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Changes to the gut microbiota 
of a wild juvenile passerine 
in a multidimensional urban mosaic
Öncü Maraci1*, Michela Corsini2, Anna Antonatou‑Papaioannou3,4, Sebastian Jünemann5,6, 
Joanna Sudyka2,7, Irene Di Lecce2, Barbara A. Caspers1 & Marta Szulkin2

Urbanisation is a major anthropogenic perturbation presenting novel ecological and evolutionary 
challenges to wild populations. Symbiotic microorganisms residing in the gastrointestinal tracts (gut) 
of vertebrates have mutual connections with host physiology and respond quickly to environmental 
alterations. However, the impact of anthropogenic changes and urbanisation on the gut microbiota 
remains poorly understood, especially in early development. To address this knowledge gap, we 
characterised the gut microbiota of juvenile great tits (Parus major) reared in artificial nestboxes and 
in natural cavities in an urban mosaic, employing two distinct frameworks characterising the urban 
space. Microbial diversity was influenced by cavity type. Alpha diversity was affected by the amount 
of impervious surface surrounding the breeding location, and positively correlated with tree cover 
density. Community composition differed between urban and rural sites: these alterations covaried 
with sound pollution and distance to the city centre. Overall, the microbial communities reflect and 
are possibly influenced by the heterogeneous environmental modifications that are typical of the 
urban space. Strikingly, the choice of framework and environmental variables characterising the urban 
space can influence the outcomes of such ecological studies. Our results open new perspectives to 
investigate the impact of microbial symbionts on the adaptive capacity of their hosts.

In today’s fast-changing world, cities are expanding at an unprecedented rate. Urban growth modifies a wide 
range of biotic and abiotic ecosystem properties, thereby presenting new ecological and evolutionary challenges 
for wild  populations1. Given the scales and magnitudes of these environmental changes, adapting to human-
altered environments is a challenging task for animals, and populations living in the urban space are often found 
to differ from their rural counterparts in terms of their morphological, physiological, and behavioural  traits2–4.

The radically transformed environment present in the urban space is expected to also influence the symbiotic 
interactions between microorganisms and animals. The gut microbiome is increasingly recognized as a key player 
in several aspects of host  physiology5,6. Indeed, as urbanisation alters the distribution of multiple environmental 
 variables1 as well as various traits of individual hosts, these changes altogether shape the assembly, taxonomic 
diversity, and functioning of animal-associated microorganisms via different  mechanisms7. For example, urbani-
sation can change the environmental pool of microorganisms, host  diet8, and host  physiology9. All these changes 
can potentially translate into microbial community shifts in the gut.

An adequate definition of the urban space is essential when addressing the potential impact of urban change 
on animal-microbe symbiosis. Classical frameworks describing urban areas often rely on a threshold-based 
human density value that overlaps with a city administrative  borders1. Accordingly, cities consist of a core area in 
which the majority of the population lives (urban site), and peri-urban (rural) sites that accommodate relatively 
smaller proportions of human inhabitants. This dichotomous categorization can capture some alterations that are 
directly related to human activities and, consequently change gradually from the core of a city to its periphery, 
for example in terms of air pollution, sound pollution and light  pollution10. However, the spatial units defined by 
humans rarely consist of homogeneous habitats. Rather, cities are characterised by mosaics of urban landscapes; 
these mosaics vary in terms of actual surface use and accompanying fine-scale differences in habitat type and 
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environmental characteristics that are not entirely reflected in a simple urban/rural  categorization1. In this light, 
defining the urban space by quantifying the actual changes in its physical attributes, such as the percentage of 
impervious surface area (ISA) that characterises the urban space, might be a biologically more relevant approach 
to characterise variation in the gut microbiota. Consequently, the methodological approach used to characterize 
the urban space (e.g. dichotomous urban–rural comparisons vs. those reflective of urban heterogeneity) has the 
potential to influence the outcome of studies investigating the impacts of urbanisation on ecological interactions.

Our knowledge of how avian gut microbiota changes in urban habitats comes from a handful of studies with 
mixed results: thus, gut microbial diversity was found to be lower in urban populations of house sparrow (Passer 
domesticus)11, American white ibises (Eudocimus albus)12 and herring gulls (Larus argentatus)13, while it was 
higher in city-dwelling white-crowned sparrows (Zonotrichia leucophrys)14,15. Another knowledge gap related 
to our understanding of animal-microbe symbiosis in the urban space is associated with the fact that all studies 
published to date were performed on adult birds and reptiles; thus, there are currently no data exploring the 
extent to which the gut microbiome of birds hatching and growing in urban environments are dissimilar to birds 
developing in natural forests. This information gap is particularly striking as the microbial colonies established in 
early life are known to have vital functions in the developmental trajectory of an individual, affecting the survival 
and fitness of  vertebrates16,17. Also pertinent to the theme of juvenile development and life-long physiological 
homeostasis is the fact that cavity-breeding songbirds in urban environments are known to occupy both nest-
boxes and natural  cavities18. But it should be noted that nestboxes, whose supplementation in urban environments 
is essential to provide breeding cavities for cavity-nesting birds, provide different microclimatic conditions than 
natural  cavities18,19, possibly impacting the shaping of the avian microbiome. However, the impact of the use of 
artificial breeding cavities such as nestboxes on the gut microbiota has never been investigated. Understand-
ing these overlooked aspects of songbird biology can advance our understanding of urban-driven responses in 
animal-associated microbial communities, and broaden our perspective on the evolutionary consequences of 
animal-microbe symbiosis.

To address these knowledge gaps, we collected faecal samples from great tit (Parus major) nestlings non-inva-
sively and investigated changes in the taxonomic diversity and community composition of faecal gut microbiota 
sampled across a heterogeneous urban landscape in Warsaw, Poland. These samples represent an urban mosaic 
ranging from natural rural habitats to highly modified urban areas, consequently exhibiting profound variation 
in multiple environmental parameters and in the rearing environment (natural cavities and nestboxes). Such 
sampling strategy allowed us to test whether (1) microbial community diversity and composition are influenced 
by breeding cavity type (artificial nestbox or natural cavity), (2) microbiota differs in terms of diversity and com-
munity composition as described by two different frameworks defining the urban environment (urban/rural 
dichotomy vs. gradual change in ISA) and finally, whether (3) changes in microbial alpha and beta diversity 
covary with distinct environmental variables characterising the urban space.

