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ABSTRACT

How many intergenically encoded non-coding RNAs
(ncRNAs) are expressed during various developmen-
tal stages in Drosophila? Previous analyses in one or
a few developmental stages indicated abundant
expression of intergenic ncRNAs. However, some
reported that ncRNAs have been recently falsified,
and, in general, the false positive rate for ncRNA
detection is unknown. In this report, we used reverse
transcription-PCR (RT-PCR), a more robust method,
to detect ncRNAs from the intergenic regions that
are expressed in four major developmental stages
(6-8h embryo, 20-22h embryo, larvae and adult).
We tested 1027 regions, ~10% of all intergenic
regions, and detected transcription by RT-PCR.
The results from 18342 RT-PCR experiments
revealed evidence for transcription in 72.7% of inter-
genic regions in the developmental process. The
early developmental stage appears to be associated
with more abundant ncRNAs than later developmen-
tal stages. In the early stage, we detected 43.6% of
intergenic regions that encode transcripts in the trip-
licate RT-PCR experiments, yielding an estimate of
5006 intergenic regions in the entire genome likely
encoding ncRNAs. We compared the RT-PCR-
related approach with previous tiling array-based
approach and observed that the latter method is
insensitive to short ncRNAs, especially the mole-
cules less than 120 bp. We measured false positive
rates for the analyzed genomic approaches including
the RT-PCR and tiling array method.

INTRODUCTION

Increasing numbers of non-coding RNA (ncRNA) genes
with important functions have been reported in various
organisms (1-9). Determining the abundance and distri-
bution of ncRNA genes is critical for further understand-
ing of the functions and properties of genes and the
composition of genomes. Taking advantage of the high-
quality annotation of the Drosophila melanogaster genome
(10-13), numerous ncRNA genes were detected from this
species (3,8). The microarray methods were also used to
detect ncRNA candidates only expressed in one or few
developmental stages (14).

These previous efforts indicated a potentially large
number of ncRNAs encoded in the D. melanogaster
genome expressed in various developmental stages. These
analyses raised interesting problems in both methodology
and biology. For example, technically, what are false pos-
itive rates for various genomic measurements? Biologically,
what is the distribution and variation of ncRNA encoding
genes across developmental stages? Indeed, both recently
reported falsification and confirmation of previously pre-
dicted ncRNA candidates identified by the tiling array
method (14-16) that indicate the importance of assessing
the false positive rates for these methods.

To address these issues, we developed a sensitive
approach to detect ncRNA genes. For the sensitivity
and simplicity desirable for genomic search, we chose
widely used RT-PCR (17) as the technique to detect
ncRNAs (see ‘Materials and Methods’ section) for the
first large validation of global ncRNA gene detection
in all major developmental stages.

Our analyses reveal that a high proportion of intergenic
regions in D. melanogaster encode ncRNAs. It is also
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shown that the early stage of development is associated
with the most abundant species of ncRNAs. These results
cast new insights into the role of non-coding genomic
regions such as intergenic regions in organism function
and evolution, with ncRNAs participating with protein-
coding genes and non-coding functional genes during
development.

MATERIALS AND METHODS
Data sources

We downloaded tables of ‘Genes on sequence’ for fly chro-
mosomes X, 2, 3 and 4 from NCBI database (http://
www.ncbi.nlm.nih.gov), determined the intergenic regions
according to the gene lists and obtained the intergenic
region coordinates from Flybase (http://www.flybase.org).
We chose one in every ten intergenic regions; so about
10% of intergenic regions were collected. We fetched
sequences of the chosen regions from Ensemble
(http://www.ensembl.org). ESTs were obtained from
NCBI (http://www.ncbi.nlm.nih.gov/). Tiling array data
(14) were obtained online (http://www.transcriptome.
affymetrix.com/publication/drosophila_development/).

