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Background: Basement membranes (BMs) are associated with cell polarity,

differentiation, migration, and survival. Previous studies have shown that BMs

play a key role in the progression of cancer, and thus could serve as potential

targets for inhibiting the development of cancer. However, the association

between basement membrane-related genes (BMRGs) and clear cell renal cell

carcinoma (ccRCC) remains unclear. To address that gap, we constructed a

novel risk signature utilizing BMRGs to explore the relationship between ccRCC

and BMs.

Methods: We gathered transcriptome and clinical data from The Cancer

Genome Atlas (TCGA) and randomly separated the data into training and

test sets to look for new potential biomarkers and create a predictive

signature of BMRGs for ccRCC. We applied univariate, least absolute

shrinkage and selection operator (LASSO) and multivariate Cox regression

analyses to establish the model. The risk signature was further verified and

evaluated through principal component analysis (PCA), the Kaplan-Meier

technique, and time-dependent receiver operating characteristics (ROC). A

nomogram was constructed to predict the overall survival (OS). The possible

biological pathways were investigated through functional enrichment analysis.

In this study, we also determined tumor mutation burden (TMB) and performed

immunological analysis and immunotherapeutic drug analysis between the

high- and low-risk groups.

Results: We identified 33 differentially expressed genes and constructed a risk

model of eight BMRGs, including COL4A4, FREM1, CSPG4, COL4A5, ITGB6,

ADAMTS14, MMP17, and THBS4. The PCA analysis showed that the signature
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could distinguish the high- and low-risk groups well. The K-M and ROC analysis

demonstrated that the model could predict the prognosis well from the areas

under the curves (AUCs), which was 0.731. Moreover, the nomogram showed

good predictability. Univariate and multivariate Cox regression analysis

validated that the model results supported the hypothesis that BMRGs were

independent risk factors for ccRCC. Furthermore, immune cell infiltration,

immunological checkpoints, TMB, and the half-inhibitory concentration

varied considerably between high- and low-risk groups.

Conclusion: Employing eight BMRGs to construct a risk model as a prognostic

indicator of ccRCC could provide us with a potential progression trajectory as

well as predictions of therapeutic response.

KEYWORDS

clear cell renal cell carcinoma, basement membrane, prognosis carcinoma, immune,
The Cancer Genome Atlas Program

Introduction

Renal cell carcinoma (RCC) is one of the most prevalent

malignant tumors of the urinary system, coming in second only

to prostate cancer and bladder cancer in terms of occurrence,

causing 14,000 deaths every year in the United States (Hsieh

et al., 2017; Vuong et al., 2019). RCC also has a high rate of

metastasis, nearly 30%–40% found during follow up treatment

(Choueiri and Motzer, 2017). Metastatic renal cell carcinoma

(mRCC) has poor prognosis, with a 5-year survival rate of 10%,

while that of patients with non-mRCC exceeds 55% (Leibovich

et al., 2010). The ccRCC variant is the most frequent histological

type accounting for nearly 70% of RCC in adults (Shuch et al.,

2015). Nephrectomy with immunotherapy and targeted therapy

are the most effective methods for ccRCC while outcomes from

traditional chemotherapy and radiotherapy are not satisfactory

(Barata and Rini, 2017). It is well recognized that ccRCC is a

highly heterogeneous disease; even patients with comparable

clinical features may have different outcomes, in spite of the

fact that they received similar treatments (Lee andMotzer, 2016).

Considering the limitation of ccRCC therapy, it is necessary to

find new prognostic models to make targeted therapy more

adaptable.

