NF-kB in the cell
nucleus and induces the increase of the transcription of target
genes such as IL-8 and TNF-a (19). Study has demonstrated that
IL-1b regulates the PI3K/AKT pathway to stimulate IL-6 and
other cytokines, which synergistically act on ischemic areas and
aggravate the damage effect (20). Other studies have shown that
up-regulation of IL-6 and other pro-inflammatory cytokines can
promote the phosphorylation of JAK2/STAT3 (21, 22). After P-
STAT3 enters the nucleus, it will bind to the DNA sequence
characteristic of the promoter region of target genes and up-
regulate the transcription of IL-1b, IL-6 and TNF-a genes (22).
This vicious cycle leads to persistent inflammation, and damaged
brain cells fail to recover.

2.2.3 IL-1b Promotes Apoptosis After Ischemic Stroke
After ischemic stroke, a large number of potentially salvageable
neurons exist in the ischemic penumbra. However, with the
prolongation of ischemia time, IL-1b promotes the apoptosis of
the damaged cells by activating the apoptotic molecular
mechanism, leading to the original ischemic penumbra
gradually becoming the area of cerebral infarction, and finally
the aggravated brain damage. Studies have verified that IL-1b
plays a crucial role in the process of apoptosis of injured cells.
This effect is mainly through the following two aspects: (1)
activation of the excitatory toxicity mediated by glutamate
(23); (2) activating the apoptotic cascade to activate the JNK/
AP-1 pathway (24). Recently, it has been reported that the AIM2
inflammasome-derived IL-1b production activated triggers the
expression of FasL in the spleen monocytes which evokes the
apoptosis of Fas-dependent extrinsic T cells, causing an
increased risk of infection by bacteria after ischemic stroke
(25). Therefore, IL-1b may be involved in the signaling cascade
activated by AIM2 inflammasome, causing immune suppression
and secondary infection after stroke injury.
3 IL-2

Il-2, also known as cell growth factor, is an immunomodulatory
lymphocyte secreted by T lymphocytes after being stimulated by
antigen. In addition to maintaining the long-term multiplication
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and differentiation of T cells in vitro, IL also has important
biological functions such as enhancing the killing activity of NK
cells, promoting the proliferation and differentiation of B cells,
and inducing the production of lymphokine-activated killer cells.

3.1 IL-2 Expression Decreased After
Ischemic Stroke
Clinical trials showed that the level of serum IL-2 in patients with
acute cerebral apoplexy was significantly lower than that in
normal control group (26). The mechanism may be related to
the following two factors: (1) In acute stroke, the body stress
response, the immune stability in vivo is destroyed, especially the
function of T cell is affected, so that the blood level of IL-2 is
significantly decreased; (2) In acute stroke, the brain tissue cells
are damaged, and local ischemia and hypoxia reduce the
synthesis of IL-2 in the brain.

3.2 The Role of IL-2 in Ischemic Stroke
The IL-2/IL-2 antibody complex (IL-2/IL-2Ab) may improve the
prognosis of ischemic stroke by regulating the amount of
regulatory T cells (Tregs) in the body (27). Tregs are known to
prevent ischemic stroke. However, the small amount of Tregs
limits their clinical efficacy.

Previous research has showed that IL-2/IL-2Ab treatment
selectively increases the amount of Tregs in the lymph nodes,
spleen, and blood, significantly reduces the infarct volume,
inhibits neuroinflammation, and improves sensorimotor
function compared to stroke mice treated with isotype IgG
(27). IL-2mAb has been reported to reduce demyelination after
ischemic stroke by suppressing CD8 + T cells (28). The depletion
of Tregs by diphtheria toxin eliminated neuroprotective effect
provided by IL-2/IL-2Ab. IL-2/IL-2Ab promotes the expression
of CD39 and CD73 in expanded Tregs, the deficiency of which
may reduce the protective action of Tregs stimulated by IL-2/IL-
2Ab in ischemic stroke mice (27). After stroke, increasing Treg
cell numbers by delivering IL-2:IL-2 antibody complexes can
improve white matter integrity and rescue neurological functions
over the long term (29). In addition, Zhao et al. has found that
ischemic stroke patients with poor functional outcomes at 3
months have significantly higher levels of IL-2 receptor a (sIL-
2Ra) and lower levels of IL-2 than patients with good outcomes.
Higher sIL-2Ra and IL-2 levels were associated with an increased
and reduced risk of unfavorable outcomes, respectively (30),
indicating that increased plasma sIL-2Ra and IL-2 levels
manifested opposite correlations with functional outcome,
illustrating the importance of IL-2/IL-2R autocrine loops in
ischemic stroke.
4 IL-4

IL-4 regulates various immune responses, including the
differentiation of T cells and nonspecific transformation of B
cells (31). It is also the most characteristic M2 macrophage
polarization promoter to date. Numerous evidences suggest
that IL-4 plays a critical role in brain function under
Frontiers in Immunology | www.frontiersin.org 4
physiological and pathological conditions. For example, T-cell-
derived IL-4 is essential for learning and memory in the normal
brain. Levels of IL-4 in the brain tissue decrease with age, which
may contribute to cognitive decline in older people and also
increase the risk of Alzheimer’s disease (32). After ischemic
stroke, IL-4 treatment has been shown to enhance white matter
integrity (33).

