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Abstract: The two-point force-velocity model allows the assessment of the muscle mechanical capaci-
ties in fast, almost fatigue-free conditions. The aim of this study was to investigate the concurrent
validity of the two-point parameters with directly measured force and power and to examine the
generalization of the two-point parameters across the different functional movement tests of leg
muscles. Twelve physically active participants were tested performing three functional lower limb
maximal tests under two different magnitudes of loads: countermovement jumps, maximal cycling
sprint, and maximal force under isokinetic conditions of the knee extensors. The results showed that
all values from the two-point model were higher than the values from the standard tests (p < 0.05).
We also found strong correlations between the same variables from different tests (r ≥ 0.84; p < 0.01),
except for force in maximal cycling sprint, where it was low and negligible (r = −0.24). The results
regarding our second aim showed that the correlation coefficients between the same two-point pa-
rameters of different lower limb tests ranged from moderate to strong (r −0.47 to 0.72). In particular,
the relationships were stronger between power variables than between force variables and some-
what stronger between standard tests and two-point parameters. We can conclude that mechanical
capacities of the leg muscles can be partially generalized between different functional tests.

Keywords: exercise; resistance; performance; biomechanics; two-point model; force-velocity
relationship

1. Introduction

Muscle mechanical properties and their evaluation are known to be complex [1], as
muscle strength depends on the current level of neural excitation, muscle contraction and
time elapsed since the change in muscle excitation [1,2]. The slower a skeletal muscle short-
ens, the more force is generated during contraction (also force-velocity relationship), [3,4]
is a basic principle of skeletal physiology [4]. Studies have been carried out first on isolated
muscles and later on single and multi-joint movements [5]. Nevertheless, the expansion
of scientific knowledge about the force-velocity relationship (F-V) began several years
ago with the study of Jaric in 2015 [1], who proposed that F-V follows a linear form in
multi-joint movements [5].

The standard testing procedures applied for the assessment of leg muscle capacities
often consider the performance of a single external testing load [6,7] and therefore assess-
ment in a single mechanical condition. Consequently, the outcomes observed in this way
do not allow differentiation among different muscle capacities, such as those for generating
high force (F), velocity (V) and power (P) [1,8]. In addition, standard testing procedures
often include movements that are not specific to sports or daily activities [9], or they may
cause excessive strain on the musculoskeletal system. The outcomes of most routine testing
procedures have been of limited informational value and therefore a number of issues in
research have originated from arbitrarily interpreted experimental findings on specific
muscle capacities.
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As opposed to standard testing procedures, the F-V relationship of multi-joint move-
ments provides the possibility to selectively assess F, V and P generating capacity of the
tested muscles [1]. Although it has been accepted for several decades that the F-V rela-
tionship has an approximately hyperbolic shape [4,10], recent studies indicate that the
proposed relationship appears to be approximately linear and strong for multi-joint move-
ments [11–15]. Moreover, although it is considered curvilinear, the F-V relationship also
appears to be linear for single joint movements, as tested by isokinetic dynamometry [10,16].
Several authors [9,13,17–19] have already suggested that the linear F-V relationship could
be developed into a routine test of mechanical muscle capacity in elite sports [9,16] or in
older adults [20]. It has been shown that the application of different loads (regression F-V
model) is time consuming, prolongs the procedure and tends to cause fatigue [9,10,21].
These findings dictate the use of a recently proposed two-point (i.e., two-load) method for
testing various movement tasks that involve only two different external loads [8,9,15,21].
Specifically, this method provides the parameters representing F0 (i.e., the force intercept),
V0 (velocity intercept) and P0 (calculated from the product of F and V) of the tested mus-
cles [16]. The two-point model allows the assessment of the muscle mechanical capacities
in fast, almost fatigue-free conditions. Therefore, it is suitable for testing more sensitive
populations, such as young athletes, professional athletes recovering from injury or the
elderly [21,22]. These two-point parameters correspond to the standard linear F-V relation-
ship parameters obtained from several external load magnitudes [15,23]. Therefore, adding
an additional load to the standard tests could allow the assessment of the mechanical
muscle capacities (i.e., F, V and P), providing a deeper insight into the function of the tested
muscles and resolve a number of questions questioned in the literature. In addition, such
knowledge could also improve the outcomes of muscle testing in different environmental
scenarios and physiological conditions to understand the human body’s adaptations and
reactions to temperature [24–26], altitude [27] or dehydration [28–30].