Basement membranes (BMs), consisting of self-assembled

laminins, type IV collagens, nidogens, and proteoglycans, are a

widely distributed component of the extracellular matrix that

underlies epithelia and endothelia and surrounds most other

tissues (Yurchenco, 2011; Jayadev et al., 2019). BMs are also

capable of directing cell polarity, differentiation, migration, and

survival (Wang et al., 2008; Li et al., 2017; Sherwood, 2021). BM

proteins are targets of autoantibodies in immune disorders and

defects in BM protein expression and turnover are a key

pathogenic aspect of cancer, diabetes, and fibrosis (Tsilibary,

2003; Naba et al., 2014; Foster, 2017; Randles et al., 2021). Reuten

et al. found that the stiffness of the BM played a key role in the

formation of metastases, and the level of the BM protein netrin-4

was highly associated with the prognosis of breast cancer, kidney

cancer, and melanoma (Reuten et al., 2021). Previous studies

have demonstrated that changes in BM components or their

destruction is highly associated with poor prognosis of tumors

(Sathyanarayana et al., 2003; Davies et al., 2004). In light of the

crucial role of BMs in the progression of cancer, it should be

considered as a potential target for inhibiting the development of

cancer. However, a prognostic model of basement membrane-

related genes (BMRGs) has not emerged. Thus, to assess and

facilitate the prognosis of ccRCC, we aimed to establish BMRGs’

prognostic signature. Utilizing the relevant public data, we

performed further analyses based on the signature, including

ESTIMATE scores, functional enrichment analysis,

immunological analysis, tumor mutation burden prediction

(TMB), and drug sensitivity.

Materials and methods

Datasets

We downloaded the clinical information (Supplementary

Material S1) and RNA sequences of 539 kidney renal cell

carcinomas (KIRCs) and 72 normal kidney samples from the

TCGA database on 20 March 2022 (https://portal.gdc.cancer.

gov/repository). The patients were randomly assigned to a test

set or a training set with a ratio of 1:1. We also downloaded the

data about tumor mutation of KIRC patients (Supplementary

Material S2) from TCGA and then the TMB was analyzed. The

CIBERSORT algorithm was utilized to analyze the ICI and

immunological functions. The ‘estimate’ R software was

employed to compute ESTIMATE scores (Yoshihara et al.,

2013), which included stromal and immunological scores, and

tumor immune escape (TIE). The data were obtained through

TIDE (http://tide.dfci.harvard.edu/) (Supplementary

Material S3).
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Selection of BM-related genes

During prior reviews, we extracted 224 BM-related genes,

including genes with confirmed evidence of protein localization

to the BM zone (from protein immunolocalization studies),

components with confirmed evidence of protein localization

to the human BM zone, genes predicted to be in the BM zone

based on protein interaction data or BM protein-cleaving

protease activity (Supplementary Material S4) (Jayadev et al.,

2022). Then the ‘limma’ R package was applied to identify

differentially expressed BMRGs, with |log2 (fold change) | >
2 and p< 0.05 as filtering criteria (Ritchie et al., 2015).

Construction and verification of the risk
signature

The entire TCGA dataset was randomly assigned to a test set

or a training set with a ratio of 1:1. The clinical characteristic of

the two sets showed no significant difference (Supplementary

Material S5). The training set was utilized to construct a

basement membrane model, and the entire set and testing set

were used to validate the model. Based on the clinical data of

KIRC cases in the TCGA, univariate Cox analysis was used to

screen genes related to survival from BMRGs (p < 0.05). Next, the

R package ‘glmnet’ was used to conduct LASSO Cox regression

(using the penalty parameter estimated by 10-fold cross-

validation) (Friedman et al., 2010), and we found that

13 BMRGs were closely associated with the OS of KIRC

patients. Multifactor Cox regression was also applied to

analyze the 13 BMRGs, and we finally constructed a risk

model from 8 BMRGs. The following formula was used to

assess the risk signature:

Risk score � βBMRGs1× ExpressionBMRGs1

+ βBMRGs2× ExpressionBMRGs2 . . .

+ βBMRGsn× ExpressionBMRGsn (1)

in which, β refers to the coefficients, βBMRGsn is the coefficient

of BMRGs correlated with survival, and ExpressionBMRGsn

represented the expression of genes. The subgroups, including

low- and high-risk groups, were distinguished based on the

median risk score of the training set.

Validation of the prognostic signature

Univariate Cox and multivariate Cox analyses were utilized

to verify whether the risk score represented an independent role,

and ROC was employed to compare the prediction of different

factors for prognosis. In addition, the rms R package was used to

generate nomograms of 1-, 2-, and 3-year OS, and the Hosmer-

Lemeshow test was applied to establish a calibration curve to

indicate whether the predicted results were in good agreement

with the actual results.

