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Objective: Glioma is the most frequent type of malignant cerebral tumors. DNA damage
repair genes (DDRGs) play a crucial role in the development of cancer. In this study, we
constructed a DDRGs signature and investigated the potential mechanisms involved in
this disease.

Methods: RNA sequence data, microarray data, and corresponding clinical information of
gliomas were downloaded from The Cancer Genome Atlas (TCGA), Chinese Glioma
Genome Atlas (CGGA), and Gene Expression Omnibus (GEO). Subsequently, we
identified candidate genes by differential analysis and Cox regression analysis. The least
absolute shrinkage and selection operator Cox regression model was utilized to construct
a DDRGs signature using TCGA training dataset. According to this signature, patients with
glioma were divided into low- and high-risk groups. The predictive ability of the signature
was validated by prognostic analysis, receiver operating characteristic curves, principal
component analysis, and stratification analysis in TCGA testing and CGGA verification
datasets. CIBERSORT and single-sample gene set enrichment analysis (ssGSEA) were
used to evaluate the immune microenvironment of glioma. Moreover, we conducted
GSEA to determine the functions and pathways in the low- and high-risk groups. Finally, a
nomogram was constructed by combining the signature and other clinical features.

Results: A total of 1,431 samples of glioma (592 from TCGA, 686 from the CGGA, and
153 from the GEO) and 23 samples of normal brain tissue from the GEO were analyzed in
this study. There were 51 prognostic differentially expressed DDRGs. Additionally, five
DDRGs (CDK4、HMGB2、WEE1、SMC3 and GADD45G) were selected to construct a
DDRGs signature for glioma, stratifying patients into low- and high-risk groups. The
survival analysis showed that the DDRGs signature could differentiate the outcome of the
low- and high-risk groups, showing that high-risk gliomas were associated with shorter
overall survival. The immune microenvironment analysis revealed that more
immunosuppressive cells, such as tumor associated macrophages and regulatory
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T cells, were recruited in the high-risk group. GSEA also showed that high-risk glioma was
correlated with the immune and extracellular matrix pathways.

Conclusion: The five DDRGs signature and its impact on the infiltration of
immunosuppressive cells could precisely predict the prognosis and provide guidance
on the treatment of glioma.
Keywords: glioma, DNA repair, tumor microenvironment, prognosis, immune cells
INTRODUCTION

Glioma is the most common type of primary tumors of the central
nervous system (CNS), accounting for approximately 70% of cases.
It is also a major cause of death among patients with intracranial
tumors (1). Patients with glioma are primarily treated with surgical
resection, radiotherapy, chemotherapy, and a combination of
different therapies. The National Comprehensive Cancer Network
guideline recommends chemoradiation with or without tumor-
treating fields (TTF) for the adjuvant treatment of primary
glioblastoma (GBM). However, the prognosis of GBM remains
poor, mainly due to the high risk of recurrence and resistance to
chemoradiotherapy (2–4). In addition, gliomas do not have clear
boundaries and are characterized by high degrees of infiltration via
diffusion and a high proliferation rate, thereby complicating surgical
resection (5). Recently, some new therapies have been proposed for
numerous types of cancer, including immunotherapy and
molecular targeted therapy. Randomized controlled clinical
studies have shown that these treatments could significantly
improve the survival of patients with lung cancer, colorectal
cancer, and numerous other types of tumors (6–8). However,
some clinical trials have found that these therapeutic modalities
are not as effective in patients with glioma. Some researchers
argued that this may be attributed to differences in the
microenvironments of gliomas and other types of cancer (9).

Radiotherapy and chemotherapy can cause DNA double-
strand breaks in tumor cells, which in turn trigger cell
apoptosis and death. The DNA damage repair mechanism of
tumor cells is abnormally activated; it mainly repairs damaged
DNA by homologous recombination and non-homologous end
joining. Following DNA double-strand breakage, DNA damage
receptors are activated and damage repair proteins, such as
BRCA1 DNA repair associated (BRCA1), BRCA2, and RAD51
recombinase (RAD51), are recruited at the damaged sites to
repair damaged DNA this process leads to complete resistance to
the tumoricidal effect of chemoradiotherapy (10). The alkylating
agent temozolomide (TMZ), which can induce DNA breaks in
glioma cells and subsequently lead to cell death, is one of the
major therapeutic approaches used in patients with glioma. O-6-
methylguanine-DNA methyltransferase (MGMT) encodes a
DNA damage repair protein that protects tumor cells against
DNA double-strand breaks caused by alkylating agents, such as
TMZ. Some researchers have demonstrated that the expression
levels of MGMT could predict sensitivity to TMZ in patients with
glioma (11). Therefore, DNA damage repair genes (DDRGs) play
an important role in tumor resistance to chemoradiotherapy.
2

DNA repair deficiency is also an emerging biomarker of
response to immune checkpoint blockade (12). Alterations
in DDRGs are associated with genomic instability and
increased somatic tumor mutational burden, which in turn
promote the generation of tumor-specific neoantigens. The
continuous stimulation of the body by tumor antigens
generates a persistent immune activation response. This effect
depletes or remodels the related effector cells in the tumor
microenvironment, thereby impairing their normal functions.
In turn, an immunosuppressive microenvironment is generated
that promotes tumorigenesis and progression (13). Thus, the
tumor microenvironment contains more neoantigens and the
function of immune cells of the tumor microenvironment
becomes more complex, especial ly with regards to
immunosuppressive cell infiltration. At present, there are few
studies on the interaction between DDRGs and the tumor
microenvironment of gliomas.