RT-PCR primer design

Using the sequence comparison function of VISTA
(http://www.pipeline.lbl.gov/cgi-bin/GenomeVista)  (18),
we generated sequence alignments between D. melanoga-
ster and five other closely related species (D. simulans,
D. yakuba, D. erecta, D. pseudoobscura and D. virillis)
(19,20). We set parameters as follows: the size of the slid-
ing window used to calculate conservation scores of each
base pair was 100bp; minimum width of a conserved
region was 100bp and minimum percent conservation
identity was 70%. (We compared the subject sequences
of D. melanogaster with those of D. simulans, D. yakuba,
D. erecta, D. pseudoobscura and D. virillis and defined the
overlap region with the identity above 70% in each com-
parison). The conservation scores were generated by the
phastConsl5way (21). With the results of alignments, we
first collected intergenic fragments that were conserved in
all six species, then the fragments that were less conserved
(conserved in five, four, three or two species). In some
especially short regions (<500 bp), there were no signifi-
cant alignments; the whole region was taken as a single
intergenic fragment. We designed primers manually in
the conserved intergenic fragments, with the help of
the software program ‘Primer Premier 5°. We optimized
our experimental conditions as follows: PCR product size
was 95-200bp and the primer length was 203 bp.
Generally, we collected 1-3 conserved intergenic frag-
ments for regions 100 bp to 2kbp long, 3-6 for regions
2-5kbp long and 6-10 for regions larger than 5kbp.
We designed one pair of primers in each conserved inter-
genic fragment. We tested primers on D. melanogaster
genomic DNA. We only accepted primers with proper
PCR bands in agarose gel. If not, we redesigned the
primers. The tiling array from the previous study had
a 25bp probe every 35bp along the genome with varia-
tion in different locations. Most intergenic fragments
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overlapped with three probes (34%), four probes (57%)
or five probes (6%) (Figure S1). We chose the housekeep-
ing gene Gapdh2 as a positive control and II171a, a
chromosome Il-linked intergenic region that has been
determined to be silent for transcription, as a negative
control. The primer sequences for positive and negative
controls were designed as

Gapth/ forward primer: 5 AAGAACACTACCCACCC
éc?pél’fg ;reverse primer: 5 ATTTCAGAGCATAGCGCA
?I?Z?a{ forward primer: 5 GTTGGAGAAACTAAGAGC
ICII37121n§everse primer: 5 CCATACTCAATCGGACC 3.

Designing the RT-PCR primers of pre-miRNA

There are 152 known microRNAs (miRNAs) in D. mela-
nogaster (from miRBase, http://www.microrna.sanger.
ac.uk/) (22). Ten were chosen for RT-PCR analysis,
including mir-184, mir-277, mir-279, mir-100, mir-286,
mir-31b, mir-125, mir-2¢c, mir-219 and mir-1017
(Table S1). Stem-loop sequences were obtained from
miRBase (http://www.microrna.sanger.ac.uk/). Ten pairs
of primers for the miRNAs were designed manually with
the help of software ‘Primer Premier 5.

Material preparation

Drosophila tissues. About 400 adults were kept in a bottle
and allowed to lay eggs at 25°C on grape juice-agar plates.
The flies hatched during the first hour were discarded.
The eggs were collected for 2h on new plates. Flies
were removed and the new plates were incubated at the
temperature of 25°C for 6 h and 20 h, respectively, yielding
embryos of 6-8h and 20-22h stages. After incubation,
embryos were washed with diethylpyrocarbonate
(DEPC) water (DEPC-treated and RNase-free), and col-
lected for RNA extraction (23).

Larvae of second to third instar stage were collected in a
tube and rinsed three times with DEPC water. Adult flies
7-30 days old were collected in tubes and killed by keeping
the tubes at —20°C for 5-10 min.

RNA extraction. Specimens were transferred into a
mortar with liquid nitrogen and ground into powder
with a pestle. RNAs were extracted from powder with
TRIzol (Invitrogen Company) following TRIzol reagent
instructions. About 10 pg of sample RNA was mixed with
20l RQI RNase-free DNase (1 unit/ul; Promega
Company), 10 pul 10x DNase buffer, 2 ul RNase inhibitor
HPR1 (Takara Company) and DEPC water (up to 100 pl),
and incubated for 3h at 37°C. Contamination of RNAs
with DNA was ruled out by PCR amplification of two
pairs of primers for Gapdh2 and 11171a on the extracted
RNA:s.