Functional enrichment analysis

Based on the above risk signature, we classified all of the patients

into high- and low-risk groups and selected differentially expressed

BMRGs using the criterion of |log2 FC| >1 and p< 0.05 between the

two groups. GO and KEGG analyses were then performed using the

‘clusterProfiler’ program (Wu et al., 2021). Then, using the ‘gsva’

package (Hänzelmann et al., 2013), ssGESAwas used to evaluate the

scores of infiltrating immune cells and the activity of immune-

related pathways (Bindea et al., 2013).

Drug sensitivity

The half-maximal inhibitory concentration (IC50) of each ccRCC

patient on genomics of drug sensitivity in cancer (GDSC) (https://

www.cancerrxgene.org/) was then utilized to assess their treatment

response using the R program pRRophetic (Geeleher et al., 2014).

Statistical analysis

For statistical analysis and relevant visualization graphics, the

R version 4.1.2 software and its resource packages were

employed. To determine if differences between different risk

groups were significant, the Student’s ttest was utilized, with p<
0.05 as the threshold for statistical significance.

Results

Identification of differentially expressed
basement membrane-related genes

Wepresent theflow chart of the study in Figure 1. By comparing

the expression of 224 BMRGs from539 tumor and 72 normal tissues

in the TCGA dataset, we identified 33 differentially expressed

BMRGs with |log2 (fold change) | > 2 and p< 0.05 (Figure 2).

Construction and verification of the risk
signature

Thirty-three BMRGs were analyzed by univariate Cox

regression, and we found 13 BMRGs that were highly associated

with OS. Subsequently, we applied LASSO Cox regression

(Supplementary Material S6) and multivariate Cox regression to

reduce the excessive fitting prognostic signature. Lastly, eight BMRGs

were clearly associated with prognosis (Figure 3A). The risk model
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was constructed as follows: risk score = (−0.369006705995067*

COL4A4 exp.) + (0.408158923178577* COL4A5 exp.) +

(−0.804199579667548* FREM1 exp.) + (0.171716370865087*

ITGB6 exp.) + (0.380848910696476* ADAMTS14 exp.) +

(−0.273783176929016* CSPG4 exp.) + (0.470988980524397*

MMP17 exp.) + (0.252113376620836* THBS4 exp.)

Taking the median risk score of the training set as the

demarcation, the patients in the training set, testing set, and

entire set were classified into high- and low-risk groups, and PCA

analysis was performed. The results show that the risk signature

discriminates the sample well (Figures 3B–D). The survival times,

distribution of the risk scores, survival status, and the expression

levels of eight genes were compared between the two sets (Figures

4A–L), and all showed that the high-risk set had worse

prognoses. Similarly, the clinical parameters including age,

grade, gender, and stage followed the same pattern (Figure 4M).

Construction and evaluation of the
prognostic nomogram

The univariate Cox regression showed that age (HR = 1.022,

p = 0.019), stage (HR = 3.479, p < 0.001), grade (HR = 2.650, p <
0.001), T (HR = 3.052, p < 0.001), M (HR = 4.113, p < 0.001), N

FIGURE 1
Flow chart.

FIGURE 2
Exhibition of 33 differentially expressed BMRGs. (A) Volcano plot. (B) Heatmap.
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(HR = 3.089, p < 0.001), and risk score (HR = 1.119, p < 0.001)

were significantly related to OS (Figure 5A). The multivariate

Cox regression analysis revealed that age (HR = 1.031, p = 0.002),

M (HR = 2.718, p < 0.001), and risk score (HR = 1.085, p < 0.001)

were independent risk factors associated with OS (Figure 5B).

Combining all parameters, we created 1-, 3-, and 5-year

calibration plots and a nomogram that accorded well with the

OS prediction (Figures 5C,D).