In this study, we collected RNA sequencing data, microarray
data, and corresponding clinical information of gliomas from
The Cancer Genome Atlas (TCGA), Chinese Glioma Genome
Atlas (CGGA), and Gene Expression Omnibus (GEO) databases.
Next, we identified survival-related DDRGs by univariate
regression analysis. Subsequently, a DDRGs signature for
prognostic prediction was constructed using least absolute
shrinkage and selection operator (LASSO) regression and Cox
proportional hazards regression. The DDRGs signature
composed of CDK4, HMBG2, WEE1, SMC3 and GADD45G
could accurately predict the prognosis of gliomas. More
importantly, we found that the DDRGs signature was strongly
associated with immunosuppressive cell infiltration in the
microenvironment of gliomas. Our results demonstrated that
the DDRGs signature was closely related to prognosis and
provided reliable clues for elucidating the microenvironment
of glioma.
MATERIALS AND METHODS

Data Acquisition and Identification of
Candidate Genes
RNA sequencing data and corresponding clinical information
from TCGA LGG and GBM datasets were downloaded from
TCGA data portal (https://portal.gdc.cancer.gov/) updated to
July 19, 2019. Gene expression profiling and corresponding
clinical features of gliomas were obtained from the CGGA
database (http://www.cgga.org.cn/) up to May 6, 2020,
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including the datasets mRNAseq-693 and mRNAseq-325. The
microarray dataset GSE4290 for differential gene analysis was
downloaded from the GEO database (https://www.ncbi.nlm.nih.
gov/geo). RNA sequencing data from TCGA (LGG and GBM
datasets) and CGGA (693 and 325 datasets) were normalized and
batched using the limma R package. All data were screened to
remove samples with missing clinical information. The
clinicopathological characteristics of patients in this study are
presented in Table 1. A total of 513 DDRGs were retrieved from
the molecular signature database (MSigDB) (https://www.gsea-
msigdb.org/gsea/msigdb) and previous literature (14)
(Supplementary Table S1). Differentially expressed DDRGs
between gliomas and normal brain tissues the GSE4290 dataset
were identified using the limma R package and the following
criteria: |logFC|>1; false discovery rate <0.05. Next, data from
TCGA were randomly divided into the training and testing
datasets. Candidate genes in TCGA training dataset were
identified through univariate Cox analysis with cut-off values
of P<0.001. An interaction network of candidate genes was
constructed using the Search Tool for the Retrieval of
Interacting Genes (STRING) database (version 11.0) (15).

Construction and Validation of a
DDRGs Signature
Candidate genes were analyzed using LASSO regression and Cox
proportional hazards regression. The independent variable in the
regression was the expression of candidate DDRGs, and the
response variable was the prognosis of patients in the training
set. Subsequently, the DDRGs signature was constructed by a
Frontiers in Oncology | www.frontiersin.org 3
linear combination of the regression coefficient multiplied by its
mRNA expression level:

riskScore =o
n

j=1
(Coefj ∗Xj)

Using the formula shown above, we can calculate the risk
score for each patient with glioma. Patients were separated into
high- and low-risk groups according to the median score.
Prognostic analysis was performed with the survminer package
in R.

Principal component analysis (PCA) was performed to
explore the distribution in the low- and high-risk groups using
the Rtsne package, an established dimensionality reduction
method (16). Using the survivalROC R package, we
constructed a time-dependent receiver operating characteristic
(ROC) curve and Harrell’s concordance index to assess the
predictive value of the DDRGs signature for prognosis. The
online database Gene Expression Profiling Interactive Analysis
(GEPIA; http://gepia.cancer-pku.cn/index.html) (17) was used to
analyze the expression and prognosis of genes constituting the
DDRGs signature in glioma. In addition, the protein expression
levels of these genes were determined using the Human Protein
Atlas (http://www.proteinatlas.org) online database (18).

Internal and External Validation of the
DDRGs Signature
TCGA testing and CGGA datasets were used for internal and
external validation, and a risk score could be calculated for each
patient with glioma using the formula shown above. Based on the
TABLE 1 | Clinicopathological characteristics of glioma patients from the TCGA, CGGA and GEO databases.

TCGA-Training cohort TCGA-Testing cohort CGGA validation cohort GSE4290
N = 294 N = 298 N = 686 N = 176

Age
<42 114 129 307 NA
≥42 180 169 379 NA

Gender
Male 173 171 399 NA
Female 121 127 287 NA
Normal Tissue NA NA NA 23
Grade
II 101 110 177 45
III 116 122 226 31
IV 77 66 283 77
IDH
Wild 116 104 315 NA
Mutation 178 194 371 NA
1p/19q
Codel 69 80 141 NA
Non-codel 225 218 545 NA
MGMT
Methylated NA NA 386 NA
un-methylated NA NA 300 NA
Status
Dead 91 82 457 NA
Alive 203 216 229 NA
RiskScore
Low 141 151 343 NA
High 153 147 343 NA
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median values, patients were divided into high- and low-risk
groups. Next, the prognostic analysis, PCA, and construction of
the time-dependent ROC curve of each patient were performed
using R. Univariate and Multivariate Cox regression analyses
were used to identify independent prognostic factors.

Survival Analysis of the DDRGs Signature
in Stratified Patients With Glioma
In this study, patients with glioma were stratified according to
their clinicopathological features including age, sex, primary-
recurrent-secondary (PRS) type, grade, IDH, 1p19q, and MGMT
status. The Kaplan–Meier survival analysis was implemented to
calculate the survival rates in the low- and high-risk groups of
stratified patients.

Construction of a Predictive Nomogram
In clinical research, nomograms are widely used to predict the
outcomes of patients with cancer (19). In the CGGA cohort, all
clinical features were utilized for the construction of a
nomogram to investigate the probability of 1-, 2-, and 3-year
overall survival (OS) of patients with glioma using the rms R
package. A calibration curve was used to compare the predictions
of this nomogram with the actual rates using the rms package.
Specifically, the C-index was used as a discrimination measure
considering the censored data in this survival analysis study. To
demonstrate the incremental value of the DDRGs signature over
the clinicopathological characteristic for individualized
assessment of OS, the decision curve was constructed.