Although jumping on force platforms [31–33], cycling [32] and isokinetic dynamome-
try [23] are valid standard tests of leg muscle capacities and in assessing the F-V relation-
ship [34], there is a lack of data regarding the relationship between outcomes of these tests.
It should be kept in mind that the implicit assumption of any standard muscle capacity
test is that the results typically observed in very few tests and muscles can be partially
generalized to other muscle systems that perform different functional movements [33,35].
Accordingly, only one study examined the generalizability of the linear parameters of the
F-V relationship for leg muscle capacities [15]. The authors concluded that the linear F-V
relationship parameters could only partially be generalized to different muscle groups [15].
However, to our knowledge, the relationship and generalization between parameters
obtained from a two-point model for leg muscle capacities have not yet been evaluated.

To address the issues discussed, we designed a study to investigate the two-point
model parameters based on the linear F-V relationship. The first aim of this study was
to assess concurrent validity by comparing the parameters of the two-point model with
directly measured F and P obtained using standard testing procedures. The second aim
was to investigate whether the two-point model parameters could be generalized across the
different functional movement tests that assess leg muscle capacity. Possible results could
lead to a practical application of the simple two-point model as well as contribute to a better
understanding of mechanical muscle capacities and the function of our muscular system.

2. Materials and Methods
2.1. Participants

Twelve physically active participants (female physical education students; age
21 ± 2 years, body mass 67.4 ± 6.2 kg, height 172 ± 7 cm) were recruited for the study.
The sample sizes ranging from 3 to 12 appeared to be necessary to detect differences be-
tween dependent variables obtained from different loading conditions [13,18]. Participants
reported no recent injuries or chronic diseases that could affect the performance tested.
All participants were physically active during their academic curriculum, which typically
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included about 10 h per week of moderate physical activity, and none of them were active
athletes. They did however, have experience working out in the gym. The study was
conducted in accordance with the Declaration of Helsinki and all participants signed an
informed consent form approved by the University of Belgrade, Faculty of Sports Review
Board (ID 02-35-1).

2.2. Testing Procedures

Body height and body mass were measured with a standard anthropometer (Martin
Anthropometer GPM 101, Duebendorf, Switzerland) and a digital scale (SECA 888 Digital
Scale, SECA, Hamburg, Germany). The main part of testing procedure consisted of three
functional tests for maximum performance of the leg muscles, which were carried out under
different loads: countermovement jumps (JUMP), maximal cycling sprint (CYCLING) and
maximal F under isokinetic conditions of the knee extensors (ISOKINETIC).

The experimental procedure used for both groups of participants was performed
during the 4 sessions separated by at least three days of rest. The first test session consisted
of anthropometric measurements, followed by a familiarization with JUMP, CYCLING
and ISOKINETIC tests. In the second, third and fourth testing sessions, each test was
performed separately. Note that the order of the tests was randomized for each participant.
Moreover, the loads within each test were randomized. The sessions usually lasted about
90 min. For all tests except CYCLING, the first trial served as a practical test, while the
second trial was used for further analysis. Prior to each session, each participant was given
a 5-min warm-up period on a stationary bicycle, followed by 5 min of active and passive
stretching exercises. Afterwards, participants had a specific warm-up consisting of several
trials of jumping and isokinetic extension, but not cycling (because they already had it
in the general warm-up). All measurements were performed in the university research
laboratory. The process of data collection is shown in Figure 1.
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2.3. Standard Lower Limb Tests

The test JUMP with weighted vest and belt (MiR Vest Inc; San Jose, CA, USA; weight
approx. 1 kg) was performed on a force plate (AMTI, BP600400; Watertown, MA, USA).
Participants were instructed to perform unconstrained maximum vertical jumps “as high
as they can” from an upright, standing position with hands on hips [15]. No specific
instructions were given regarding the depth of counter-movement.

The CYCLING test included the evaluation of the maximum power output of the
6-s maximum wheel sprint [15,36,37] performed on a Monark 894E leg bike ergometer
(Monark, Varberg, Sweden). Participants were instructed to perform an “all-out” effort
from the beginning of the test and to remain seated throughout the sprint [15,37]. The test
started with the preferred leg in the crank position at 45◦ forward. The seat height was



Int. J. Environ. Res. Public Health 2021, 18, 1032 4 of 11

adjusted for each participant based on the height of the greater trochanter while standing
parallel to the seat and following the instructions of the bike ergometer [38].