4.1 IL-4 Promotes the M2 Polarization of
Microglia/Macrophages
Recent animal and clinical researches have demonstrated the
importance of IL-4 in the acute phase of stroke (34, 35). Several
hours after the onset of stroke, the level of IL-4 in serum was
observably increased (36). In addition, 24 hours after transient
middle cerebral artery occlusion (MCAO), IL-4 deficiency
resulted in brain injury and neurological dysfunction (37). IL-4
plays an important role in the M2 polarization and long-term
recovery of microglia/macrophages after ischemic stroke. Mice
lacking IL-4 have more M1-polarized microglia/macrophages,
larger infarcts and more severe functional deficits after cerebral
ischemia, while recombinant IL-4 can eliminate these effects
(38). IL-4-polarized microglia cells may alleviate the ischemic
stroke injury by promoting angiogenesis through the secretion of
exosomes containing miRNA-26a (39). There is a direct salutary
effect of IL-4 on oligodendrocyte differentiation that is mediated
by the peroxisome proliferator-activated receptor gamma
(PPARg) axis. Additionally, PPARg is essential for IL-4-
induced oligodendrocyte progenitor cell differentiation and
long-term functional improvements after stroke (33).

4.1.1 Inhibition Pro-Inflammatory Cytokines
The neuroprotective effect of IL-4 may be achieved by
stimulating IL-4/STAT6 signal transduction and inhibiting
pro-inflammatory cytokines. Previous study has showed that
IL-4 knockout mice produce more pro-inflammatory cytokines,
including IL-1b and TNF-a (40). The loss of IL-4 in mice also
increases sensitivity to mechanical pain.

4.1.2 IL-4 Is Essential for Sex Differences in
Vulnerability to Stroke
IL-4 protects against cerebral ischemia in male mice. However,
female mice generally exhibit less damage in response to the
same challenge of cerebral ischemia. Infarct volume in WT
female mice in proestrus and estrus phases is markedly smaller
than in males. IL-4 is required for female neuroprotection during
the estrus phase of the estrus cycle (38). In protected female WT
mice, microglia/macrophages were dominated by M2
polarization and inflammatory infiltration was reduced (40).
Therefore, increasing macrophage M2 polarization, with or
without added inhibition of inflammatory infiltration, may be
a novel approach for stroke treatment.

4.1.3 IL-4 Affects Neuronal Excitability
Chen et al. have shown that cortical pyramidal and stellate
neurons common for ischemic penumbra after cerebral
ischemia-reperfusion injury exhibit intrinsic hyperexcitability
and enhanced excitatory synaptic transmissions in IL-4
January 2022 | Volume 13 | Article 828447
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knockout mice. In addition, upregulation of Nav1.1 channel, and
downregulations of KCa3.1 channel and a6 subunit of GABAA
receptors are observed in the cortical tissues and primary cortical
neurons in IL-4 knockout mice (34), indicating that IL-4
deficiency results in neural hyperexcitability and aggravates
cerebral ischemia-reperfusion injury.
5 IL-6

IL-6 is a glycoprotein with a molecular mass of 20 to 30 kDa,
depending on the cellular source and preparation, and is a
cytokine with pleiotropic, playing a role in central host defense
(41). The IL-6 family of cytokines recruits gp130 for signaling.
For IL-6 specifically, a hexamer forms (two IL-6, two IL-6R and
two gp130) that can activate intracellular tyrosin-kinases such as
JAK and, to a lesser extent, TYK, which, in turn, activate a
number of proteins including the STAT family of transcription
factors, or the RAS-RAF-MAPK pathway, PI3K, or IRS (insulin
receptor substrate) (42). IL-6, mainly produced by monocyte
macrophages, lymphoid cells, T cells, B cells, granulocytes, mast
cells and endothelial cells, is a kind of multi-effector cytokine. IL-
6 has critical effect in immune reactions, acute phase response
and hematopoiesis regulation, mainly in autocrine or paracrine
ways. By activating target genes, IL-6 not only serves as a
differentiation and growth factor of hematopoietic cells, B cells,
T cells, osteoclasts and endothelial cells, but also plays an
important role in the growth, differentiation, regeneration and
degradation of peripheral and central nervous system nerve cells.
IL-6 activates and recruits neutrophils and monocytes, stimulates
vascular endothelial cells to secrete adhesion molecules and other
inflammatory transmitters, and enhances local inflammatory
response (43). Circulating and local IL-6 production will lead
to the state of pre-thrombosis, which can induce the production
of platelet derived growth factor, fibroblast growth factor, TNF,
macrophage colony stimulating factor, and promote the
proliferation of smooth muscle cells (44).

5.1 Dual Role of IL-6 in Ischemic Stroke
The dysregulation of IL-6 is closely related to the occurrence and
outcome of many clinical diseases, including coronary heart
disease, leukemia, hypertension, ischemic stroke and so on
(45). Su et al. demonstrated that elevated IL-6 induced by
ischemia and hypoxia, oxidative stress, vascular occlusion and
inflammation, partly leads to the production of the acute phase
protein in the liver, thereby stimulating leukocyte recruitment
and thrombosis, ultimately causing multiple cardio-
cerebrovascular diseases including ischemic stroke (46).
Elevated serum IL-6 levels are implicated in a higher risk of
incident stroke and mediate the racial disparity in stroke via
inflammatory effects of risk factors (47). Elevated plasma IL-6
has been reported to be a signatures of post-stroke delirium (48).
Additionally, high IL-6 levels at 24 hours are associated with
futile reperfusion in patients with acute ischemic stroke with
large vessel occlusion treated with mechanical thrombectomy
(49). Moreover, a lower admission level of IL-6 is positively
Frontiers in Immunology | www.frontiersin.org 5
correlated with the first-pass effect, which is defined as a
complete or near-complete reperfusion achieved after a single
thrombectomy pass is predictive of favorable outcome in acute
ischemic stroke patients (50). These findings indicate that IL-6
may be a predictor of the prognosis of ischemic stroke patients.