Principal component analysis and clinical
characteristics of the model

To explore the differences between high- and low-risk

groups, we carried out PCA to analyze the four expression

profiles: the entire set of gene expression profiles, the

224 basement membrane genes, the 33 different expressed

membrane genes, and the risk model constructed using the

eight BMRGs. Figures 6A–C showed that the distributions of

the high- and low-risk groups were relatively scattered, although

the outcome according to our signature showed that the low- and

high-risk groups had different distributions (Figure 6D). This

outcome proved that our prognostic signature could distinguish

between the low- and high-risk groups.

We calculated the areas under the time-dependent ROC

curves for 1, 3, and 5 years, and the results of the full set

were 0.747, 0.706, and 0.731, of the test set were 0.722, 0.663,

and 0.700, and of the training set were 0.787, 759, and 0.766,

respectively, which meant that the model was predictive (Figures

5E–G). Compared with other clinical factors, the 5-year ROC of

the risk model showed that the risk score had the best predictive

ability (Figures 5H–J).

Functional enrichment analysis

Next, patients were screened into two sets based on the risk

model above, and we found 607 differentially expressed genes in

two sets with |log2 FC| > 1 and p< 0.05 as the criterion. GO

analysis revealed that BMRGs were significantly related with the

humoral immune response, immunoglobulin complex

formation, and antigen binding (Figures 7A,B). From the

KEGG pathway enrichment analysis, the above genes were

found to be significantly related to cytokine-cytokine receptor

interaction, complement and coagulation cascades, PI3K-Akt

signaling pathway, and others (Figures 7C,D).

In order to compare the biological functions between the two

risk groups, we employed GSEA software to carry out the analysis

and found 65 pathways enriched in the low-risk group and seven

pathways enriched in the high-risk group (p < 0.05). The top five

enriched pathways in the low- and high-risk groups are presented

in Figure 7E.

FIGURE 3
Prognostic BMRG signature of ccRCC. (A) Multivariate Cox regression. (B–D) PCA analysis of entire, training, and testing groups.
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FIGURE 4
Prognosis value of the eight-BMRG model in the full, training, and test sets. (A–C) Survival curves of patients comparing the two groups in the
full, training, and test sets, respectively. (D–F) Distribution of the BMRG model according to the risk score of the full, training, and test sets,
respectively. (G–I) Survival status and time of patients between the two groups in the full, training, and test sets, respectively. (J–L) Heatmap of the
eight BMRGs from the two groups in the full, training, and test sets, respectively. (M) Survival curves stratified by age, gender, grade, and stage
between the two groups in the full set.
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FIGURE 5
Nomogram and assessment of the risk model. (A,B) Uni-Cox and multi-Cox analyses of clinical factors and risk scores with OS. (C) Calibration
curves for 1-, 3-, and 5-year OS. (D) The nomogram that integrated the risk score and clinical parameters to predict the 1-, 3-, and 5-year OS rate.
(E–G) ROC curves for the 1-, 3-, and 5-year OS rate of the full, training, and test set, respectively. (H–J) ROC curves for 5-year OS rate of risk score
and clinical parameters of the full, training, and test sets, respectively.
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Estimation of the tumor immune
microenvironment and cancer
immunotherapy response of the model

As shown in Figures 7A,B, GO enrichment pathways had a close

relationship with immunological functions. In view of this, we

subsequently compared the immunological functions between the

two risk groups. The TME analysis revealed that the high-risk group

had higher estimate scores and immune scores (Figures 8A–C). We

also compared the enrichment scores of 16 immune cell types and

the activities of 13 immune-related pathways and found that levels of

most immunocytes were higher in the high-risk group (Figure 8D).

In addition, the high-risk group had much higher activities of

immune pathways other than the type-2 IFN response pathway

(Figure 8E). Most immune checkpoints also showed better

activation in the high-risk group (Figure 8F). The TIDE scores of

the high-risk group were much higher than the low-risk group

(Figure 8G). We also found that most therapeutic drugs, such as

AICAR, ATRA, and AUY922, administered to the high-risk group

had a lower IC50 (Figure 8H).