Evaluation of the Glioma Microenvironment
Through CIBERSORT and Single-
Sample Gene Set Enrichment
Analysis (ssGSEA)
CIBERSORT (20) utilizes a deconvolution algorithm to predict the
percentages of 22 phenotypes of immune cells in tumor tissue. This
method was used to estimate the population fractions of
immunocytes in the low- and high-risk groups. Violin plots were
generated using the vioplot package to show differences in the
infiltration of immunocytes between the high- and low-risk groups.
In addition, the degree of immune cell infiltration was quantified
using enrichment scores calculated through ssGSEA of the Gene
Set Variation Analysis package of the R software. This analysis
yielded 29 immune infiltration-related information, including
immune cell species, immune function, and immune-related
pathways. The patients of glioma were hierarchically clustered to
high, medium or low immune group based on ssGSEA scores for
those 29 immune infiltration related information.

Gene Set Enrichment Analyses
Finally, we searched for the underlying molecular mechanism
through which the DDRGs signature indicated worse prognosis
in patients with glioma using the GSEA 4.0.2 software (21).
We used the MsigDB, c2.cp.kegg.v7.2.symbols.gmt and
c5.go.bp.v7.2.symbols.gmt as the functional gene sets. Default
weighted enrichment statistics were used, and the number of
random combinations was set to 1,000. A normalized
Frontiers in Oncology | www.frontiersin.org 4
enrichment score (NES) >1 and false discovery rate <0.05
denoted statistical significance.

Statistical Analysis
The R software (4.0.0) with corresponding packages and
GraphPad Prism 7 (GraphPad Software Inc., San Diego, CA,
USA) were used for statistical analyses. Unless specified otherwise
above, P<0.05 denoted statistically significant differences.
RESULTS

Characteristics of Patients With Glioma
The flow chart of this research study is shown in Figure 1. Gene
expression profile and clinical information of gliomas were
obtained from clinical databases with large sample sizes.
Patients with incomplete clinical information were removed. In
total, 1,431 samples of glioma and 23 normal brain tissues were
obtained from TCGA-LGG, TCGA-GBM, CGGA, and GSE4290
datasets. The detailed clinical features of gliomas collected from
the articles are summarized in Table 1.

Data Preprocessing and Identification of
Candidate Genes
We analyzed differentially expressed genes (DEGs) between
gliomas and normal brain tissues in the GSE4290 cohort using
the Wilcoxon test; the microarray data included a total of 153
samples of glioma and 23 normal brain tissues. According to the
screening criteria (|logFC|>1, false discovery rate <0.05), a total
of 2,450 DEGs were identified. Among those, 1,450 were
upregulated and 1,425 were downregulated (Figure 2A). In
addition, 513 DDRGs were retrieved from the MSigDB
(https://www.gsea-msigdb.org/gsea/msigdb) and previous
literature (14) (Supplementary Table S1). We found that 51
genes were both DEGs and DDRGs (Figure 2B). The gene
expression profiles of these genes are displayed through
heatmaps (Figure 2C). Figure 2D illustrates the interaction of
these 51 genes in the protein–protein interaction network. Next,
TCGA data were randomly divided into two datasets (294 and
298 patients in the training and testing datasets, respectively)
(Table 1). Univariate independent prognostic analysis was
performed for these 51 genes in TCGA training dataset. A
total of 43 genes were significantly associated with prognosis
(Figure 2E). In addition, we used the Metascape website to
analyze the function of these genes. As expected, these 43
DDRGs were involved in DNA damage repair processes and
cell cycle pathways (Supplementary Figure S1).

Construction of a Prognostic Model Using
the Training Dataset
The 43 candidate genes were subsequently analyzed using LASSO
regressionandCoxproportionalhazards regression.The independent
variable in the regressionwas theexpressionprofilesof thesecandidate
genes, and the response variables were the clinical features of gliomas
in TCGA training dataset (Figures 2F, G). Next, five risk genes
May 2021 | Volume 11 | Article 682932
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(CDK4, HMGB2, WEE1, SMC3, and GADD45G) were identified
(Table 2). The DDRGs signature was calculated as follows:
RiskScore=0.307*CDK4expression+0.356*HMGB2expression+0.445*
WEE1 e x p r e s s i o n+ (−0 . 453*SMC3e x p r e s s i o n )+ (−0 . 371 *
GADD45Gexpression). The forest map of Cox regression analysis
indicated that SMC3 and GADD45G were positively correlated
with the prognosis of patients with glioma, whereas CDK4, WEE1,
and HMGB2 were negatively correlated with prognosis
(Figure 2H). To further investigate the properties of these five
DDRGs, we retrieved their expression levels and impact on the
prognosis of patients with glioma in the GEPIA website. In
agreement with the results of a previous differential analysis, the
expression levels of these five genes were higher in both LGG and
GBM than in normal brain tissue (Supplementary Figures S2A–
E). In terms of prognostic analysis, consistent with our previous
results, high expression of CDK4, HMGB2, and WEE1 could lead
to poor prognosis of glioma; however, gliomas with high expression
of SMC3 and GADD45G were linked to longer survival
(Supplementary Figures S2F–J). Subsequently, we investigated
the proteins encoded by these five genes in patients with glioma
using the Human Protein Atlas database. The previously described
protein expression profile and gene expression levels were similar,
and CDK4, HMGB2, WEE1, SMC3, and GADD45G exhibited
medium staining intensity. However, their corresponding
expression levels in normal brain tissues were not detected, or
the staining intensity was low (Supplementary Figures S3A–E).
Each patient could be scored according to this formula; patients
with glioma in TCGA training dataset were divided into high-risk
Frontiers in Oncology | www.frontiersin.org 5
and low-risk groups (n=147, respectively) according to the median
score (Figure 3A). A heatmap was used to describe the expression
of these five DDRGs in different groups (Figure 3B). In the high-
risk group, CDK4, HMGB2, andWEE1 were upregulated, whereas
SMC3 and GADD45G were downregulated. Figure 3C suggests
that patients in the high-risk group were associated with a higher
mortality rate and shorter survival than those in the low-risk group.
Consistently, based on the Kaplan–Meier curve, patients in the
low-risk group had a significantly better OS (hazard ratio [HR]
=8.17, 95% confidence interval [CI]: 4.53–14.73, P<0.001) than
those in the high-risk group (P<0.01) (Figure 3D). Following the
classification of patients with glioma into high- and low-risk groups
according to the risk model, PCA was performed. The results
revealed that the patients in different risk groups were distributed
in two directions (Figure 3E). Time-dependent ROC curves were
constructed to further evaluate the accuracy of the DDRGs
signature for predicting prognosis. The area under the curve
values for 1-, 2-, and 3-year survival were 0.913, 0.929, and
0.918, respectively (Figure 3F). The calculated C index was to be
0.769 in the training TCGA cohort.