IL-6 is a marker of inflammation after stroke, and elevated IL-
6 is mainly secreted from neurons, microglia, astrocytes, and
endothelia cells in the ischemic hemisphere, traditionally
regarding as an adverse prognostic factor (51) (Figure 2). In
the ischemic brain, IL-6 protein is mainly localized in the
neurons of the cerebral cortex. The neuronal expression of IL-
6 starts 3.5 h after ischemia, peaks after 24 h of reperfusion, and
remains for 7 days. The immunoreactivity of IL-6 was most
upregulated in ischemic penumbra. IL-6 released into the
cerebrospinal fluid after stroke may lead to impaired
cerebrovascular autoregulation and increased histopathology.
In addition, IL-6 is related to the inflammation, which
contributes to both damage and recovery process after
ischemic stroke (52). The high levels of serum IL-6 have been
reported to be related to the body temperature, early neurologic
deterioration, infarct volume, and a long-term poor outcome. It
has been identified that after stroke brain is the main source of
IL-6 (53). In addition, inflammatory biomarkers, including C-
reactive protein, fibrinogen, IL-1 receptor antagonist, and TNF-a
are also elevated in parallel with IL-6 (54).

However, IL-6 is also a neurotrophic cytokines that shares a
common receptor subunit, gp130, with other neurotrophic
cytokines, such as leukemia inhibitory factor (LIF) and ciliary
neurotrophic factor (55). The IL-6 expression is mainly observed
in neuronal cells in the ischemic penumbra region, and the
expression of LIF shows a similar pattern. The direct injection of
these cytokines into the brain tissue after ischemic stroke can
reduce cerebral ischemic damage. The main downstream
signaling pathway of IL-6 is JAK-STAT, and the activation of
STAT3 occurs primarily in neuronal cells after ischemic
reperfusion. Since the role of STAT3 in stroke is also diverse
and controversial, further studies are needed to explore the
accurate action of STAT3 signaling in neuroprotective effect
(54). IL-6 secreted from astrocytes promotes Th1 polarize into
Th2 to mediate immunosuppressive microenvironment and
contribute to the neurogenesis and angiogenesis and neuronal
differentiation (51). IL-6 stimulates the phosphorylation of
STAT3 and the early transcriptional activation of angiogenesis-
related genes, thereby leading to the enhanced angiogenesis and
elevated cerebral blood flow in the delayed period after ischemic
stroke. IL-6R simultaneously activates the PI3K/AKT and JAK-
STAT pathways, which play vital roles in angiogenesis after
ischemic stroke (56). Additionally, IL-6 also been reported to
facilitate post-traumatic healing in the CNS through repair of
endothelial cells, which also demonstrates that IL-6 may enhance
revascularization or angiogenesis after ischemic stroke (57). IL-6
increases CNS neuronal survival and decreases excitotoxic
neuronal damage against NMDA-mediated injury and protects
neurons against apoptosis (54). Continuously injection of
recombinant for 7 days IL-6 into the lateral ventricle of gerbils
subjected to transient cerebral ischemia, IL-6 injection was found
January 2022 | Volume 13 | Article 828447
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to prevent learning disabilities and delayed neuronal loss (58). In
conclusion, IL-6 has a dual effect in ischemic stroke, acting as an
inflammatory factor in the acute stage and a neurotrophic
mediator in the subacute and prolonged phase.
6 IL-8 IN ISCHEMIC STROKE

IL-8 is a chemotactic cytokine that promotes the chemotaxis of
inflammatory cells and induces cell proliferation. After ischemic
stroke, IL-8 levels are increased (59, 60), mobilizes and activates
neutrophils, causing neutrophils to infiltrate into the ischemic
area, aggravating the local inflammatory response, leading to the
expansion of ischemic lesions, and leading to severe morbidity
and disability (2, 61–63). Endothelin-1 may be a stimulator of
Frontiers in Immunology | www.frontiersin.org 6
IL-8 (62). IL-8 may be also involved in recruiting blood
polymorphonuclear leukocytes to the sites of cerebral ischemia
(59). The expression of pro-inflammatory cytokines (IL-1b, IL-6,
IL-8, TNF-a) in the cortex of ischemic stroke mice was detected
after the occurrence of cerebral ischemia (64). One study showed
that the levels of these pro-inflammatory cytokines in patients
with acute cerebral ischemia were observably higher than those
in the control normal group, and the degree of disability in early
phase of acute stroke was positively correlated with the level of
serum IL-8 (65). IL-8 gene knockout has been shown to promote
neuroglial cells activation while inhibit neuroinflammation
through the PI3K/Akt/NF-kB-signaling pathway in mice with
ischemic stroke (66). The high serum IL-8 levels are associated
with prognosis. IL-8 exaggerates the ischemic stroke injury
through inducing neutrophil-mediated-inflammation (61). The
development of new neuroprotective treatments aimed to
FIGURE 2 | The bidirectional role of IL-6 in ischemic stroke. Astrocytes, neurons, endothelial cells, and microglia can produce IL-6 after ischemic stroke. Elevated IL-
6 leads to the temperature increase; inflammatory cascades, microglia polarization, and angiogenesis mediated by JAK/STAT3 and PI3K/AKT pathways; increased
IL-10, TGF-b induced by Tregs; Th1 polarizing to Th2; NPCs proliferation; neuronal differentiation; migration of neuroblasts.
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prevent neutrophil-mediated-inflammation induced by IL-8 is
critical in the treatment of stroke, and prevention of clinical
worsening. IL-8 can be used as important indicator to judge the
severity of the early condition of acute ischemic stroke patients
(67). However, IL-8 stimulates VEGF production in human bone
marrow mesenchymal stem cells partially via the PI3K/Akt and
MAPK/ERK signal transduction pathways and that
administration of IL-8-treated human bone marrow
mesenchymal stem cells increases angiogenesis after stroke (68).
7 IL-10

IL-10 is a significant anti-inflammatory cytokine that has
inhibitory effects on a variety of immune cells. IL-10 was first
identified in mouse Th2 cells, and was subsequently found to be
secreted in astrocytes, neurons, B cells, monocytes/macrophages,
keratinocytes, and human Th1 cells. IL-10 has strong anti-
inflammatory and immunosuppressive activity. It can inhibit
the production and release of IL-2, IFN-g and pro-inflammatory
factors, reduce the expression of immune receptors, inhibit
human Th2 cells, lead to cell proliferation, cytokine production
reduction (69). IL-10 binds to IL-10 receptors (IL-10R) to
decrease inflammation and limit apoptosis (70). These effects
make it a very important role in the protection of
cerebral ischemia.