Results
We collected faecal samples from 15-day old great tit nestlings hatched in nine different sites, located within and 
outside of the capital city of Warsaw in Poland (Fig. 1). We characterised gut microbial communities using 16s 
ribosomal RNA (rRNA) gene sequencing. After quality-filtering, the resulting dataset consisted of 82 biological 
samples collected from 80 nests and 1090 OTUs with a total read count of 1,277,151 (Minimum = 937, Maxi-
mum = 132,856, Average = 15,575.01, SD = 19,259.16). Based on the OTU accumulation curve, our sample size 
is sufficient for an accurate estimation of microbial communities (Supplementary Figure 1). These OTUs were 
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Figure 1.  Study site locations in the urban mosaic of the capital city of Warsaw, Poland. The locations include 
an office area, two residential areas, an urban park, two urban woodlands, an urban forest, a peri-urban village 
and a natural forest. The impervious surface area (ISA, in %), shown here as the original map layer, is further 
described and used for analysis in Section 2.2.3. A zoom on each study site visualizes the locations of nestboxes 
(dots) and natural cavities (triangles). The figure was generated using the QGIS software (v. 3.10)86.
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represented by 19 different microbial phyla, three of which constituted 96.9% of the OTUs based on their total 
relative abundances: Firmicutes (69.5%), Proteobacteria (18.6%) and Actinobacteria (8.8%).

Microbial community diversity and composition in relation to cavity type. To understand the 
impact of cavity type on microbial communities, we compared the samples collected from nestboxes (N = 7) 
and those collected from natural cavities (N = 6) located in the same urban forest. While Shannon’s diversity was 
lower in nestlings reared in natural cavities (linear model; β = − 0.60 ± 0.22, 95% CI [− 1.09; − 0.11], p = 0.021; 
Fig. 2), two other alpha diversity metrics (number of observed OTUs ad Faith’s phylogenetic diversity index) 
did not change between the two cavity types (Supplementary Table 1). Similarly, microbial composition did not 
differ between nestlings originating from nestboxes and natural cavities (PERMANOVA: Bray–Curtis: pseudo-
F = 0.25, p = 1; weighted UniFrac: pseudo-F = 0.53, p = 0.92).

The impact of urbanization on microbial community diversity and composition. To understand 
the impact of urbanization on the gut microbiota, we defined the urban space using two different frameworks. 
Under the first framework of urbanisation, each nest was categorised depending on whether it was located within 
the administrative limits of the city (urban) or outside of these limits (rural, Fig. 1). This aligns our findings with 
frequent partitioning of  phenotypic20 and genetic  variation21. However, the actual surface use patterns measured 
by the percentage of Impervious Surface Area around each nest location (ISA) show substantial heterogeneity 
within urban and rural sites (Fig. 3a, Supplementary Table 2). Furthermore, ISA correlated with all the envi-
ronmental parameters used in the study (Fig. 3b, Supplementary Table 3). Taken together, ISA can be used as 
an urban metric to quantify actual surface use intensity, and to capture accompanying fine-scale differences in 
several environmental parameters that often  covary1 or interact with each other across the urban mosaic. Conse-
quently, under the second framework of urbanisation, we used the percentage of ISA surrounding the respective 
location of every nest analysed in the study. We investigated the impact of urbanisation on alpha diversity as 
measured by Shannon’s diversity, the number of observed OTUs, and Faith’s phylogenetic diversity index with 
linear models (LMs). When analysed based on administrative boundaries (urban vs. rural), Faith’s phylogenetic 
diversity index was lower in urban sites (β = − 0.72 ± 0.36, 95% CI [− 1.44 to − 0.01], p = 0.048, Fig. 4a), while the 
other alpha diversity metrics did not differ between hosts from urban and rural sites (Supplementary Table 1). 
When we analysed the covariation of diversity metrics with ISA (as a continuous variable), Faith’s phylogenetic 
diversity index was also lower in urban sites (β = − 0.04 ± 0.01, 95% CI [− 0.06 to − 0.02], p = 0.001). Importantly 
however, the remaining alpha diversity metrics covaried significantly and negatively with ISA (Shannon’s diver-
sity: β = − 0.01 ± 0.00, 95% CI [− 0.02 to − 0.00], p = 0.019; the number of observed OTUs: β = − 0.08 ± 0.03, 95% 
CI [− 0.13 to − 0.03], p = 0.004; Fig. 4b–d, Supplementary Table 1). Importantly, all fitted linear models were 
tested for spatial autocorrelation by Moran’s I test and showed no evidence for geographical structuring of alpha 
diversity (see Supplementary Table 1 for p values). Moreover, as there was temporal variation in nest initiation, 
sampling dates differed between the nests, spanning from the 19th of May 2018 to the 20th of July 2018. We 
examined whether the temporal variation in sampling affected alpha diversity using LMs. However, the number 
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Figure 2.  Microbiota alpha-diversity based on Shannon’s diversity collected from nestlings reared in nestboxes 
and natural cavities. The figure was generated in R version 4.0.068.
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of days between initiation of the study and sample collection did not affect Shannon’s diversity index (p = 0.57), 
the number of observed OTUs (p = 0.09), and Faith’s phylogenetic diversity index (p = 0.86).