Analysis of the DDRGs Signature
Using TCGA Testing and CGGA
Validation Datasets
We further clarified the role of the DDRGs signature in
predicting prognosis in patients with glioma by performing
analysis using TCGA testing and CGGA validation datasets.
Scores for each patient were calculated using the formula shown
FIGURE 1 | Flow chart of this study.
May 2021 | Volume 11 | Article 682932
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above, and patients were divided into high- and low-expression
groups based on the corresponding median score
(Supplementary Figures S4A–D). The distribution of patients
in TCGA testing and CGGA cohorts was presented in
Figures 4A, B. High-risk patients in the TCGA training
dataset had a shorter OS (HR=9.96, 95% CI: 5.47–18.13,
P<0.001), in the external CGGA validation dataset were same
as TCGA dataset (HR=4.74, 95% CI: 3.87–5.80, P<0.001)
(Figures 4C, D). PCA revealed that patients in the two
subgroups were distributed in discrete directions in both
TCGA testing and CGGA datasets (Figures 4E, F). In
addition, in the TCGA testing dataset, the area under the curve
values of the DDRGs signature for 1, 2, and 3 years were 0.826,
Frontiers in Oncology | www.frontiersin.org 6
0.920, and 0.948, respectively; in the CGGA dataset, these values
were 0.740, 0.814, and 0.815, respectively (Figures 4G, H). The
C-indexes were 0.722 and 0.819 in testing TCGA and validation
CGGA sets.

Independent Prognostic Value of the
DDRGs Signature
Univariate and multivariate Cox regression analyses were
performed to assess whether DDRGs signature was an
independent prognostic indicator. In the TCGA database,
Univariate Cox regression analysis demonstrated that the risk
scores were associated with the overall survival rate of glioma
patients(HR=5.103, 95%CI=3.407-7.620, P<0.001). Multivariate
A B

D

E

F G
H

C

FIGURE 2 | Screening candidate genes and construction a DNA damage repair genes (DDRGs) signature using LASSO regression and Cox proportional hazards
regression. (A) Volcano plot of differentially expressed genes (DEGs) between gliomas and normal brain tissues. (B) Venn diagram showing the intersection of DEGs
and DDRGs. (C) Heatmap was used to show the expression of the genes at the intersection. (D) The protein–protein interaction (PPI) network downloaded from the
STRING database indicated the interactions among the candidate genes. (E) Forest plot showing the hazard ratios from the univariate Cox regression analysis.
(F) LASSO coefficient profiles of the 43 candidate genes in TCGA training dataset. (G) A coefficient profile plot was generated against the log (lambda) sequence.
Selection of the optimal parameter (lambda) in the LASSO model for TCGA training dataset. (H) Forest plot showing the five genes that composed the DDRGs
signature. LASSO, least absolute shrinkage and selection operator; STRING, Search Tool for the Retrieval of Interacting Genes; TCGA, The Cancer Genome Atlas.
**p < 0.01,***p < 0.001.
TABLE 2 | The information of 5 DNA repair genes constructing the prognostic risk model.

Gene symbol Description Ensemble ID Category Coeffcient HR (95%CI) Pvalue

CDK4 Cyclin Dependent Kinase 4 ENSG00000135446 Protein Coding 0.31 1.36 (1.15-1.61) <0.01
HMGB2 High Mobility Group Box 2 ENSG00000164104 Protein Coding 0.36 1.43 (0.98-2.08) 0.06
WEE1 WEE1 G2 Checkpoint Kinase ENSG00000166483 Protein Coding 0.45 1.56 (1.18-2.06) <0.01
SMC3 Structural Maintenance Of Chromosomes 3 ENSG00000108055 Protein Coding -0.45 0.64 (0.46-0.88) 0.01
GADD45G Growth Arrest And DNA Damage Inducible Gamma ENSG00000130222 Protein Coding -0.37 0.69 (0.57-0.83) <0.01
May 2021
 | Volume 11 | Article
 682932
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Cox regression analysis revealed that the risk scores were
independent risk factors for predicting the overall survival rate
of glioma patients(HR=2.967, 95%CI=1.627-4.823, P<0.001).
The results were validated in the CGGA (Supplementary
Figures S5A–D).

Prediction of Outcome by the DDRGs
Signature in Stratified Patients
We subsequently sought to validate the prognostic role of the
DDRGs signature in gliomas with different clinical
characteristics. Survival analysis was performed for patients
from the CGGA dataset who were divided according to their
age (<42, ≥42), sex (female, male), PRS type (primary, recurrent),
grade (II, III, IV), IDH (mutation, wild), 1p19q (co-deletion
[codel], non-codel), and MGMT status (methylated,
unmethylated). The Kaplan–Meier analysis showed that a low
risk score was linked to longer OS than a high risk score in all
stratified patients (Figures 5A–O). Consistent results were
obtained from TCGA dataset (Supplementary Figures S6A–J).
Interestingly, we noted that all stratified patients with grade IV
disease in TCGA dataset were in the high-risk subgroup.
Moreover, the risk scores were significantly higher in GBM
than LGG in the GSE4290, TCGA, and CGGA cohorts
(Supplementary Figures S7A–C). These results suggested that
Frontiers in Oncology | www.frontiersin.org 7
the DDRGs signature could precisely predict the prognosis of
gliomas, linking patients with a high-risk score to poor survival.