7.1 IL-10 in Ischemic Stroke
The neuroprotection of IL-10 on ischemic stroke has always been
a research hotspot. A meta-analysis exploring the relationship
between IL-10 gene polymorphism and ischemic stroke risk
revealed no overall significant association of IL-10 with
ischemic stroke risk, but an association was found with
macrovascular disease and microvascular disease (71),
demonstrating that certain subtypes of ischemic stroke are
correlated to IL-10 gene polymorphisms.

In experimental stroke, the levels of IL-10 mRNA and protein
and IL-10R mRNA were elevated, with IL-10 observed in
microglia and IL-10R on astrocytes in the ischemic penumbra
(72). In transgenic mice that overexpressed IL-10, infarct size
was reduced, and apoptosis was limited 4 days post ischemic
stroke (73). Additionally, Overexpression of IL-10 enhances the
neuroprotective effect of mesenchymal stem cell transplantation
through anti-inflammatory regulation, thus supporting the
survival of neurons during acute ischemia (74). Both systemic
intravenous (IV) and central intracerebroventricular (ICV)
exogenous administration of IL-10 reduced infarct size after
permanent MCAO (pMCAO) (75). Moreover, low IL-10 levels
were related to poor stroke outcomes and a delayed, exacerbated
inflammatory response that was alleviated by IL-10
administration after pMCAO (76). Lower levels of IL-10 and
IL-33 may also be used to predict post stroke depression (77, 78).
The IL-10 expression in the brain tissue increases with
pathological changes of the central nervous system, promotes
the survival of gliocyte and neurons, and inhibits inflammatory
responses through multiple signaling pathways. Previous
Frontiers in Immunology | www.frontiersin.org 7
research showed that the significant decrease of IL-10 was
significantly associated with the degree of neurological
impairment, and the concentration of IL-10 had a high
predictive value on the early neurobehavioral performance
post-acute stroke (79). However, stroke patients are susceptible
to infection as a result of stroke-induced immunosuppression,
and elevated serum IL-10 levels have been identified as an
independent predictor of post-stroke infection (80, 81). IL-10
overreaction can lead to immunosuppression and worsening
neurological prognosis after stroke, indicating that IL-10
therapy should be used with caution (82). Elevated IL-10 levels
may be associated with higher incidence of post-stroke urinary
tract infection, leading to poorer recovery after ischemic stroke in
women (83, 84). In addition, IL-10 can mediate the function of
Th2 cells, exert a protective effect, and lead to the reduction of
ischemic infarction lesions (85). Future studies should be aimed
at differentiating between central and peripheral IL-10 effects
post-stroke.

7.1.1 The Mechanism of IL-10 in Inhibiting
Inflammatory Responses After Stroke
Immune cells, including T and B cells, are important in
ameliorating neuroinflammation via the modulation of
varieties of cytokines and chemokines, with IL-10 playing a
central immunomodulatory role (86, 87). The protective effect
of IL-10 on stroke is mainly achieved by inhibiting inflammatory
reactions. Firstly, IL-10 decreased the expression and activity of
pro-inflammatory cytokines such as IFN-g, IL-1b and TNF-a
through PI3K and STAT3 activation (Figure 3) (88). Secondly,
IL-10 inhibits the synthesis and activity of Th1 lymphocytes (89).
In addition, IL-10 treatment can effectively down-regulate the
up-regulated pro-inflammatory signals in acute ischemic lesions
after stroke, and can provide neuroprotection for ischemic stroke
(90). IL-10 gene transduction before cerebral artery ischemia can
alleviate brain damage induced by ischemia/reperfusion in rats
through increasing the expression of heme oxygenase (91). IL-10
also exert its anti-inflammatory effects partially through
inhibit ion of NF-kB (92). Hydrogen sulfide donor
administration during reperfusion protects the integrity of BBB
after ischemia/reperfusion and is accompanied by increased
IL-10 expression, reduced NF-kB nuclear translocation, and
MMP-9 and NOX4 activity (93). In MCAO mice, by reducing
the release of neuroinflammatory factors (IL-6, IL-1b, TNF-a)
and astrocyte activation, IL-32a overexpressing transgenic mice
showed reduced cell death of ischemic neurons and enhanced
anti-neuroinflammatory factor (IL-10), indicating a crosstalk
between IL-32a and IL-6, IL-1b, IL-10 (94). IL-10-secreting
CD4+ T cells induced by nasal MOG reduce injury following
stroke. IL-10 secreted from CD4+ T cells may be the reason of the
neuroprotection of oligodendrocyte glycoprotein administration
in MCAOmice (95, 96). Increased IL-10 levels also decreased the
number of CD11b+ cells that may contribute to secondary infarct
expansion via nitric oxide pathways (96). Expansion of the CNS
Treg cell population by administration of the CD28 superagonist
monoclonal antibody at the start of reperfusion decreased the
infarct volume 7 days after MCAO, and its effect was attributed
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to the increased IL-10 (97). Transfer of IL-10-producing B cells
into B cell-deficient mice 24 h after MCAO attenuated cerebral
ischemia-reperfusion injury, reduced the amount of T cells and
monocytes in cerebral parenchyma, and improved the peripheral
proinflammatory homeostasis (87). Interesting, IL-10-producing
B cells also upregulated the number of Tregs (87), suggesting that
there may be a positive feedback loop between B cells and Tregs,
both of which play a neuroprotective role through IL-10
production. These facts indicate a complicated network
between IL-10 and immune cells in ischemic stroke. These
methods of targeting IL-10 to prevent recurrence of stroke may
be realized in the interventional treatment of stroke.