Tumor mutation burden

Using the tumor mutation data from the TCGA, we obtained

the mutation rate of each gene and the TMB of each sample. The

mutation rate of VHL in renal cell carcinoma was the highest,

followed by PBRM1, TTN, and SETD2 (Figures 9A,B). We also

showed that the TMB of the high-risk group was much higher

than in the low-risk group (Figure 9C), and TMB was negatively

associated with ccRCC prognosis (Figures 9D,E).

Discussion

Clear-cell RCC (ccRCC) is the most common histological

type of RCC, with a high risk of metastasis, recurrence, and poor

prognosis. BMs play a key role in directing cell polarity,

differentiation, migration, and survival (Wang et al., 2008; Li

et al., 2017; Sherwood, 2021). Previous studies have showed that

BMs are significantly associated with the progression of cancer

and can be considered as potential targets for inhibiting the

FIGURE 6
PCA analysis. (A) The entire set of gene expression profiles in ccRCC patients. (B) 224 basement membrane genes of ccRCC. (C) 33 differentially
expressed membrane genes of ccRCC patients. (D) Risk model based on eight BMRGs in different risk groups of ccRCC.
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FIGURE 7
Functional enrichment for differentially expressed BMRGs between the two groups. (A) The top 30 significant terms of GO functional
enrichment. (B) The circle diagram enriched in the GO analysis. (C) KEGG functional enrichment’s top 30 significant terms. (D) The circle diagram
enriched in the KEGG analysis. (E) GSEA analysis of the top five enrichment pathways in the low- and high-risk groups, respectively.
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FIGURE 8
Investigation of tumor immune factors and immunotherapy. (A–C) Comparison of ESTIMATE scores, stromal scores, and immune scores
between two groups. (D) Comparison of immune cells between two groups. (E) Comparison of immune functions between two groups. (F)
Comparison of checkpoints between the two groups. (G) Comparison of TIE between the two groups. (H) Immunotherapy prediction of 14 drugs in
high- and low-risk groups.

Frontiers in Genetics frontiersin.org10

Zhou et al. 10.3389/fgene.2022.994208

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.994208


development of cancer (Sathyanarayana et al., 2003; Davies et al.,

2004; Reuten et al., 2021). However, there have been nomodels of

ccRCC involving the basement membrane genes. In this study,

we constructed a reliable prognostic signature, whose predictive

value was satisfactory.

RNA-seq and clinical information were acquired from the

TCGA. Through LASSO and Cox regression analysis, we

identified eight BMRGs suitable for a risk signature and

observed that patients categorized in the high-risk group had

a much worse prognosis. We created a nomogram for predicting

prognosis by combining clinical indicators and risk scores. A

functional enrichment analysis was then carried out. By

functional analysis, we learned that differences in the DEGs

associated with the immune response existed between the

subgroups. The analysis uncovered the fact that certain

immune cells and pathways were enriched in high-risk groups.

According to previous studies, all of these BMRGs play a

significant role in tumor etiology. In our study, COL4A4,

FREM1, and CSPG4 were protective factors, while COL4A5,

ITGB6, ADAMTS14, MMP17, and THBS4 were risk factors.

COL4A4 and COL4A5 belong to the family of type IV collagen,

which were closely associated with Alport (Hudson et al., 2003).

Previous studies have reported that the alternation of IV collagen

may lead to developmental defects and cancers. Wang founded

that COL4A4 might be a potential therapeutic target of ccRCC

(Wang et al., 2018). As for COL4A5, Liu’s research revealed that

it is one of the components used to build a predictive model of

ccRCC and that this model is closely related to infiltrating

immune cells (Liu et al., 2021). Peng reported that

COL4A5 was involved in the initiation and progression of

gastric cancer, and it could forecast the recurrence of the

cancer (Peng et al., 2020). Xiao’s research showed that

COL4A5 could promote the progression of cancer by the

discoidin domain receptor-1 (Xiao et al., 2015), thus,

COL4A5 was a risk factor in our model.

CSPG4 is overexpressed in many tumor samples, while its

expression in normal tissue samples is substantially lower, which

makes it a possible target for immunotherapy of several

malignancies, including melanoma, triple-negative breast

cancer, mesothelioma, and others (Wang et al., 2010; Ilieva

et al., 2018; Wang et al., 2011; Geldres et al., 2014).