Relationship Between the DDRGs
Signature and Clinical Characteristics
of Gliomas
To examine the association between this DDRGs signature and
clinical characteristics of gliomas in CGGA cohort, we
investigated potential positive correlations of the risk score
with age and grade of glioma. We also explored that the risk
score was lower in IDH mutation, 1p19q codel and MGMT
methylated significantly which were the clinical features with
good prognosis of glioma (Figure 6).

Relationship Between the DDRGs
Signature and Immune Cell Infiltration in
the Tumor Microenvironment
Next, we performed CIBERSORT and ssGSEA to evaluate the
relationship between the DDRGs signature and immune cell
infiltration in the tumor microenvironment of gliomas. The 686
glioma samples obtained from the CGGA dataset were
segregated into low- and high-risk group using the formula
shown above. CIBERSORT was used to analyze the RNA
sequencing data of these selected patients and evaluate the
A

B

D

E

F
C

FIGURE 3 | Prognostic analysis of the DDRG signature in TCGA training set. (A) The distribution and median value of the risk scores in TCGA training dataset.
(B) The distributions of status, OS, and risk score in TCGA training dataset. (C) Heatmap showing the expression of five genes in the low- and high-risk groups.
(D) Survival curve was used to analyze OS of the low- and high-risk groups in TCGA training dataset. (E) Principal components analysis (PCA) of the DDRGs
signature. (F) The AUC values of time-dependent ROC curves verify the prognostic performance of the risk score in TCGA training dataset. AUC, area under the
curve; DDRGs, DNA damage repair genes; OS, overall survival; ROC, receiver operating characteristic; TCGA, The Cancer Genome Atlas.
May 2021 | Volume 11 | Article 682932
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fractions of 22 immune cell types in the high- and low-risk
groups. Surprisingly, the risk score was positively correlated with
T follicular helper cells, regulatory T (Treg) cells, and
macrophages M0 (P<0.01). In contrast, it was negatively
correlated with CD4 naïve T cells, CD4 memory resting T
cells, gamma-delta T cells, monocytes, and activated mast cells
(P<0.01) (Supplementary Figures S8A, B). Subsequently, we
also conducted ssGSEA to determine the degree of immune cell
infiltration. We similarly observed that the risk score was
positively correlated with activated dendritic cells, B cells,
CD8+ T cells, dendritic cells, macrophages, mast cells,
plasmacytoid dendritic cells, T helper (Th) cells, Th2 cells,
tumor-infiltrating lymphocytes, and Treg cells; in contrast, the
risk score was negatively correlated with neutrophils and Th1
cells. Moreover, we found that the risk score was correlated with
immune processes, such as CCR, check-point, cytolytic activity,
etc. (Supplementary Figures S8C, D). According to these
results, we divided patients with glioma into high- group,
medium-, and low-immunity groups. As expected, patients
with higher risk scores tended to be in the high-immunity
group (Supplementary Figure S8E). In addition, the present
study revealed that the risk score was negatively correlated with
tumor purity, and positively correlated with immune score and
stroma score. These findings indicated that the risk score was
closely related to the tumor microenvironment (Figures 7A–E).
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Next, we analyzed the relationship between the risk score and
immune checkpoints (programmed cell death 1 [PD1],
programmed cel l death 1 l igand 1 [PDL1], T-cel l
immunoglobulin mucin family member 3 [TIM3], cytotoxic T-
lymphocyte associated protein 4 [CTLA4], B7-H3, and
lymphocyte activating 3 [LAG3]) through correlation analysis.
The Pearson analysis showed that the risk score was strongly
positively correlated with B7-H3 (r=0.720), moderately and
weakly correlated with PDL1 (r=0.443), TIM3 (r=0.330), LAG3
(r=0.210), and CTLA4 (r=0.190), and moderately negatively
correlated with PD1 (r=−0.320) (Figures 8A–F).

Identification of Involved
Signaling Pathways
GSEA was performed to further examine the mechanism of
DDRGs and poor prognosis of patients with glioma. In the
c2.cp.kegg dataset, we found that the high-risk group was
significantly associated with the following pathways: antigen
processing and presentation (NES=2.80, P<0.0001), cytokine-
cytokine receptor interaction (NES=1.937, P=0.0039),
extracellular matrix receptor interaction (NES=1.90, P=0.0059),
and T cell receptor signaling pathway (NES=1.703, P=0.017).
Gene Ontology analysis showed that high risk was closely
associated with the following pathways: activation of immune
response (NES=2.79, P<0.0001), antigen receptor-mediated
A B