7.1.2 The Role of IL-10 in Neurogenesis After
Ischemic Stroke
Injection of activated Tregs into the lateral ventricle of C57BL/6
mice 60 min after of transient ischemia promotes the
proliferation of neural stem cell in the subventricular region in
Frontiers in Immunology | www.frontiersin.org 8
ischemic brain tissues. Moreover, this effect was abolished by
blocking IL-10 with a neutralizing antibody, suggesting that
activated Tregs act through IL-10 to facilitate the proliferation
of neural stem cells (98). Hematopoietic cytokines such as GCSF
and stem cell factor have been confirmed to promote
neurogenesis (99), and also may be required to provide the
initial signals for IL-10 production in ischemic stroke (100).
Administration of these cytokines early (1–10 days) and later
(11–20 days) post MCAO significantly elevated the mRNA
expression of IL-10, reduced the activation of microglia/
macrophages, and did not change proinflammatory cytokine
levels in C57BL/6J mice (100). A study where bone marrow-
derived mesenchymal stem cells were transplanted into the
lateral ventricle of Sprague-Dawley rats before pMCAO yielded
similar results, where IL-10 mRNA and protein levels were
elevated 4 days post-stroke, TNFa was reduced, infarct size
was smaller, and neurologic function was improved (101).
IL-10 targets Nestin+ progenitors and activates neurogenesis by
FIGURE 3 | The role of IL-10 after ischemic stroke. B cells, CD4+ T cells, neurons, CD11b+ cells produce IL-10 after ischemic. IL-10 shows anti-inflammatory,
angiogenesis, and neurogenesis role after ischemic stroke.
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modulating ERK and STAT3 activity in adult subventricular
zone (102). Either administration of stem cells themselves or
hematopoietic cytokines may ameliorate ischemic stroke injury
partially through the increase of IL-10. Additionally,
neuroprotection after dysbiosis depends on IL-10 and IL-17.
IL-10 is required for Treg mediated IL-17+ gd T suppression
(103). Recently, it has been reported that IL-10 acts differentially
on ab and gd T cells. IL-17A producing CD4+ ab T cells are
directly controlled via their IL-10-receptor (IL-10R), whereas IL-
10 by itself has no direct effect on the IL-17A production in gd T
cells. The control of the IL-17A production in gd T cells
depended on an intact IL-10R signaling in Tregs (104).
8 IL-12 AND ISCHEMIC STROKE

During antigen presentation to naive T cells, IL-12, IL-23, and
IL-27 are produced by activated antigen-presenting cells, while
IL-35 is a product of B cells and Tregs (105). The primary target
cells of IL-12 are NK and T cells, which are stimulated to produce
cytokines, proliferative and cytotoxic activities (106). IL-12 is
produced early in infection and plays a pro-inflammatory role in
the immune response, and serve as a cofactor in the polarization
of T cell response to cell-mediated immunity (107).

Previous studies have confirmed that IL-12 plays an essential
role in the pathological process of acute ischemic stroke (108).
Cytokines are usually released in response to tissue injury, so
increase levels of IL-12 in serum in patients with acute cerebral
infarction are consistent with a rapid increase IL-12 levels in the
serum of patients with acute myocardial infarction and severe
brain injury (109). The increase of IL-12 in serum of stroke
patients appears to be a local or systemic immune response to
ischemic brain injury, and the increase of IL-12 in serum may be
caused by the release of cytokines from the infarcted brain region
or cerebrospinal fluid to the periphery. On the other hand,
stroke-activated cerebral endothelial cells secrete cytokines that
may activate peripheral blood monocytes, leading to systemic
expression of cytokines (110). An increase in the number of IL-
12 secreting monocytes and monocytes isolated from peripheral
blood of patients with cerebral ischemia has been demonstrated
(111, 112). In this case, the increase in serum IL-12 levels in
patients with stroke may be caused by cytokines.

IL-12 may promote the deterioration of ischemic brain injury
via cytokines by activating the ability of immunoreactive cells
and modulating their abilities in response to inflammation. IL-12
increases the production and action of several pro-inflammatory
cytokines and chemokines and promotes endothelial cells to
release adhesion molecules, which are potent chemical attractors
for different subsets of white blood cells, including monocytes
and neutrophils (113, 114). Additionally, in a mouse cancer
model, IL-12 gene therapy is associated with increased tissue
infiltration and apoptosis of NK and T cells, which are important
mechanisms of neuronal death induced by aggressive
inflammatory cells in the ischemic brain (115). At present, we
can know exactly that there is close correlation between
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increased levels of IL-12 in the ischemic stroke patients and
reaction intensity in acute phase, the size of the early brain
injury, neurological stroke severity and functional disability,
suggesting IL-12 may play a critical role in pathophysiology of
cerebral ischemia.
9 IL-13 AND ISCHEMIC STROKE

IL-13 is a protein secreted by activated T cells and is a powerful
regulator of human monocyte and B cell function in vitro (116).
IL-13 shares a common biological activity with IL-4 (117). IL-13
can induce the differentiation of mononuclear cell, inhibit LPS-
induced mononuclear factor secretion, control inflammatory
response, induce the proliferation of B cell and synthesize IgE
antibody, cooperate with IL-2 to stimulate NK cells to produce
IFN, thereby promoting mononuclear macrophage activation.