The nMDS plots based on Bray–Curtis (Fig. 5a) and Weighted UniFrac (Fig. 5b) dissimilarities of the gut 
microbiota revealed urban-driven shifts in microbial composition. We statistically tested whether microbial com-
munities differ between nestlings originating from urban and rural areas, different study sites, or with changing 
ISA levels (fitted as a continuous variable) by PERMANOVA models based on Bray–Curtis and the weighted Uni-
Frac dissimilarities. According to the model based on Bray–Curtis dissimilarity, microbial composition differed 
between urban and rural areas (pseudo-F = 1.66, p = 0.044) and sampling sites (pseudo-F = 1.28, p = 0.019), but 
not with changing ISA percentages (pseudo-F = 1.08, p = 0.284). PERMANOVA based on Weighted UniFrac dis-
tances detected differences in microbial composition between urban and rural sites (pseudo-F = 2.58, p = 0.030), 
but not between sampling sites (pseudo-F = 1.17, p = 0.202) or with changing ISA percentages (pseudo-F = 1.27, 
p = 0.218). We also tested the homogeneity of group dispersion between urban and rural sites. PERMDISP based 
on Bray–Curtis dissimilarity showed homogeneous dispersions for urban and rural samples, indicating that the 
significant PERMANOVA results were not caused by differences in dispersion among the groups. However, 
PERMDISP based on weighted UniFrac distances revealed that microbial variation in rural sites is significantly 
higher than in urban sites (the average distance from the centroids was 0.144 ± 0.006 and 0.125 ± 0.004 and for 
rural and urban areas, respectively, p = 0.035). Therefore, the significant between-group differences detected 
by PERMANOVA might reflect differences in location, dispersion, or a combination of the two. There was no 
significant impact of sampling time in our PERMANOVA model (based on Bray–Curtis dissimilarity: p = 0.30; 
based on Weighted UniFrac: p = 0.12).

The stacked bar plot revealed prominent taxonomic and compositional differences between urban and rural 
hosts (Fig. 6a). To determine differentially abundant OTUs between the urban and rural territories, we employed 
DESeq2  analysis22. Overall, we found 20 differentially abundant OTUs (Fig. 6b, Supplementary Table 4). Of 
these, ten were significantly more abundant in the rural territories, and ten were significantly more abundant in 
urban territories. Urban hosts exhibited higher abundances of an OTU belonging to the potentially pathogenic 
microbial family, Enterobacteriaceae23,24.

Interactive effects of spatial and environmental parameters on microbial change. While nest-
ing sites are here referred to as located in urban or rural sites or areas with varying degrees of ISA, each nestbox 
is also embedded in a complex web of specific environmental and spatial parameters characterising the urban 
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Figure 3.  (a) Violin plots with embedded box plots comparing the distribution of ISA percentages in urban and 
rural sites. The line within the box plots indicates the median and the lower and upper boundary of the boxes 
indicates the 25th and 75th percentile, respectively. Whiskers above and below the boxes correspond to 1.5 
times the inter-quartile range (IQR) above and below the 25th and 75th percentile, respectively. (b) Correlation 
between ISA and environmental variables. The significance was determined based on Pearson’s correlation 
tests, at p-values ≤ 0.05 (*), p ≤ 0.01 (**), and p ≤ 0.001 (***). The sizes of the circles are proportional to Pearson’s 
correlation coefficients. The figure was generated in R version 4.0.068.
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mosaic; these parameters are defined herein as the distance to city centre, closest road and closest path, light 
pollution, sound pollution, human presence, temperature, tree cover density, and NDVI. These environmental 
parameters differed between the urban and rural sites (except for the distance to the closest path, NDVI and tree 
cover density; Supplementary Table 5), and were correlated with ISA (Supplementary Table 3).

We investigated which environmental and spatial variables best predicted the microbial alpha diversity (diver-
sity within samples) as measured by Shannon’s diversity, the number of OTUs, and Faith’s phylogenetic diversity 
index. As multiple environmental and spatial variables were correlated with each other (Fig. 3b, Supplementary 
Table 3), we first examined multicollinearity among all variables and sequentially excluded predictors based on 
VIF values and biological relevance when analysing predictors of alpha diversity. Our final models included 
five predictors: distance to the city centre, human presence, temperature, tree cover density and distance to the 
closest path (Supplementary Table 6). Among these predictors, only tree cover density was positively associated 
with Shannon’s diversity (LMM, β = 0.18 ± 0.09, 95% CI [0.00–0.36], p = 0.047), the number of observed OTUs 
(β = 1.2 ± 0.59, 95% CI [0.03 to 2.37], p = 0.045) and Faith’s phylogenetic diversity (β = 0.56 ± 0.28, 95% CI [0.01 
to 1.11], p = 0.048) (Fig. 7).

Before identifying the strongest predictors of between-group microbial dissimilarities, we assessed the spatial 
autocorrelation of beta diversity by Mantel test. The distance matrix of the geographical coordinates of the sam-
pling sites was correlated with Bray–Curtis dissimilarity matrix (R = 0.054, p = 0.041), but not with the weighted 
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UniFrac dissimilarity matrix (R = 0.018, p = 0.250). We further tested the associations between all environmental 
variables and beta diversity by employing different analytical methods to obtain a coherent vision of the urban-
driven variation in gut microbiota. We applied a partial mantel test to investigate the correlations between micro-
bial dissimilarity matrices and the distance matrices of the environmental variables, controlling for the effect of 
the distance matrix of the geographical coordinates of the sampling sites. We found that sound pollution, distance 

N
M
D
S2

N
M
D
S2

N
M
D
S2

a b

Sound pollution oo

ISAISA

Distance to city centerrte ee

Distance to closest c road

TTrTT ee cover densitydr
Distance to closest pathcD

Light pollutiont

Distance to city centercDistance to city centern

Light pollutiong ph n

ISA

nSound pollutionnp

TrrTT ee cover densityer

Distance to closest pathp

Distance to closest s o road

Stress level: 0.12s 13Stress level: 0.11Stress level: 0ev

NMDS1NMDS1NMDS1NMDS1NMDS1NMDS1

Habitat type
Office areaff
Residential area

Urban park
Urban woodland

Urban forest
Peri-Urban village

Natural forest

M
N

M
D

S2

Urban/Rural Categorization
Urban
Rural

Figure 5.  nMDS plots of microbial dissimilarities based on (a) Bray–Curtis and (b) Weighted UniFrac 
distances among samples collected from different sampling sites located in urban and rural areas. The lengths 
of vectors are proportional to their predictive strength, determined based on Envfit. All variables that were 
significant based on at least one test are represented (The significance was determined based on being included 
in the best BIOENV model or at p-values ≤ 0.05 in Envfit or partial Mantel test). The parameters considered 
significant in all tests are coloured in red. The figure was generated in R version 4.0.068.