D E

F G H

C

FIGURE 4 | The accuracy of the DDRGs signature was verified using internal and external validation. (A, B) Scatter plots depicting the survival and status of patients
in the high- and low-risk groups in TCGA testing and CGGA validation datasets. (C, D) Survival curve was used to analyze OS in the low- and high-risk groups in
TCGA testing and CGGA sets. (E, F) Principal component analysis (PCA) of the DDRG signature in TCGA testing and CGGA sets. (G, H) ROC curves were
constructed for TCGA testing and CGGA sets. CGGA, Chinese Glioma Genome Atlas; DDRG, DNA damage repair gene; OS, overall survival; ROC, receiver
operating characteristic; TCGA, The Cancer Genome Atlas.
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FIGURE 5 | Prediction of outcome of the DDRGs signature in stratified patients in the CGGA dataset. (A–O) Survival analysis of the signature in patients stratified by
age, sex, PRS type, grade, IDH, 1p19q status, and MGMT promoter. CGGA, Chinese Glioma Genome Atlas; DDRG, DNA damage repair gene; IDH, isocitrate
dehydrogenase; MGMT, O-6-methylguanine-DNA methyltransferase; PRS, primary-recurrent-secondary.
FIGURE 6 | Box charts showing the characteristics of patients in different risk groups, including age, sex, PRS type, grade, IDH, 1p19q, MGMT, and survival status.
IDH, isocitrate dehydrogenase; MGMT, O-6-methylguanine-DNA methyltransferase; PRS, primary-recurrent-secondary.
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signaling pathway (NES=1.96, P<0.0012), lymphocyte-mediated
immunity (NES=2.13, P<0.0001), and regulation of lymphocyte
activation (NES=2.330, P<0.0001) (Figures 9A, B).

A Personalized Prognostic
Prediction Model
The nomogram can conveniently and rapidly predict the
prognosis of patients with cancer; hence, it is widely used in
clinical research on cancer (19). According to the clinical
information and risk model score of patients with glioma, a
nomogram model was established to predict the prognosis of
Frontiers in Oncology | www.frontiersin.org 10
patients, including age, PRS type, grade, IDH, 1p19q, MGMT
status, and risk score. Each patient was scored according to their
respective different clinical traits and risk score; subsequently, the
1-, 2-, and 3-year survival rates of patients with glioma were
predicted according to the prediction line at the bottom of the
nomogram (Figure 10A). Calibration curves indicated that
actual and predicted survival matched well (Figure 10B),
particularly for 3-year survival. Meanwhile, the calculated C
index was to be 0.785. The decision curves shown in
Figure 10C demonstrated the clinical usefulness of the
prediction models, indicating that the DDRGs nomogram
A B

D E

C

FIGURE 7 | Immune infiltration patterns of low- and high-risk score analyzed by ssGSEA methods in glioma from the CGGA dataset. (A) Heatmap revealing the
scores of immune cells in low, middle, and high immunities. (B–E) Scatter plot showing the correlation between risk score and tumor purity, ESTIMATE, immune and
stromal score. CGGA, Chinese Glioma Genome Atlas; ssGSEA, single-sample gene set enrichment analysis.
A B
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FIGURE 8 | Correlation analysis between the DDRG signature and immune checkpoints. (A–F) Relationship between the DDRG signature and B7-H3, PDL1, TIM3,
LAG3, CTLA4, and PD1, respectively. CTLA4, cytotoxic T-lymphocyte associated protein 4; DDRG, DNA damage repair gene; LAG3, lymphocyte activating 3; PD1,
programmed cell death 1; PDL1, programmed cell death 1 ligand 1; TIM3, T-cell immunoglobulin mucin family member 3.
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achieved a higher overall net benefit than the clinicopathologic
nomogram within most range of threshold probabilities.
DISCUSSION

In 2020, the number of new CNS tumor cases was 308,102,
accounting for 1.6% of the total number of new tumor cases,
worldwide. Moreover, 251,329 deaths due to brain tumors were
Frontiers in Oncology | www.frontiersin.org 11
reported, accounting for 2.5% of cancer-related deaths globally
(22). Gliomas constitute approximately 70% of intracranial
malignancy cases and are the leading cause of death among
these patients. The prognosis of patients with gliomas,
particularly GBM, is poor; median survival after the
postoperative administration of concurrent chemoradiotherapy
is <2 years (23). The main reasons for the poor prognosis of
gliomas are the aggressive proliferation, invasive growth and
chemoradiotherapy resistance of glioma cells (24).
A B

FIGURE 9 | GSEA of the relevant mechanisms involved in the DDRG signature. KEGG (A) and GO (B). DDRGs, DNA damage repair genes; GSEA, gene set
enrichment analysis; KEGG, Kyoto Encyclopedia of Genes and Genomes; GO, Gene Ontology.
A B

C

FIGURE 10 | Nomogram for the prediction of prognostic probabilities in the CGGA dataset. (A) The nomogram for the prediction of OS was developed using the
CGGA dataset. (B) The calibration plots for predicting 3-year survival. (C) Decision curve analysis for the DDRGs signature nomogram and the clinicopathological
nomogram to estimate the OS. CGGA, Chinese Glioma Genome Atlas; OS, overall survival; DDRGs, DNA damage repair genes.
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It has been proved that DDRGs are closely related to
chemoradiotherapy resistance of tumors (25, 26). In this study,
we investigated DDRGs and constructed a risk model consisting
of five such genes (CDK4, HMGB2, WEE1, SMC3, and
GADD45G) by differential analysis using LASSO regression
and Cox proportional hazards regression. We validated the
accuracy of this model for predicting the prognosis of gliomas
by internal and external validation and stratification analysis. In
the TCGA cohort, we found that all GBM patients were in high-
risk subgroup. But we did not observe it in the CGGA set.
Nevertheless, we found that most of the patients with GBM in
the CGGA set were still in high-risk subgroup and had statistical
significance. Further, we also explored that the risk score of LGG
was significantly lower than GBM in TCGA, CGGA and
GSE4290 databases. Moreover, by analyzing the clinical
characteristics of patients with glioma, we found that the risk
score was positively correlated with malignancy and negatively
correlated with protective factors (e.g., IDH mutation, 1p19q
codel, and MGMT methylation). Collectively, these results
suggest that this risk model is significantly associated with the
prognosis of patients with glioma.