Previous studies have confirmed the indispensable role of
IL-13 in ischemic stroke. IL-13 exerts an effect on microglia and
infiltrating macrophages in the brain after stroke, and it can
regulate the spontaneous polarization transition from anti-
inflammatory to pro-inflammatory phenotype of microglia and
macrophages (118). As a well-known modulator of immune
response in vitro, IL-13 has been shown to have neuro-
protective abilities in several experimental models of
neurodegenerative diseases by significantly reducing the
secretion of pro-inflammatory factors, reducing inflammatory
cell infiltration, and inhibiting axonal loss as well as inducing
anti-inflammatory microglial/macrophage responses (119, 120).
Interestingly, interleukin-13 can also improve ischemic liver
gluconeogenesis and hyperglycemia in stroke model rats (121),
exerting a salutary action. That is, it has been demonstrated that
mesenchymal stem cells that continuously secrete IL 13 can
differentiate microglia and macrophages into neuroprotective
M2 phenotypes in the pro-inflammatory state of ischemic
stroke (122).
10 IL-15 AND ISCHEMIC STROKE

IL-15 can be produced by activated mononuclear macrophages,
epidermal cells and fibroblasts. Its molecular structure has many
similarities with that of IL-2, and it plays a similar biological activity
to IL-2 (123). IL-15 also has the ability to chemotaxis and promote
survival, and it can be involved in neuroinflammation. IL-15 also
acts as an effective chemotactic agent for T cells, promoting the
migration of T cells to inflammatory tissues (124). In addition, IL-15
maintains homeostasis and cytotoxic activity in lymphocytes (NK
and CD8+ T cells) carrying its receptor (125).

Although recent studies have shown that astrocytes are a major
source of IL-15 in the inflammatory central nervous system (126,
127), the potential role of IL-15 in astrocytes in cerebral ischemic
injury is not completely clear. However, significant increase in IL-15
expression in astrocytes post ischemia reperfusion has been
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observed. Subsequent studies have shown that IL-15 is a key factor
for astrocytes to control the degree of central nervous system
inflammation and brain injury following ischemic stroke (126).
Astrocytes produce inflammatory cytokines such as IL-15, which
promote the cell-mediated immune reaction to ischemic stroke,
increase the number of CD8+ T cells and NK cells, participating in
ischemic nerve injury. In addition, blockage of IL-15 decreased the
effector capacity of NK, CD8+ T and CD4+ T cells in WTmice after
CIRI, and the elimination of IL-15 response after CIRI improved
brain damage in adult mice (127). Moreover, IL-15 as a mediator of
the crosstalk between astrocytes and microglia that exacerbates
brain injury after intracerebral hemorrhage (128). Recently, IL-15
has been reported to modulates the response of cortical neurons to
ischemia through alleviating endoplasmic reticulum stress and
increasing cell survival (129). Therefore, therapy targeted IL-15 is
a potential strategy for cerebral ischemia.
11 IL-16 IN ISCHEMIC STROKE

IL-16 is a pro-inflammatory cytokine produced by activated
CD8+ T cells and activates CD4+ T cells, monocytes,
macrophages, and dendritic cells by binding to the CD4
molecule (130). In addition, IL-16 promotes the production of
inflammatory cytokines such as TNF-a, IL-1b, and IL-6, which
has key effects in immune responses after ischemic stroke (131).
Although the mechanism by which IL-16 acts as a mediator of
inflammation is not fully understood, previous study has shown
that IL-16 is involved in inflammatory disease through the
activation of T lymphocytes and the expression of
inflammatory cytokines (132). In the early stage of cerebral
ischemia, T lymphocytes are activated to release reactive
oxygen species, which eventually lead to brain damage. In later
stages, T lymphocytes regulate brain recovery and regeneration.
The depletion of T cells in the acute phase of ischemia reduces
the infarction size and has a sustained protective action against
ischemic stroke in the later stages of infarction development
(133). IL-16 accumulates during injury-related response areas
and perivascular areas through the infiltrated immune cells (e.g.,
neutrophils, CD8+ lymphocytes, and activated CD68+ microglia/
macrophages) (134). The recruitment and activation of immune
cells lead to microvascular aggregation and disorder of BBB,
leading to secondary injury.
12 IL-18 IN ISCHEMIC STROKE

IL-18 is known as a pro-inflammatory cytokine. IL-18 expression
is mainly observed in neuronal cells at early phase and in
microglia at a later stage. IL-18 is associated with stroke-
induced inflammation and that initial serum IL-18 levels may
be predictive of stroke outcome. IL-18 KO mice exhibit the
resistance to spatial restraint stress and CIRI (135). Caspase-1
activated by NLRP3 inflammasome, cleavage pro-IL-1b and
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pro-IL-18 to mature forms (IL-1b and IL-18), and mediate the
inflammatory response or initiate the process of inflammatory
cell death and pyrolysis. In addition, increased IL-18 in the brain
causes depression-like behaviors by promoting the IL-18
receptor/NKCC1 (a sodium-potassium chloride co-transporter)
signaling pathway. Hence, agents that inhibits NLRP3
inflammasome exert a neuroprotective effect on ischemic
stroke and post-stroke depression via suppressing the
expression of IL-18.
13 IL-19 AND ISCHEMIC STROKE

IL-19 is a member of the IL-10 family, which includes IL-10,
IL-19, IL-20, IL-22, IL-24, and IL-26 (136). IL-19 was first
discovered in primary human monocytes stimulated by LPS
and GM-CSF (137). Subsequent reports on IL-19 mainly
focused on its role as a product of immune cells. In immune
cells, IL-19 is mainly secreted by monocytes, and a small part is
expressed by B cells. It has been reported that IL-19 treatment
can mature human T cell polarize them from pro-inflammatory
Th1 phenotype to anti-inflammatory Th2 phenotype (138, 139).
In addition, the anti-inflammatory effect of IL-19 on vascular
diseases has also been clearly demonstrated (140).