149-Mycobacteriaceae

63-Acidothermaceae

90-Solirubrobacteraceae

60-Beijerinckiaceae

118-Mycobacteriaceae

243-Xanthobacteraceae

6-Enterococcaceae

27-Peptostreptococcaceae

36-Xanthobacteraceae

16-Micrococcaceae

196-Devosiaceae

108-Microbacteriaceae

26-Pseudonocardiaceae

49-Carnobacteriaceae

186-Iamiaceae

106-Sphingomonadaceae

7-Enterobacteriaceae

2-Catellicoccaceae

−4 0 4
Log2 fold change

O
TU

 N
o 

- F
am

ily

304-MB-A2-108-fa

119-Acidothermaceae

a
Residential area Urban parkUrban woodland Urban forest Peri−urban village Natural forest

0.00

0.25

0.50

0.75

1.00

R
el

at
iv

e 
ab

un
da

nc
e

Family
Acidaminococcaceae

Campylobacteraceae

Catellicoccaceae

Clostridiaceae

Desulfovibrionaceae

Enterobacterales_fa

Enterobacteriaceae

Enterococcaceae

Hafniaceae

Lactobacillaceae

Microbacteriaceae

Micrococcaceae

Moraxellaceae

Mycoplasmataceae

Peptostreptococcaceae

Pseudonocardiaceae

Ruminococcaceae

Staphylococcaceae

Streptococcaceae

Yersiniaceae

Office area

Urban Rural

40.6 % ISA ( Median, %)36% 13.8% 7.8% 0% 2.4% 0%

b

Figure 6.  (a) The relative abundances of microbial families in gut samples from different sampling sites located 
in urban and rural territories. Only the 20 families with the highest relative abundances are reported. (b) 
Differentially abundant OTUs between urban and rural samples. OTUs with a  log2-fold change larger than zero 
are more abundant in urban territories (grey bars), while OTUs with a log2-fold change smaller than zero are 
more abundant in rural territories (green bars). The family level taxonomy of each OTU is indicated. The figure 
was generated in R version 4.0.068.



7

Vol.:(0123456789)

Scientific Reports |         (2022) 12:6872  | https://doi.org/10.1038/s41598-022-10734-7

www.nature.com/scientificreports/

to the city center, distance to the closest road and tree cover density were significantly correlated with Bray–Cur-
tis and Weighted UniFrac dissimilarities (Table 1). All other parameters were found to be nonsignificant in the 
partial Mantel tests (Table 1). Based on BIOENV, the best model with the strongest relationship with Bray–Curtis 
dissimilarity matrix (R = 0.209) similarly contained sound pollution, the distance to the city centre, the distance 
to the closest road and light pollution (Table 1). However, the best BIOENV model based on weighted UniFrac 
distance (R = 0.200) contained only sound pollution and distance to the city centre. According to Envfit, patterns 
observed in the Bray–Curtis and Weighted UniFrac ordination plot were significantly associated with sound 
pollution, the distance to the city centre, and distance to the closest road, light pollution, tree cover density, and 
the distance to the closest path,) but not with temperature, NDVI or human presence (Table 1). Overall, there 
was coherent and conclusive support across all models for sound pollution and distance to the city centre acting 
as the most important drivers of juvenile gut microbiota variation across the urban mosaic (Fig. 5).

Discussion
Cavity type influences microbial diversity but not community composition. Our dataset, albeit 
small, indicated that Shannon’s diversity, one of the alpha diversity metrics investigated in the study, was higher 
in nestlings reared in artificial nestboxes, relative to those reared in natural cavities. Since the nestboxes and 
natural cavities located on a homogenous urban forest  (see18), the observed changes cannot be justified by dif-
ferences in food sources or nest material. Human-made nestboxes are frequently used in ecological studies, as 
they are convenient substitutes for natural cavities. However, they differ from natural cavities in various aspects, 
exhibiting very different humidity ranges relative to natural cavities and providing poorer insulation, leading 
to prominent fluctuations in daily ambient temperatures across 24  h19. While the gastrointestinal ecosystem is 
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Table 1.  Summary of the statistical tests used to investigate the interaction between environmental variables 
and beta diversity. The bold significance was determined based on Envfit or partial mantel test, at p-values ≤ 
0.05 or being selected by the best BIOENV model.

Environmental parameter

Envfit Partial mantel BIOENV

BC WU BC WU
In the best 
model

r2 p r2 p r p r p BC WU

Sound pollution 0.33 0.0001 0.25 0.0003 0.18 0.0003 0.20 0.0005 Yes Yes

Distance to the city center 0.32 0.0001 0.18 0.0005 0.15 0.0032 0.14 0.0046 Yes Yes

Distance to the closest road 0.22 0.0005 0.18 0.0012 0.11 0.0353 0.15 0.0083 Yes No

Tree cover density 0.12 0.0108 0.11 0.0125 0.08 0.0139 0.07 0.0290 No No

Light pollution 0.20 0.0004 0.12 0.0087 0.02 0.3226 − 0.01 0.5561 Yes No

Distance to the closest path 0.09 0.0318 0.10 0.0257 0.06 0.1412 0.05 0.1787 No No

Temperature 0.05 0.1402 0.01 0.6039 − 0.19 0.6367 0.04 0.2148 No No

NDVI 0.03 0.2910 0.03 0.3023 0.00 0.4968 − 0.01 0.5499 No No

Human presence 0.03 0.3373 0.03 0.3769 0.00 0.4415 − 0.01 0.5540 No No
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relatively well-regulated and is not expected to exhibit prominent alterations in response to moderate fluctua-
tions in ambient conditions in endothermic animals, young nestlings of altricial passerines cannot regulate their 
body  temperatures25. Therefore, even moderate fluctuations in microclimatic conditions can trigger physiologic 
stress in nestlings and consequently, influence the immune  system26. Although we still know very little about 
how these alterations translate into gut  microbiota27, some studies revealed an increased microbial diversity with 
elevated  temperatures28, probably due to suppression of immune response. Another explanation is that such 
fluctuations can influence nestling development and differential growth rates between nestlings from different 
cavity types can ultimately affect the microbial assembly. At the same time, there were no difference in the spe-
cies richness, phylogenetic diversity, or composition of microbial communities of the nestlings reared in nest-
boxes and natural cavities. It is important to note that the novel finding regarding increased microbial diversity 
in nestboxes relies on a small dataset and should be confirmed by larger datasets.