The ISOKINETIC test was performed on the isokinetic dynamometer Kin-Com AP125
(Chatex Corp., Chattanooga, TN, USA). The participants sat in an upright position and
were fastened to the test device with the straps around the pelvis, thigh and ankle. The
axis of rotation of the dynamometer was aligned with the lateral femoral condyle. For the
ISOKINETIC knee extension tests, the range of motion of the knee extension was set from
90◦ to 170◦ [39].

For the evaluation of the maximum F, V and P (Fmax, Vmax and Pmax, respectively)
in various functional tests, the external load condition that is usually used in standard
test procedures was selected. The test JUMP was carried out with unloaded vest and
belt. For the test CYCLING the external load of 6 kg was used, which corresponded to
approximately 8.9% of the participant’s body weight. For the assessment of force in the
ISOKINETIC test, the angular velocity was 60◦/s, while the angular velocity for maximum
power was 180◦/s [40].

2.4. Two-Point Model

The two-point model consisted of two loads or two velocities, depending on the test,
to obtain the parameters of maximum F, V and P (F0, V0 and P0 respectively). Magnitudes
corresponded to the lowest and highest loads/velocities that were used in our previous
studies [8,10,15].

For the JUMP test, the participants performed 4 countermovement jumps
(2 loads × 2 tests). The first load was performed with empty vest and belt, while the
second was performed with a load of 24 kg. The trial with the highest peak P was used for
further analysis. The familiarization procedure showed that all participants were able to
jump with the heaviest load (24 kg). The rest period between two consecutive jumps was
1 min and 3 min between different loading magnitudes [15].

For the test CYCLING the participants performed two sprints with the lowest external
load of 2 kg and with the heaviest load of 10 kg (2 loads × 1 trial). The rest period between
the consecutive sprints was 4 min [15].

For ISOKINETIC, the two-point model was not applied to the lowest and highest V
that the participants could perform, but rather on the most frequently used test V—60
and 180◦/s (2 × 2 trials). Each trial consisted of a single contraction performed as hard
as possible and the trial with the highest peak F was used for further analysis. The rests
were 30 s between the trials and 1 min between 2 consecutive velocities. A real time visual
feedback of the F-time curve was available during the strength assessment [22,41].

The same experienced examiner supervised all the tests. Before each test, a detailed
explanation and qualified demonstration was given and a standardized verbal stimulus was
given. Participants were asked to complete two to three submaximal exercise repetitions
before each test series.

2.5. Data Analysis

With regard to JUMP, a specially developed LabVIEW program (National Instruments
2013; Austin, TX, USA) was used to record and process the vertical component of the
reaction force. The signals were sampled at 1000 Hz and low-pass filtered with a second-
order recursive 10 Hz low- pass Butterworth filter. Integration of the acceleration signal
obtained from F was conducted to calculate V [13,42]. The analyzed motion phase covered
the time interval from the lowest position of the body center of gravity to the beginning
of the flight phase. Thereafter, the maximum value of F, V and P, were obtained from the
jumps’ concentric phase.

Regarding CYCLING, device software (Monark anaerobic test) was used to acquire P
and the frequency data. To obtain the corresponding linear measures, V was calculated
from the frequency and the crank length, while F was calculated as P divided by V [15].
The maximal values were obtained for further analysis.
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With regard to ISOKINETIC, a customer-specific LabVIEW program was used for
data acquisition and processing. The force-time curves were recorded at 500 Hz and
low-pass filtered (5 Hz) with a second-order Butterworth filter (zero phase delay). Since
F was recorded directly, the angular V (rad/s) was transformed into a linear V (m/s) by
multiplication with the length of individual lever arms, so the results could be comparable
with other tests. The maximal values of F and V were obtained for further analyses.