¢DNA preparation. Total 0.5pg 6-mer random primer
(Takara Company) and Sul dNTPs (2.5mM, Takara
Company) per microgram of RNA sample were mixed
in a total volume of <15pul in a tube; the tube was
heated to 70°C for Smin to melt secondary structure;
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the tube was cooled immediately on ice for at least 3 min
to prevent secondary structure from reforming; 5pul
M-MLV 5x Reaction Buffer (Promega Company), 5pul
dNTPs, 0.5u1 RNase Inhibitor (HPR I, Takara
Company) and 1 ul M-MLV RTase (Promega Company)
were added to the annecaled primer/template. Then the
DEPC water was added to the volume of 25 pul. PCR of
primer II171a was conducted to guarantee no genomic
DNA contamination; and PCR of Gapdh2 was conducted
to guarantee the quality of cDNA.

PCR and RT-PCR amplification

DNAs from the extractions of adult flies were used for
PCR, which was performed as described in the protocol
provided with Tiangen DNA Extraction Kit. PCR and
RT-PCR amplifications were performed with Transgen
MasterMix (including Taq polymerase, buffer and
dNTPs) according to the manufacturer’s instructions.
The total number of PCR cycles was 40. Cycle conditions
included a 95°C denaturation (30s, first cycle of 5min), a
54°C annealing (30s) and a 72°C extension (40s). After
the final cycle, tubes were placed at the extension temper-
ature for 10 min. Machine model used was DNA Engine
Dyad and Tetrad 2. PCR and RT-PCR amplification pro-
ducts were loaded on 3% (wt/vol) agarose gels, and were
stained with ethidium bromide.

To confirm the consistency of RT-PCR products with
the expected intergenic sequences, 33 RT-PCR products
amplified from the expected fragments from four chromo-
somes (X, 2, 3 and 4) were chosen and sequenced using the
cloning-sequencing approach with the pMDIS8-T cloning
vector (23).

To control for the reliability, we chose 453 fragments on
chromosome 2L to repeat the RT-PCR three times inde-
pendently. Each time, we extracted the total RNA from
different flies, and prepared the cDNA templates. We
considered the fragments that showed positive signals in
all three experiments as true positive.

Comparison of miRNAs. On stem-loop sequences of the
10 pre-miRNAs, primers were designed for RT-PCR ana-
lysis that amplified fragments longer than 100 bp. Nine
out of the ten were detected in at least one of the four
stages (6-8h embryo, 20-22h embryo, larva and adult
stage). Probe signals in the same arecas were also analyzed.
Then we compared the RT-PCR results with the previous
tiling array transfrags (Table S3; Figure S2).

Elongation of RT-PCR-detected fragments. Embryo ESTs
were extracted from original D. melanogaster ESTs, and
then BLATed (24) to map to whole genome (FlyBase 4.2).
ESTs with sequence identity higher than 0.98 and cover-
age higher than 0.9 were kept. Those mapped to more
than one genomic location were ignored. We, thereby,
identified 241975 and 198 125 ESTs that matched the pre-
viously detected tiling-array transfrag in the 6-8h and
20-22h embryos (14), respectively. FEighty-seven to
ninety-one per cent of these matches in the two embryo
stages were longer than 100 bp. Then overlapping ESTs
of sense and anti-sense strand were merged together.
After that, RT-PCR-detected fragments from 6-8 h and

20-22h were combined and then elongated by merging
overlapping ESTs. In this step, we altogether identified
404 ESTs that matched the RT-PCR-detected fragments
in the two embryo stages, with 72.5% overlap length
longer than 30 bp. Finally, RT-PCR-detected fragments
that overlapped or did not overlap with transfrags were
analyzed separately.