As an anti-inflammatory factor, IL-19 also exerts a critical
action in the immune reaction after the onset of ischemic stroke.
Studies have shown that IL-19 can reduce infarct size and reduce
neurological impairment after ischemic stroke through its anti-
inflammatory ability (141). Moreover, IL-19 treatment can
significantly reduce the up-regulation of TNF-a and IL-6
mRNA expression after ischemic stroke, inhibit the increase of
microglia, macrophages, CD4+ T cells, CD8+ T cells, and B cells,
and suppress the activation of macrophages and neutrophils. The
administration of IL-19 also contributes to preserve the reduced
number of immune cells, including macrophages, CD4+ T cells,
CD8+ T cells, and B cells in peripheral blood compared to
controls. In conclusion, IL-19 reduces cerebral infarction and
neurologic deficits after cerebral ischemia in mice, possibly by
inhibiting the infiltration and activation of immune cells and the
increased expression of pro-inflammatory cytokine genes.
Therefore, IL-19 may be identified as a new therapeutic agent
to suppress the development of neuroinflammation after
ischemic stroke.
14 IL-20 IN ISCHEMIC STROKE

IL-20 is also a member of the IL-10 family, and is produced by
monocytes, epithelial cells, and endothelial cells. IL-20 has been
related to a variety of inflammatory diseases, such as psoriasis,
rheumatoid arthritis, atherosclerosis, and renal failure (142). IL-
20 also induces the production of IL-6 (143), which is also a
major pro-inflammatory cytokine. In addition, the levels of IL-6
in serum are correlated with cerebral infarction volume and
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stroke severity. IL-20 may be associated with the increased IL-6
levels in serum after ischemic stroke.

14.1 IL-20 Promotes Inflammation After
Ischemic Stroke
The pathogenicity of IL-20 in ischemic brain injury has been
demonstrated in transient MCAO animal models. After cerebral
ischemia reperfusion, the levels of IL-20 in serum and ischemic
penumbra were significantly elevated than sham groups, and
glial cells were the main source of IL-20. After cerebral ischemia,
hypoxia also induces the production of IL-20 in endothelial cells
(144). The upregulation of IL-20 on glial pro-inflammatory
cytokines and chemokines (may cooperate with IL-1b
to promote inflammatory activity) is associated with
inflammatory response and brain damage after ischemic stroke
(145). Inflammatory cytokines and chemokines such as IL-1b,
IL-8 and monocyte chemotactic protein 1 (MCP-1) are involved
in the inflammatory response of infarcts (146). In conclusion, IL-
20 is a novel hypoxia response factor that is upregulated in
gliocyte after experimental ischemic stroke and mediates cell
proliferation, signal transduction, and cytokine production.
These suggest that IL-20 is related to the pathogenesis of
cerebral ischemia, and IL-20 antagonists may have clinical
therapeutic effects on ischemic stroke.
15 IL-23/IL-17

The IL-23/IL-17 axis has essential effect on the development of
chronic inflammation and host defense against bacterial infection
(147). In chronic inflammation, antigen-stimulated dendritic cells
and macrophages produce IL-23, promoting the development of
Th17 cells (148). Th17 cells produce IL-17, which promotes T cell
activation by inducing the expression of various of inflammatory
cytokines and triggers a powerful inflammatory response. IL-23
also acts on dendritic cells and macrophages in an autocrine/
paracrine manner to promote the production of inflammatory
cytokines, such as IL-1, IL-6, and TNF-a (149).

15.1 IL-23/IL-17 in Ischemic Stroke
Studies have shown that routine CD172a+/IRF4+ 2 type dendritic
cells (CDC2s) are the main source of IL-23 in the brain following
ischemic stroke, and are essential for IL-17 expression in gdT
cells (148). Dendritic cells infiltrate the peri-infarcted area near
the blood vessels after stroke. These cells induce gdT cells to
produce IL-17, promoting neutrophil recruitment to the
ischemic hemisphere (150). However, IL-23R gene knockout
has no significant effect on the mortality in mice, suggesting
that DC cells exert their adverse effects not only through IL-23,
but also through other mechanisms (148). Additionally, IL-23
and IL-17 have been reported to increase after stroke, but there is
insufficient clinical discriminatory power to predict the outcome
of stroke (151). Vg4 T cell-derived IL-17A, and IL-1b/IL-23 in
infract hemisphere coordinately to exaggerate the inflammatory
cascades and exacerbate ischemic tissue injury (152).
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16 IL-33 AND ISCHEMIC STROKE

As a member of the IL-1 family, IL-33 can bind to membrane
receptors on target cells to mediate downstream signaling
pathways, or be transported to the nucleus of target cells to
function as a DNA-binding factor. After IL-33 binds to its
receptor complex, activated signals transmits into cells, and
activates NF-kB and mitogen-activated protein kinase (MAPK)
through a series of downstream signaling molecules such as IL-1-
associated protein kinase, myeloid differentiation factor 88, and
TNF receptor-associated factor 6 (153).