2.6. Statistical Analysis

Descriptive statistics were calculated and the data were presented as mean and stan-
dard deviation. Prior to the statistical analyzes, initial tests showed that none of the
dependent variables deviated significantly from their normal distribution (Shapiro-Wilk
test). The variables: Fmax, Vmax and Pmax were assessed using standard test procedures.
The two-point parameters F0, V0 and P0 were calculated by fitting a linear regression
through the maximum values of the F and V data obtained from 2 loads, i.e., angular
velocities, depending on a test. The F-V relationships were extrapolated to determine the
maximum F (F0; F-intercept) and the maximum V (V0; V-intercept) and the slope of the
relationship (a = F0/V0). Finally, the maximum P was calculated from the product of F0
and V0 (P0 = F0 × V0/4). The relationship between two-point parameters and maximum
values from standard testing was tested using Pearson correlations. The Student’s t test
for dependent samples was used to test the differences between the two-point parameters
and the maximum values obtained from standard tests. The Pearson correlations and the
corresponding 95% confidence intervals (95% CI) were calculated to test the relationships
between the same variables between different tests. The data were analyzed using SPSS
20.0 software (SPSS Inc. Chicago, IL, USA). Alpha was set at 0.05.

3. Results

Figure 2 shows a two-point model of three different functional tests for the leg muscles.
Two-point parameters were determined from the 1 kg and 24 kg for JUMP, 2 kg and 10 kg
for CYCLING and 60 and 180◦/s for ISOCINETIC. The F0 and V0 were highest for JUMP
and lowest for ISOKINETIC. The steepness of the slope, which represents the ratio of F
and V, was again highest at JUMP, while it was lowest at CYCLING.

Figure 3 shows the differences between the magnitudes of the same variables observed
with the two-point model and standard testing procedures. The results in Figure 2 showed
significant differences (p < 0.05) for all three tests. The highest values of F and P were
evaluated in the JUMP test, while the lowest values were obtained in ISOKINETIC. Note
that all values from the two-point model were higher than the values from the standard
tests. Figure 2 also shows the relationship between the same variables from different
tests. All correlation coefficients were found to be strong (r ≥ 0.84; p < 0.01), except F in
CYCLING where it was low and negligible (r = −0.24).

Table 1 shows the generalizability of two-point parameters and maximum values
from standard tests by correlating the same variables obtained from three different tests.
In general, the correlation coefficients ranged from moderate to strong. In particular, the
relationships were stronger between P (0.68 on average) than between F variables (0.47 on
average) and somewhat stronger between standard tests (0.64 on average) and two-point
parameters (0.51 on average).
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Table 1. Pearson’s correlation coefficients observed among the same two-point parameters and
maximal values obtained from standard tests between three different leg tests.

Standard Tests Two-Point Method

F JUMP-CYCLING 0.55 (−0.04–0.85) 0.49 (−0.12–0.83)
JUMP-ISOKINETIC 0.49 (−0.12–0.83) 0.23 (−0.39–0.71)

CYCLING-ISOKINETIC 0.57 (−0.01–0.86) −0.47 (−0.14–0.82)
P JUMP-CYCLING 0.66 * (0.14–0.89) 0.49 (−0.12–0.83)

JUMP-ISOKINETIC 0.78 ** (0.37–0.94) 0.72 ** (0.25–0.92)
CYCLING-ISOKINETIC 0.77 ** (0.35–0.93) 0.66 * (0.14–0.89)

In parentheses are shown 95% CI for corresponding correlation coefficient (* p < 0.05; ** p < 0.01—significance
of correlations).
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4. Discussion

In this study, we investigated the parameters obtained from the two-point model in
various functional tests of the lower limb tests. As for our first aim, we compared the
parameters with directly measured mechanical muscle capacities assessed by standard
testing procedures. The results showed that the two-point parameters were higher than the
directly measured variables in all tests. The correlation between them was strong, except
for the F parameter in CYCLING, which was low and insignificant. Our second aim was
to determine to what extent the parameters of the two-point model can be generalized
across the different tests of the lower limb tests. The results showed that the correlation
coefficients between the same two-point parameters of different lower limb extremities
tests ranged from moderate to strong. In particular, the relationships between P-variables
were stronger than between F-variables and somewhat stronger between standard tests
and two-point parameters.