FREM1 is crucial for mediating the adhesion between the

subcutaneous layer and epidermal basement membrane during

embryogenesis (Petrou et al., 2008). Recently, many studies have

shown that FREM1 can be used as a new therapeutic target and

prognostic marker for breast cancer and the increase in its

expression is related to the high level of infiltration of anti-tumor

immune cells (Xu et al., 2020a; Li et al., 2020; Zhang et al., 2020).

FIGURE 9
Investigation of tumor mutation burden (TMB). (A,B) TMB in high- and low-risk groups, respectively. (C) Comparison of TMB between two
groups. (D,E) Survival curve stratified by TMB and risk signature.
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The expression of ITGB6 was found to be increased during

epithelial repair, embryogenesis and tumorigenesis, while normal

epithelial tissues often lack this expression (Breuss et al., 1995;

Yang et al., 2008). Because of this, some researchers have

proposed that ITGB6 can be employed as a new serum

biomarker for the detection and evaluation of colon cancer, as

well as a marker for tumor monitoring, recurrence, and

therapeutic response (Bengs et al., 2019).

As a member of the ADAMTS metalloproteinase family,

ADAMTS14 is mainly involved in ECM assembly and

degradation. Porter has reported that ADAMTS14 expression

was noticeably elevated in human breast cancer (Porter et al.,

2004). Chen provided more proof for the association between

high ADAMTS14 gene expression and worse prognosis in ccRCC

(Chen et al., 2022). However, Song’s findings showed that

circADAMTS14 might limit the progression of hepatocellular

carcinoma (HCC) by regulating the endogenous RNA, miR-572/

RCAN1 (Song et al., 2019).

MMP17, as a member of the MMP family of ECM

remodelers, is capable of directly cleaving nearly all ECM

components (Sohail et al., 2008; Yip et al., 2019).

Overexpression of MMP17 was shown to be strongly

associated with HCC recurrence and aggressiveness in Qi’s

research, making it a viable biomarker for prognosis

prediction (Qi et al., 2020).

THBS4 is a member of the extracellular calcium-binding

protein family and is involved in cell adhesion and migration

(Stenina et al., 2003; Adams, 2004; Kazerounian et al., 2008). Guo

discovered that THBS4 contributed to HCC invasion and

migration by regulating ITGB1 through the FAK/PI3K/AKT

pathway (Guo et al., 2020), and Chou et al. found that

THBS4 had a similar effect in bladder cancer (Chou et al., 2021).

T cell functions, such as CCR, antigen-presenting cell co-

stimulation, checkpoint, and cytolytic activities were significantly

different in different ccRCC risk groups, according to the ssGSEA

algorithm.We determined that most immune cells were enriched

in the high-risk group. The total number of somatic mutations in

a given location of a tumor genome is referred to as TMB

(Alexandrov et al., 2013; Chan et al., 2019), and TMB has

been suggested as a biomarker for the therapeutic success of

ICB in some studies (Wang et al., 2019; Marabelle et al., 2020).

Our data show that the TMB of the high-risk group was also

much higher than that of the low-risk group. TIDE algorithms

have also been verified as an immunotherapy prediction model in

many studies (Jiang et al., 2018; Xu et al., 2020b). The low-risk

group of ccRCC patients had a better immunotherapy response

in our research. We discovered 11 potential KIRC differentiation

chemicals.

Our research also suffers from some limitations. This was a

preliminary study on the prognostic value of BMRGs, with the

goal of providing some theoretical assistance for follow-up

studies. Due to the absence of related reviews, we doubt

whether the above regulatory factors play a responsible role in

BM-related pathways in patients with ccRCC, and further

experiments are required to test this hypothesis. We plan to

conduct further prospective studies to confirm our findings, and

believe that our lab will verify these conclusions in the future by

real-life research.

Conclusion

In conclusion, our research screened out eight BMRGs with

prognostic value and established a predictive prognostic

signature that can assist in elucidating the potential

mechanisms underlying oncogenesis and progression of

ccRCC, together with selecting the most suitable treatment for

patients.
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