IL-33 has been reported to have neuroprotective effects
through inhibiting inflammation via ST2 (a member of the
IL-1 receptor family)/IL-33 signaling (154, 155). After ischemic
brain injury, IL-33 expression in mature oligodendrocytes and
astrocytes is increased. Interleukin-33 also protects against
ischemic brain injury by regulating microglia and regulatory T
cell activity (156). Serum IL-33 has been proved to be a novel
predictive biomarker of hemorrhage transformation and
outcome in acute ischemic stroke (157). The expression of ST2
on microglia/macrophages increases after MCAO. ST2
deficiency can exacerbate neurobehavioral disorders and brain
damage via shifting microglial polarization toward M1. Some
traditional oriental medicine, such as celastrol, ameliorate
ischemic stroke injury through promoting IL-33/ST2 axis-
mediated microglia/macrophage M2 polarization (158). IL-33
also protects ischemic stroke injury by regulating specific
microglial activities (159). IL-10 is an essential protective factor
for the neuroprotection of IL-33/ST2 signaling. In the ischemic
brain, intracerebroventricular IL-33 can activate the downstream
Foxp3 via ST2 receptor to increase Treg proportions, which
produce amphiregulin to activate epidermal growth factor
receptor located in neurons, leading to better outcomes (160).
In addition, systemic administration of Th2 cells to promote
cytokines IL-33 and IL-4 can reduce acute brain injury after CIRI
(154). Astrocyte lipogenesis increases IL-33 production in the
peri-infarct region, which promotes BBB repair in the subacute
phase of cerebral ischemic injury and improves long-term
functional recovery (161). The long-term protective role of
IL-33 in ischemic stroke may be partly associated to its
regulation of splenic T-cell immune responses via inhibiting
Th1 response and promoting Treg response (162). Although
IL-17 has these neuroprotective effects, mice treated with IL-33
showed an exacerbation of post-stroke pulmonary bacterial
infection associated with greater functional impairment and
mortality after 24 hours, suggesting exacerbation of systemic
immunosuppression after ischemic stroke (163).
17 OTHER ILS IN ISCHEMIC STROKE

IL-5 and IL-9 are decreased in severe stroke patients acute
ischemic stroke patients with poor outcome than mild stroke
(164). It had been indicated that IL-5 and IL-7 may be predictors
of edema and infarct volume (165). In experimental stroke,
expressions of IL-9 and its upstream stimulating factors has
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been confirmed to be increased (166). Anti-IL-9-neutralizing
antibody can ameliorate ischemic stroke injury partially by
alleviating the destruction of the BBB via down-regulation of
astrocyte-derived VEGF-A (167). In OGD, IL-9 has a destructive
effect on the BBB, partly by decreasing eNOS production (168). IL-
21 polymorphism is related to the increased susceptibility to
ischemic stroke possibly by upregulating gene expression (169).
IL-21R-deficient mice have reduced collateral vascular
connections and increased brain infarct volume, suggesting that
IL-21R regulates collateral vascular anatomy and innate
neuroprotection. The neuroprotective effects of IL-21R are
mediated through the JAK/STAT signaling pathway and
upregulation of caspase 3 (170). IL-22 exerts a protective action
through regulating the JAK2-STAT3 pathway to improve
oxidative stress, inflammation, and neuronal apoptosis following
CIRI (171). IL-32 silence protects PC12 cells against OGD/R-
induced injury via activation of Nrf2/NF-kB pathway (172).
Increased serum IL-34 levels may be a novel diagnostic and
prognostic biomarker in patients with acute ischemic stroke
(173). Increased serum IL-37 in ischemic stroke patients is
correlated with stroke recurrence (174) and 3-month functional
prognosis (175). However, another study has illustrated that IL-37
exert protective effects by modulating post-stroke inflammation in
the brain and periphery (176). Large randomized controlled trials
are needed to further verify the role of IL-37 in ischemic stroke.
The lower changes in IL-38 serum level lead to a poorer prognosis,
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indicating that IL-38 serum changes might be a novel early
predictor factor for ischemic stroke prognosis (177) (141).
18 CONCLUSIONS AND PERSPECTIVES

In summary, we have briefly discussed the functional role of
interleukins and their relationships with ischemic stroke. Based
on the classification of the effect of interleukin on the immune
response after stroke, interleukins can be roughly divided into
anti-inflammatory and pro-inflammatory categories. IL-1b, IL-
6, IL-8, IL-12, IL-15, IL-16, IL-20, IL-18, IL-23/IL-17 and so on
play a pro-inflammatory role after ischemic stroke (Figure 4).
ILs that have anti-inflammatory effects on ischemic stroke
include IL-2, IL-4, IL-10, IL-13, IL-19, IL-33 and so on
(Figure 5). However, the IL family contains so many ILs, the
complicated roles of ILs in ischemic stroke cannot be discussed
in detail in this brief overview. After ischemic stroke, ischemia
leads to vascular endothelial damage and induces immune
responses. The action of these ILs on local or systemic
immune cells, or the interaction of these ILs, determines the
progress of immune response in the ischemic brain. From a
macroscopic perspective, it is their interactions that determine
the degree of neurological impairment and clinical prognosis of
ischemic stroke patients. Therefore, interleukins play an
important role in the immune mechanism of ischemic stroke.
FIGURE 4 | Pro-inflammatory ILs in ischemic stroke. After ischemic stroke, IL-1b aggravates cerebral infarction injury by polarization of microglia/macrophages to
M1 phenotype, BBB dysfunction, and apoptosis. IL-6 activates the JAK/STAT pathway to promote the expression of pro-cytokines. IL-8 promotes the activation and
infiltration of neutrophils into cerebral infarction. IL-12 promotes the expression of chemokines and pro-inflammatory mediators, promotes apoptosis, exerting a pro-
inflammatory effect. IL-15 increases the number of CD4+, CD8+, and NK cells. IL-16 activates CD4+ cells and increases the levels of TNF-a, IL-1, and IL-6. IL-18
promotes the polarization of microglia/macrophages to the M1 phenotype and enhances the pro-inflammatory response. IL-20 promotes the expression of pro-
inflammatory cytokines of MCP-1 and glia pro-inflammatory cytokines. IL-23/17 activates Th17 cells, which secrete IL-17 to increase the number of T cells,
macrophages, and DC cells.
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This also urges us to make continuous progress and search in
this field, in order to find a breakthrough method for clinical
treatment of ischemic stroke, which is a worldwide problem,
and bring hope to stroke patients.
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