The CDK4 promotes tumor cell differentiation from G1 to S
phase and increases proliferation. Schmidt et al. (27) were the
first to report that amplification of the CDK4 gene occurs in
highly malignant GBMs and anaplastic astrocytomas, whereas
there are alterations observed in benign astrocytomas.
Additionally, recent studies have shown that overexpression of
the CDK4 gene was closely related to poor prognosis of patients
with glioma (28). HMGB2 is a member of the high mobility
group of the nonhistone chromatin-associated proteins that
regulate the processes of transcription, replication,
recombination, and DNA repair (29). HMGB2 is highly
expressed during embryonic development, but lowly expressed
in adult organs; it is mainly detected in lymphoid organs and
testes. HMGB2 is highly expressed in most tumor tissues (30). As
a target gene of mi-R130a, HMGB2 controls the proliferation
and epithelial mesenchymal transition of glioma cells (31).
WEE1 is a nuclear kinase belonging to the serine/threonine
protein kinase family. It is a key regulator of cell cycle
progression and maintenance of genomic stability. WEE1 can
control the cell cycle by phosphorylating CDK1 and regulating
the activity of the CDK1/cyclin B complex. As an integral part of
the G2/M phase checkpoint, WEE1 determines the time point of
entry into mitosis and inhibits the early progression of the cell
cycle, while also participating in the cellular response to DNA
damage (32). Shahryar et al. (33) reported that inhibition of
WEE1 expression increased the sensitivity of GBM to radiation.
This effect may be related to the blockage of WEE1 in the G2M
phase of GBM. SMC3 is an essential component of the cohesin
family. Studies found that SMC3 activates nuclear factor-kB
(NF-kB) through autocrine tumor necrosis factor-a (TNF-a),
which inhibits apoptosis in cancer cells. However, it also can
activate the AKT pathway, thereby promoting cancer growth
(34). GADD45G (relative molecular mass: 18,000 Da) is an
evolutionarily conserved protein among members of the
growth arrest and DNA damage-inducible protein 45 family.
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Its expression is elevated in response to a variety of exogenous
genotoxic and oncogenic stimuli. Li et al. (35) found that
knockdown of GADD45G expression increased the
proliferative and migratory ability of esophageal cancer cells. It
has also been shown that overexpression of GADD45G reverses
resistance to sorafenib both in vitro and in vivo. Moreover, the
proapoptotic effect of sorafenib on sorafenib-sensitive cells is
partially abolished by inhibiting the expression of GADD45G
using siRNA (36). The traditional view that the CNS is an
immune privileged organ arose from the fact that the blood–
brain barrier can selectively block the delivery of immune cells
and immune macromolecules from the periphery to the CNS.
Nonetheless, this is not absolute, and recent studies suggested
that lymphatic vessels existing in the brain can also generate an
immune response (37). The use of immunotherapy has resulted
in significant breakthroughs in the therapeutic landscape of
cancer, particularly in the treatment of tumors, such as lung
cancer, melanoma, and colorectal cancer. Nevertheless, in
gliomas, immunotherapy has not achieved good outcomes,
mainly because glioma gradually develops a multifactorial,
multicellular complex suppressive immune microenvironment
during growth (9, 38). Infiltration of immunosuppressive cells in
the tumor microenvironment is key to the efficacy of
immunotherapy and tumor immune evasion; the major
immunosuppress ive cel l s include tumor-associated
macrophages (TAMs) and Treg cells (39). In this study, the
infiltration of immune cells in each patient was determined
through CIBERSORT and ssGSEA; the high-risk group had
more immunosuppressive cells, such as TAMs and Treg cells.
Patients were divided into high-, moderate-, and low-immunity
groups, according to the degree of immune cell infiltration.
Unexpectedly, we observed a trend of positive association
between patients in the high-risk group and high-immunity
group. It has also been shown that patients with glioma and
high immunity are associated with worse prognosis (40). The
present findings are consistent with those of previous studies.
This also explains the poorer prognosis of patients in the high-
risk group.

Chemoradiotherapy can cause double-strand breaks in the
DNA of cancer cells, thereby initiating a series of reexamined
biochemical reactions for the repair of damaged DNA. Failure to
efficiently repair damage or correctly modify DNA can lead to
gene mutations, chromosomal rearrangements, or even cell
death. Therefore, DNA damage repair is intimately linked to
genomic instability. Genomic instability in cells can result in the
production of a large number of neoantigens that are more easily
recognized by the immune system, which in turn leads to the
infi l t r a t i on o f more immune ce l l s in the tumor
microenvironment. The infiltrating immune cells are
reprogramed by various tumor-derived cytokines and
chemokines, acquiring unique functional phenotypes and
transforming into tumor-related immune cells. The tumor
microenvironment of glioma is particular owing to the unique
brain immunology. As the essence of blood–brain barrier, the
immune privilege of CNS can inhibit and delay the immune
response. The occurrence, development, and immune evasion of
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gliomas are closely related to this physiological state (i.e., the
tumor immunosuppressive microenvironment), which markedly
limits the effectiveness of immunotherapy. In addition to the
inherent immunosuppressive microenvironment of glioma, the
infiltration of immunosuppressive cells (e.g., TAMs, myeloid-
derived suppressor cells, tumor-associated neutrophils, and Treg
cells) is also closely related to the tumor immunosuppressive
microenvironment (41). Glioma cells interact with various
components in their microenvironment, jointly inducing the
formation of the immunosuppressive microenvironment and
promoting the progression of glioma. Therefore, elucidation of
the mechanism of the immunosuppressive microenvironment of
glioma may provide an important theoretical basis for improving
immunotherapy strategies against glioma. Of the various
immunotherapies, checkpoint blockade is currently the most
widely applied in clinical practice; however, it may not be the
most promising treatment for glioma. Effector T cells can be
reactivated by binding to specific antibodies and checkpoint
molecules, thereby performing their cytotoxic role against
tumor cells.