Alterations in the diversity and taxonomic composition of gut microbiota in the urban 
space. Gut microbial communities differed across the urban mosaic, and we demonstrate that the type of 
framework used to define the urban space impacts analytical outcomes and results interpretation. Remarkably, 
occupying urban or rural habitats per se (strictly based on urban/rural administrative definitions) does little to 
explain changes in alpha diversity. Instead, microbial diversity was found to be lower in highly urbanised space, 
and was correlated with actual land-use intensity, as measured by ISA (Fig. 4). Thus, the observed alterations in 
alpha diversity are probably more strongly associated with fine-scale variation in the local habitat, which shows 
remarkable heterogeneity within the urban mosaic, rather than with factors broadly related to human activities 
or the geographical locations of the nests. Thus, urban spatial heterogeneity can influence the gut microbiota 
diversity via different mechanisms (see below). Earlier studies investigating how microbial alpha diversity varies 
in the urban space have revealed contradictory results. For example, the gut microbial diversity was higher in 
urban populations of white-crowned sparrows than in their rural counterparts, yet the change was not strongly 
associated with impervious  cover14,15, which is inconsistent with our findings. In contrast, adult house sparrows 
had reduced alpha diversity in urbanised habitats with more than 10% built-up  areas11,29. Similarly, herring gulls 
exhibited reduced diversity in highly urbanised areas as determined by the human  population13. Furthermore, 
alpha diversity did not differ between urban and rural populations in juvenile house  sparrows29 or was not 
associated with the percentage of urban land cover in American white  ibises12. Based on the results reported in 
this study, we posit that these discrepancies may be driven by differences in the criteria used to define the urban 
space. Alternatively, but not exclusively, biological differences originating from the taxonomy and life-history 
stage of the host may also play a role in these discrepancies. For example, avian species with higher tolerance to 
anthropogenic food might exhibit higher alpha diversity in urban areas.

We demonstrate that microbial community composition changes with contrasting land-use patterns. Impor-
tantly, and in contrast to the results obtained for alpha diversity, these alterations were prominent only under the 
urban/rural distinction reflected by administrative borders, indicating that differences in community composi-
tion were largely determined by whether the nestling lived in a densely populated urban site. Strikingly, the urban 
hosts were enriched by a potentially pathogenic microbial family, Enterobacteriaceae23,30. A higher prevalence of 
Enterobacteriaceae has been associated with dysbiosis in  mice31 and higher mortality rates in  ostriches32. Similarly, 
urban populations of American white ibises were found to have lower microbial diversity and were more suscep-
tible to Salmonella infections than their rural  counterparts12. Collectively, these findings indicate that pathogen 
susceptibility increases in densely populated urban sites, potentially adversely influencing the overall health and 
fitness of animal hosts. However, it is important to note that the differential abundance analysis did not account 
for the nonindependence of the samples collected from the same site. Therefore, our results might be related 
to the increased prevalence of this pathogenic taxon in particular sites rather than overall urban populations.

Taken together, our findings revealed that diversity and composition of the microbial communities of juvenile 
great tits change across an urban mosaic. Furthermore, using different frameworks to describe the urban space 
leads to the capturing of different aspects of variation in microbial communities. The initial microbial colonies 
inhabited by animal hosts in early life are not only critical for the establishment of healthy gut microbiota but 
also have crucial functions, such as the programming of the immune  system33, and are involved in the matura-
tion of the nervous  system34. Therefore, the observed alterations might have long-term consequences on the 
survival and fitness of  hosts16.

Environmental factors associated with changes in the urban gut microbiota. One of the pri-
mary goals of this study was to determine whether distinct environmental variables characterising the urban 
space can predict changes in the gut microbiota of great tit nestlings. Based on our models, tree cover density 
was the only environmental axis that covaried with alpha diversity (whilst also confirming that alpha diversity 
was not spatially or temporally autocorrelated). In line with our findings, white-crowned sparrows occupying 
territories with greater tree cover also exhibited more diverse gut microbial communities than those occupying 
regions with less tree  cover14,15. This is likely to be explained by the tree cover density influencing the diversity 
and abundance of  invertebrates35, which are the primary food source for great tits during the chick-rearing 
 period36. Reductions in tree cover density, often observed in urban spaces, can also direct animals to search for 
anthropogenic  food37. Consistently, the camera recordings of the nests sampled in this study revealed that the 
amount of anthropogenic food brought into the nests was higher in territories characterized by high ISA per-
centages than in low-ISA territories(Corsini et al., in prep.), and dietary alterations are known to be associated 
with changes in alpha  diversity29,38,39. However, our predictions regarding their diets remain speculative, as we 
did not analyse the diets of the studied nestlings. Furthermore, it is important to note that tree cover density 
is correlated with all other variables used in the study (Fig. 3b, Supplementary Table 3). Specifically, distance 
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to the closest road, NDVI, light and sound pollution had relatively strong associations with tree cover density. 
Although these variables were not retained in the final models due to multicollinearity issues, the observed alpha 
diversity patterns might stem from underlying relationships between these variables.