Although recent studies suggested that F-V relationships could be used in routine test-
ing [15,23], only a few of them investigated the two-point model (i.e., the load). The results
of the studies mentioned above showed that the parameters obtained from the two-point
model were very similar to those obtained from the linear F-V relationship. Furthermore,
the investigation of [34] showed that reliability and validity were highest when the most
distant pair of loads (i.e., 20% and 70% of 1 RM) was used among all two-point methods
evaluated. Based on this fact, and in line with our previous study [15], we have applied the
specific magnitudes of load (described under Methods) in the present study. The results
showed that the two-point parameters for JUMP, CYCLING and ISOKINETIC were higher
than the directly measured variables force and power. Moreover, the correlation between
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them was strong, except for the correlation between the parameters F0 and Fmax in CY-
CLING, which was low and negligible. The possible reason for this result could be that a
standard test procedure involving a load of 6 kg (corresponding to 8.9% of the body mass
of the participants) was the optimal load for the development of maximum power [17,37]
rather than the maximum force. Note that velocity variable was excluded as it could be
considered constant in ISOKINETICS. It should be noted that the distance between the
applied loads was the furthest in the ISOKINETIC compared to the other two tests (see
Figure 1). This could explain the highest correlation between two-point parameters and
directly measured variables of F (r = 0.99) and P (r = 0.98) in this test.

In routine testing there is assumed that results obtained with only a few muscles
can be partially generalized to the entire muscle system [33,35]. Our results regarding
correlations between standard leg tests support these findings. In particular, P could be
generalized between different leg tests, while F could only be partially generalized. To
our knowledge, the relationships between muscle capacities determined by linear F-V
parameters (F0, V0, P0) from different tests have so far only been presented by Zivkovic
with colleagues [15]. The authors have shown that the generalization of parameters
obtained from the standard regression model was inconsistent for arm and leg muscle
tests. In general, the results showed that the correlation between the P-variables was higher
than between the F-variables. It was concluded that the observed parameters can only be
partially generalized. Similar results concerning the leg muscle tests were obtained in the
current study, only between two-point parameters. In particular, a moderate correlation was
observed between JUMP and CYCLING for P0, while a high degree of agreement was found
between ISOKINETIC and the other two tests. These results could be explained by the
fact that ISOKINETIC is considered a routine test for assessing muscle capacity [10,22,43].
Similar to the F in standard tests, the parameter F0 could only be partially generalized.
These findings represent an advance in the assessment of the mechanical properties of
muscles. Thus, with new methods, the mechanical properties of muscles can be assessed by
only one test and thus generalized to the entire muscular system. In our case, the possibility
of such generalization is much higher when it comes to P, not F, which can only be partially
generalized and must be verified with multiple tests.

Limitations

We recognize possible limitations in this article: (i) during testing procedure, the
two most commonly used angular velocities (i.e., 60◦/s and 180◦/s) that are far from the
velocity section, therefore it is possible that the accuracy of the F-V relationship could be
improved by velocities closer to the velocity section by reducing the extrapolation required
to achieve V0 [44]; (ii) there is some information due to the limitations of isokinetic devices
for testing very fast movements [5]; (iii) only women were included in the present study, so
we cannot generalize the results to both sexes; (iv) only physically active population was
included in the study, so we cannot generalize the results of the study to the non-active
population; (v) the sample size is rather small, but in line with previous studies in the same
field [10,13]; (vi) we did not control for the depth of the squat within the countermovement
jumps, however, majority studies from this specific field did not control for the depth of
the squat when determining F-V parameters with novel two-point method [13,15,42,45];
furthermore, to minimize the possible effect of the depth of the squat we gave participants
instruction “jump as high as you can”; (vii) the nature of the countermovement jump
provides an approximate small distance between loads; nevertheless, the F-V parameters in
the countermovement jump test have been shown to be reliable and valid [13,14,22,45,46].

5. Conclusions

In summary, the present study showed a high degree of agreement between standard
tests and the novel two-point model in general. Furthermore, the results showed that the
mechanical capacities of the leg muscles can be partially generalized between different
functional tests. The addition of only one additional load or velocity to the standard
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functional tests of muscle capacities could distinguish the basic mechanical capacities
of the tested muscles. A fairly consistent data set observed when comparing maximum
power from standard tests and P0 from the two-point model suggests that it could be
used for routine testing. The two-point model could further improve test protocols by
allowing easier and faster assessment of maximum F, V and P. Although the correlations for
the same variables obtained from different standard tests were moderate to high, further
investigation is needed. Further investigation should include more different functional
tests performed on different types of subject samples to assess the validity and sensitivity of
two-point parameters in the future. In addition, for the application of the two-point model
in practice, the methodology must first be standardized, which includes the selection of the
type and magnitudes of load and velocity included in testing procedures.
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