PD1 and its ligand PDL1/2 are the most widely studied
immune checkpoint molecules thus far. These molecules can
negatively regulate the signal transduction pathway mediated by
T cell receptors. By binding to PDL1, PD1 suppresses the
proliferation and differentiation of T cell, blocks the
production of inflammatory factors, and leads to T cell
inactivation. CTLA4, a member of the immunoglobulin
superfamily, is a glycoprotein expressed on the surface of
activated clusters of differentiated CD4 and CD8 T cells. It is
an important negative regulator in the immune system and the
first immunomodulatory molecule to be used in targeted
therapy. CTLA4 inhibits T cell activation and induces T cell
incompetence by binding the natural CD80 and CD86 ligands
expressed on antigen-presenting cells. LAG3 is a member of the
immunoglobulin superfamily and exerts an inhibitory effect on
lymphocytes. It can enhance the negative regulatory function of
Treg cells, which play an important role in the immune response.
In addition, it is involved in the immune evasion of various
tumor cells. TIM3 is a negative immune checkpoint molecule
that can be expressed in T cells, monocyte macrophages, Treg
cells, natural killer cells, and tumor cells. The binding of TIM3 to
its ligand galectin 9 (LGALS9) induces the depletion of T cells,
which cannot be activated and are unable to secrete cytokines,
leading to tumor immunosuppression and immune evasion (42).
As a newly discovered member of the B7-CD28 checkpoint
pathway, B7-H3 plays an extremely important role in the
process of tumor immunity. Numerous studies have shown
that B7-H3 is highly expressed in most tumors and associated
with tumor immune evasion, which is inextricably linked to
tumor stemness, invasion, and metastasis (43). B7-H3 is highly
expressed in patients with glioma, positively correlated with
tumor pathological grade, and negatively correlated with
survival (44). In this study, we found that the DDRGs
signature was positively correlated with these immune
checkpoints, particularly B7-H3, which could serve as a
potential approach to enhancing immunotherapy for glioma.
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The present study was characterized by some limitations.
Firstly, despite the use of the GEO, TCGA, and CGGA databases
for validation, there is a lack of multicenter data. In future
studies, we plan to analyze data of patients with glioma from
our hospital and other hospitals. Secondly, our results warrant
further validation in vitro and in vivo. Further validation of this
risk model could lead to precise prediction of the prognosis of
patients with glioma and provide guidance for treatment.

In this study, we analyzed the differential expression of
DDRGs between gliomas and normal brain tissues and
constructed a signature composed of five such genes. The
DDRGs signature could accurately predict the prognosis of
patients with glioma, which was validated using data obtained
from both TCGA and CGGA databases. Most importantly,
immune cell infiltration analysis revealed that the DDRGs
signature was closely related to inhibitory immune cell
infiltration in the microenvironment of glioma. These findings
provide a new potential approach and strategy for improving
immunotherapy against glioma.
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Supplementary Figure 1 | Metascape dataset showing the interaction and
enrichment pathways of candidate genes.

Supplementary Figure 2 | The gene expression of the constructed risk model
and its prognostic impact on glioma patients were analyzed through the GEPIA
online website. Figure 2 A-E exhibited the differential expression of CDK4, HGMB2,
WEE1, SMC3, GADD45G respectively in LGG and GBM. Figure 2 F-J revealed the
overall survival of low and high expression of CDK4, HGMB2, WEE1, SMC3,
GADD45G in glioma, respectively. GEPIA, Gene Expression Profiling Interactive
Analysis; LGG, lower grade glioma; GBM, glioblastoma.

Supplementary Figure 3 | Proteinexpressionof the genesused for theconstruction
of risk models by the Human Protein Atlas. A-E: immunohistochemical assay in normal
and tumor tissue of CDK4, HGMB2, WEE1, SMC3, GADD45G, respectively.

Supplementary Figure 4 | TCGA testing and CGGA datasets were used to verify
the accuracy of the DDRGs signature. (A, B) Scatterplots illustrating the risk scores
for patients with glioma in TCGA testing and CGGA datasets. (C, D) The Heatmap
illustrating the expression of the five genes in the high- and low-risk groups. TCGA,
The Cancer Genome Atlas; CGGA, Chinese Glioma Genome Atlas; DDRGs, DNA
damage repair genes.
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Supplementary Figure 5 | Univariate and multivariate Cox analysis of
prognostic risk scores for gliomas. Univariate Cox regression analysis.
Forest plot of associations between risk factors and the survival of gliomas
in the TCGA (A), and CGGA (B). Multiple Cox regression analysis. The
DDRGs signature is an independent predictor of gliomas in the TCGA (C), and
CGGA (D). TCGA, The Cancer Genome Atlas; CGGA, Chinese Glioma
Genome Atlas.

Supplementary Figure 6 | Prediction of outcome of the DDRGs signature in
stratified patients in TCGA dataset. Survival analysis of the signature in patients
stratified by age (A, B), gender (C, D), grade (E, F), IDH (G, H), and 1p19q status
(I, J). DDRGs, DNA damage repair genes; TCGA, The Cancer Genome Atlas; IDH,
isocitrate dehydrogenase.

Supplementary Figure 7 | Comparison of risk scores in GBM and LGG in the
TCGA (A), CGGA (B), and GSE4290 (C). TCGA, The Cancer Genome Atlas;
CGGA, Chinese Glioma Genome Atlas.

Supplementary Figure 8 | Relationship between the DDRGs signature and
immune infiltrating cells in the tumor microenvironment. (A) CIBERSORT was
used to analyze the types and proportion of infiltrating immune cells in the
tumor microenvironment of patients with glioma. (B) Differences in immune
infiltrating cells between high- and low-risk groups determined by
CIBERSORT. (C, D) Differences in immune infiltrating cells and immune
related pathways between high- and low-risk groups determined by ssGSEA.
(E) Violin diagram showing the relationship between immune grouping and
risk score. DDRGs, DNA damage repair genes; ssGSEA, single-sample gene
set enrichment analysis.
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