An important aim of the study was to determine the environmental parameters predicting compositional 
changes in gut microbiota. Although seasonal fluctuations can influence gut  microbiota40, we did not find evi-
dence that temporal variation in sampling leads to compositional changes. However, microbial community 
composition exhibited spatial structuring. One potential explanation is that the microbial communities residing 
in the guts of studied nestlings, at least to some extent, represent the environmental pool of  microorganisms41, 
which exhibits microgeographic  variations42. Alternatively, these changes might be related to spatial variation 
in environmental variables. Based on our models, the two variables that showed the strongest associations with 
change in the microbial community composition were sound pollution and the distance to the city centre. 
Sound pollution can influence gut microbiota by different but non-exclusive mechanisms. Noise might impair 
parent–offspring communication by masking the begging calls of the young, and parents might adjust their food 
provisioning  accordingly43. Therefore, the amount of food received by the young might vary depending on the 
background noise levels, which in turn could influence gut microbiota. Alternatively, acoustic stress can acti-
vate the hypothalamic–pituitary–adrenal axis and alter the endocrine  profiles9,44, causing cascading impacts on 
glucose  metabolism45, immune  function46, oxidative  stress47 and gut  physiology48 and consequently influencing 
gut  microbiota45,48. The second strongest predictive variable was the distance to the city center. This interaction 
might be mediated by environmental variables distributed linearly from the city centre such as light pollution. 
Indeed, light pollution was a significant predictor based on most of our models and can indirectly affect gut 
microbiota by altering the host  physiology49. Alternatively, the observed correlations between the distance to the 
city center and community composition might be associated through unmeasured chemical pollutants show-
ing collinearity with distance from the city centre, such as particulate matter in ambient air or trace  metals50. 
Indeed, environmental chemical exposures have been shown to elicit negative effects on avian  physiology51 and 
consequently can influence gut  microbiota52. It is important to note that due to the multicollinearity among these 
variables, it is not possible to infer the exact correlative factors explaining changes in the microbial community 
composition, and each of these assumptions requires further experimental testing to infer the exact causative 
factors driving the observed differences in beta diversity.

Conclusions and outlook
We quantified the extent to which anthropogenic modifications pertaining to the urban environment -including 
the use of artificial nestboxes- reshapes animal-microbe interactions in great tit nestlings. We report clear trends 
regarding urban-related shifts in taxonomic composition, a reduction in alpha diversity, and increased pathogen 
susceptibility. While the exact causal interactions between the environmental parameters and observed microbial 
changes remain to be tested experimentally, we outlined different mechanisms that are likely to be the driving 
forces of the measured microbiota variation in the studied urban space. This study thus fills an important gap in 
providing pioneering evidence on how multi-dimensional anthropogenic changes may relate to gut microbiota 
during early nestling development, the most critical life-history stage during which gut microbial communi-
ties are established and program several developmental processes of their  hosts16,34,53. Another novel piece of 
information provided by our study is how the use of nestboxes, the golden standard of ecological field studies, 
can affect the outcome of research investigating gut microbial communities, an important point that should be 
considered in future investigations. Our study further adds to the existing evidence that how the urban space is 
defined might have a prominent impact on the outcome of ecological studies.

Although our study shed light on how anthropogenic change can influence gut microbiota assembly in early 
life, it also has some potential limitations. First, our relatively small sample size did not allow us to use more 
sophisticated analysis methods such as machine learning implications to gain deeper insights into drivers of 
microbial change in urban space. Another drawback regarding the sample size is that our conclusions on cavity 
type’s influence on gut microbiota rely on a small dataset. Consequently, these preliminary findings should be 
interpreted with caution until they are confirmed by larger datasets. Second, our sampling design was somehow 
unbalanced, with a larger number of samples collected from urban sites. Although unlikely, we cannot rule out 
the possible effect of unequal sample size on study outcomes. Third, our sampling was not replicated spatially 
and temporally; ultimately, the results presented in this work should be assessed by future studies conducted in 
multiple cities and across multiple years.

Importantly, our study provides important evidence that highlights future opportunities and further refine-
ment in research questions. First, it is pivotal to conduct experimental testing in which the confounding variables 
are strictly controlled to infer the exact causal effects of the identified environmental factors covarying with 
microbial changes. Second, whether and how gut microbes can facilitate the adaptation of their hosts to changing 
environments is an important point that remains to be investigated to achieve full comprehension of the long-
term fitness consequences of host-microbe interactions. Third, our study raises the possibility of answering a 
central question in microbial ecology by leveraging the urban–rural gradient; cross-fostering experiments among 
contrasting habitats would allow us to disentangle the relative importance of host-specific and environmental 
factors in shaping microbial communities. Answering these questions would allow us to fully comprehend the 
ecological and evolutionary dynamics and consequences of animal-microbe symbiosis, in the context of glob-
ally increasing urbanisation, specifically in the fields of urban planning, wildlife and public health management.
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Materials and methods
Ethics declarations. The experimental protocols, including handling the birds, were approved by the 
Regional Directorate for Environmental Protection (RDOŚ) in Warsaw, Poland. All experiments were carried 
out in accordance with relevant guidelines and regulations.

Study sites. Great tits are hole-nesting passerine birds known to occupy a wide range of habitats, from pri-
mary  forests54 to urban city  centres55. In this species, the nesting environment is an important driver that shapes 
gut microbiota during early  development56, making the great tit an ideal subject to study microbial changes 
across an urban mosaic. Here, we monitored the great tit reproductive cycle in the capital city of Warsaw in 
Poland, where 565 woodcrete Schwegler nestboxes (type 1b) were set up at nine sites located within and outside 
the city (Fig. 1; Supplementary Table 5). We included the following sampling sites: a natural forest (c. 10 km 
from the city borders and approximately 20 km from the city centre), a peri-urban village bordering a natural 
forest, two residential areas, two urban woodlands, a large urban park and an office area (2019, 2020). Further-
more, natural cavities located on a Primeval Forest within the urban administrative border were also monitored 
(Fig. 4).

Capturing urbanisation. The urban space was defined with two different frameworks: under the first 
framework, each nest was categorised depending on whether it was located within the administrative limits 
of the city (urban) or outside of these limits (rural). Based on this dichotomous categorization, the urban sites 
included an office area, two residential areas, an urban forest, an urban park and two urban woodlands. The rural 
sites comprised a natural forest and a peri-urban village (Supplementary Table 5). Under the second framework, 
we aimed to capture the heterogeneity in actual surface use patterns and defined urbanisation using the percent-
age of impervious surface area (ISA) surrounding the respective location of every nest analysed in the study. A 
map of ISA in Warsaw (in a range from 0 to 100%) with a 20-m pixel resolution was downloaded from Coper-
nicus Land Monitoring Services. ISA included all built-up areas and soil-sealing surfaces substituting original 
or semi-natural surfaces. Averaged ISA values at each nest were obtained using a 100-m-radius buffer starting 
from each nestbox location and using geographic information system tools (GIS). The radius was selected on 
literature-based estimates of parental foraging: blue tits travel about 53.2 m (22.9 SD) in food-poor (but natural) 
environments while feeding the  nestlings57; importantly, the same study has shown that birds also flied beyond 
50 m from the nest location in c.1/3 of their foraging  trips57, therefore, a 100 m radius around each nestbox con-
stitutes a conservative estimate of food foraging distances covered by parents while feeding the nestlings. ISA 
percentage was used as a continuous variable in alpha and beta diversity analyses.

Environmental and spatial variables. We collected ten environmental and spatial variables as described 
 previously1,58,59 (also see Supplementary Text 1 for details). Regarding the environmental variables collected on 
the ground, the (1) human presence was derived by quantifying all humans and dogs, with repeated 30-s long 
counts performed within a 15-m radius around each nestbox (as detailed in Corsini et al.59). (2) Sound pollution 
was obtained after averaging recordings that occurred on the DbC scale using hand-held sound level meters 
equipped with a microphone, over four days throughout the field season, three times per day. (3) Temperature 
was obtained from 22 Thermocrones ibuttons DS1921G set from 24/04/18 until 30/06/18with a 1-h sampling 
frequency, and distributed across the entire gradient of urbanisation, following Szulkin et al.1.

Spatial variables such as the distances from each nestbox to (4) the closest road and to (5) the closest path (for 
vehicular and pedestrian use, respectively) and (6) the city centre (i.e., the location of the Palace of Culture and 
Sciences) were computed and measured in metres using the “Measure line” tool in QGIS, as described by Corsini 
et al.59. Furthermore, (7) a distance matrix of the geographical coordinates of the sampling sites was calculated 
based on the Haversine distances.

We also extracted environmental variables using digital photography and satellite imagery techniques and 
computed the values of these variables at the nest level in a 100-m-radius buffer. For (8) light pollution, a map of 
light pollution in Warsaw with a 10-m pixel resolution was extrapolated from night-time digital photographic 
images shot on 08/10/2015 by astronauts from the International Space  Station60. For (9) tree cover density, a 
map of tree cover density in Warsaw (in a range from 0 to 100%) with a 20-m pixel resolution was downloaded 
from Copernicus Land Monitoring Services. For a proxy of live green vegetation, (10) the normalized difference 
vegetation index (NDVI) was estimated using satellite images derived from SENTINEL2 that are available on the 
Earth Explorer website (https:// earth explo rer. usgs. gov).

Sample collection, DNA extraction and library preparation. Faecal samples were collected from 
15-day-old great tit chicks hatched in 89 nests (eight and 81 nests were located in natural cavities and nestboxes, 
respectively; Supplementary Table 5), between the 19th of May 2018 and the 20th of July 2018. Faeces of one 
chick per nest (from the largest chick in the brood) was collected, except for four nests where more than one 
chick per nest was sampled (all originating from woodcrete nestboxes). The samples were collected noninva-
sively while handling the chicks and directly deposited in 5-mL sterile Eppendorf tubes, each filled with 3 mL of 
RNAlater (Qiagen) and further stored at − 20 °C.

Details of the microbial analysis are described in Maraci et al.61. In short, microbial DNA was extracted using 
the QIAamp PowerFecal DNA Kit (Qiagen), as described in the manufacturer’s protocol. The hypervariable 
V3–V4 region of the 16S ribosomal RNA (rRNA) gene was targeted following the Illumina 16S Metagenomic 
Library Preparation Guide, 15044223-B. The final amplicon pool contained a pool of blank controls for DNA 
extraction and PCR amplification and one replicate of a single sample, alongside 94 biological samples sequenced 
on the Illumina MiSeq system (Illumina, Inc., San Diego, CA, USA).

https://earthexplorer.usgs.gov
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Bioinformatic processing. The bioinformatic processing was carried out as described in  detail62. In short, 
MiSeq PE reads were assembled in an iterative manner using Flash v1.2.1163. All other bioinformatic steps con-
sisted of (1) adapter clipping with cutadapt v1.1864; (2) de-replication, alignment, filtering and de-noising with 
mothur v1.41.365; (3) chimaera checking and operational taxonomic unit (OTU) clustering with USEARCH 
v8.0.147766; and (4) taxonomic classification based on the full SILVA database  v13267.

Statistical analyses. All consecutive statistical analyses were conducted in R version 4.0.068 and Primer-e 
software version  769. As an initial quality filtering step, all OTUs that could not be classified at the phylum level 
or that were classified as mitochondria or chloroplasts were discarded. Next, all OTUs that were not represented 
by at least one read in 2% of the samples or with fewer read counts than 0.001% of the total number of reads 
were excluded. Subsequently, samples with a lower read count than 900 (N = 12) were removed from the dataset. 
We evaluated whether our sample size is sufficient for an accurate estimation using OTU accumulation curve.

To test whether the microbial communities were affected by cavity type, we created a subset of data including 
samples collected from nestboxes (N = 7) and those collected from natural cavities (N = 6) located in the same 
urban forest, a highly homogenous ecological site  (see18, for a map for the distribution of the natural cavities and 
nestboxes across the study site). Subsequently, the six samples obtained from natural cavities were excluded from 
the remaining analyses, and the dataset used in further analyses ultimately consisted of 76 samples collected from 
nestboxes (Supplementary Table 5). Using a two-step approach, we analysed the interactions among microbial 
community differences, urbanisation and environmental change. First, the urban space was defined using two 
different frameworks based on (1) the often-used administrative border delineation (urban/rural site) and (2) 
the percentage of impervious surface area (ISA) surrounding each nest, irrespective of the location of the nest 
within or outside of the city borders. Thus, microbial alpha and beta diversity was compared (1) between urban 
and rural sites, and also (2) examined in relation to ISA percentage.

Before the alpha diversity analyses, we rarefied OTU read count data to the lowest read count observed in 
the dataset (937). Then, we calculated Shannon’s diversity index, which accounts for both the abundance and 
evenness of the taxa  present70, the number of observed OTUs, which estimates species richness, and Faith’s 
phylogenetic diversity, which incorporates phylogenetic relationships between microbial  taxa71, as the microbial 
alpha diversity estimates. We normalised these indexes employing square root transformation. We examined 
whether these alpha diversity indexes differed between nestboxes and natural cavities by fitting linear models, 
implemented using the lm function of R package  stats68.To analyse the impact of urbanisation on alpha diversity, 
we employed different linear models (LMs) using square-root-transformed Shannon’s diversity, the number of 
observed OTUs, or Faith’s phylogenetic diversity indices of the samples collected from nestboxes as the response 
variable. Depending on the framework used to define urbanisation, we used the urban/rural categorisation or 
ISA (as a continuous variable) as the fixed effect. Subsequently, to account for the potential impact of differences 
in the sample collection dates on alpha diversity, we fitted LMs using the number of days between initiation of 
the study and sample collection as a fixed effect, and Shannon’s diversity index, the number of observed OTUs 
or Faith’s phylogenetic diversity as the response variable. The associations between distinct environmental and 
spatial variables and microbial alpha diversity were also inferred. As an initial step, the extent to which the 
environmental parameters varied between urban and rural sites was tested with Welch’s two-sample t-test. Cor-
relations between alpha diversity, ISA and other environmental variables were then investigated using Pearson’s 
correlation. To analyse the interactions between alpha diversity and environmental variables, three linear mixed 
models (LMMs) were fitted using Shannon’s diversity, the number of observed OTUs, or Faith’s phylogenetic 
diversity indices as the response variables and all environmental variables as fixed effects, as implemented using 
lme4 version 1.1-2572. To examine multicollinearity between the variables, the variance inflation factor (VIF) 
was calculated with the Car  package73, and the predictors were sequentially removed from the model based on 
VIF values and biological relevance, and VIF values were  recalculated74. This procedure was repeated until all 
the VIF values were smaller than two. The final models were fitted with the remaining environmental variables 
as fixed effects, that is: distance to the city centre, human presence, temperature, tree cover density and distance 
to the closest path. The sampling site was included in these LMMs as random effects to account for the non-
independence of the samples originating from the same sampling site. Furthermore, we also tested for spatial 
autocorrelation in the simulated scaled residuals of the fitted LMs and LLMs by Moran’s I test as implemented 
in the DHARMa  package75.

The taxonomic and compositional structures of the microbial communities collected from different localities 
were visualized with stacked bar plots based on family-level taxonomy using ggplot2 version 3.3.276. To identify 
differentially abundant OTUs in samples collected from urban and rural localities, the logarithmic fold changes 
between groups were estimated using a negative binomial Wald test implemented in Deseq2 version 1.12.4 
 extension22 of the Phyloseq package version 1.32.077. The significance threshold of the p values was set as 0.05 
after a Benjamini and Hochberg false‐discovery rate  correction78.

To analyse community  composition79, first, the filtered absolute abundance data were normalized by applying 
cumulative sum scaling (CSS) normalization in the R package Metagenomeseq version 1.30.080 to account for 
unequal sequence coverage. The differences in community composition between urban and rural sites were visu-
alized using non-metric multidimensional scaling (nMDS) based on Bray–Curtis81, and the weighted  UniFrac82 
dissimilarities implemented using the Vegan package version 2.583. We examined microbial composition in 
relation to whether samples originated from urban or rural areas, sampling site, ISA percentage (as a continu-
ous value) and sampling time using permutational multivariate analyses of variance  (PERMANOVA84, with 
Bray–Curtis and the weighted UniFrac dissimilarities, implemented in Primer-e software with 9999 permuta-
tions. Subsequently, using the same dissimilarity measures, we examined the effect of cavity type on microbiota 
composition by PERMANOVA. We also tested homogeneity of group dispersions using PERMDISP in Primer-e. 
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Finally, the interactions between spatial and environmental variables and beta diversity were also evaluated by 
employing different methods. First, to assess the spatial autocorrelation of beta diversity, we tested the cor-
relations between the Bray–Curtis and weighted UniFrac dissimilarity matrices and the distance matrix of the 
geographical coordinates of the sampling sites, using the mantel test. Second, we employed a partial mantel test 
to investigate the correlations between Bray–Curtis and weighted UniFrac microbial dissimilarity matrices and 
the distance matrices of the environmental variables obtained based on Euclidean distances, controlling for the 
effect of the distance matrix of the geographical coordinates of the sampling sites. Third, to identify the variables 
that were strongly related to the first two ordination axes, the multiple regression between each environmental 
variable and the ordination axes was evaluated using the Envfit function, and the significance of each correla-
tion was tested based on 9999 permutations. Finally, the subset of environmental variables whose Euclidean 
distance matrices correlated maximally with the microbial distance matrix based on Bray–Curtis was identified 
employing the BIOENV  procedure85.

Data availability
Sequences generated for this study have been uploaded to the European Nucleotide Archive (ENA) repository 
under the accession number: PRJEB44290. The scripts used for processing the data are provided in the GitHub 
repository at: https:// github. com/ AnnaA ntona touPap/ Urban- relat ed- chang es- in- tit- micro biota.
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