RESULTS

On the basis of the annotated genomic sequences of D.
melanogaster, we chose ~10% (1027) of all intergenic
regions, evenly distributed on chromosomes X, 2, 3 and
4, and tested these regions for the presence of conserved
ncRNA genes. Because a conserved region might
more likely be under selective constraint for a functional
genetic element despite the exceptions (25), we focused on
conserved intergenic regions. By comparing genomic
sequences of six closely related Drosophila species with
the VISTA tool (26) (see ‘Materials and Methods’ sec-
tion), we chose 2755 conserved intergenic fragments for
primer design and RT-PCR detection (Table S2).

Despite repeated and much improved annotations of
the D. melanogaster genomic sequences (20,27), annotated
intergenic regions in the genome today are still not com-
pletely free from undetected transcribed regions from the
annotated genes. In fact, a previous tiling array analysis
(14) found that many annotated genes have undetected
distal 5’ exons in intergenic regions. To avoid these poten-
tial exon regions from the protein-coding genes, we
designed primers in the middle of intergenic regions,
with 65.2% intergenic fragments falling in the middle
80% of intergenic regions. We prepared cDNAs by
PCR, reverse-transcribing total RNAs extracted from
four developmental stages (6-8h embryo, 20-22h
embryo, larvae and adult).

To determine the reliability of our RT-PCR protocol,
we first chose 453 intergenic fragments on chromosome
2L to repeat the RT-PCR three times independently
(Table S3). We extracted the total RNAs from three
groups of flies from the same strain (Canton S) in
D. melanogaster in the 6-8h embryo stage. Then we
prepared the cDNA templates from the extracted
RNAs and conducted the RT-PCR experiments with
the three batches of cDNAs. We detected the expression
signals in 207, 177, 208 of 453 intergenic fragments in
the 6-8h embryo stage. The coefficient of variation,
defined as standard variation over mean, is estimated to
be low (CV = 8.9%), suggesting a high reliability of our
protocol.

Furthermore, 98 out of 453 intergenic fragments were
detected in all three batches. This provides a very conser-
vative estimate for the ncRNA genes that are expressed in
this stage: at least 22% of the intergenic fragments encode
ncRNAs in the early developmental stage. On average of
the three repeats, 197 intergenic fragments were detected
to have expression signals. This average percentage,
43.6%, is close to the expression percentage (44%) calcu-
lated from the expressed fragment numbers that were
detected in at least two experiments (98 detected in all



three batched with another 98 detected in two batches).
102 were detected in only one batch. Using this approach,
we investigated the ncRNAs encoded in intergenic
regions and made a comparison with the published results
from the analysis of tiling arrays (14) (see ‘Discussion’
section).

We then extended this approach to all the sampled
intergenic regions in the whole genome in all four devel-
opmental stages. On total, we conducted 18 342 successful
RT-PCR experiments with both negative and positive
control experiments. To confirm that the RT-PCR pro-
ducts were amplified from the expected regions, we
sequenced RT-PCR products of 33 intergenic fragments
from the adult flies (Table S4 and Figure S3); the results
indicate that 21 of 33 RT-PCR products are 100%
identical to the expected genomic sequences, 5 are 99%
identical, 4 out of the remaining 7 are 93-98%. One has a
lower but significant similarity (72%) whereas only two do
not match expected sequences. The changes in the 30 frag-
ments reflect nucleotide polymorphisms between the strain
used (Canton S) and the strain used for the previous
genome sequencing (y; cn bw sp) and one fragment is
likely from a replicate copy of intergenic region in the
particular strain we used. The nucleotide polymorphism
between different lines of D. melanogaster was commonly
observed previously (e.g. 28). The result indicated that the
vast majority (94%) of the RT-PCR products are consis-
tent with the expectation, providing additional strong evi-
dence in support of our approach.

Six examples of detectable intergenic fragments with
detectable expression were shown in Figure 1. Table 1,
A and B showed the proportions of detectable expression
in the intergenic regions and fragments, respectively. In
total, we detected expression of 72.7% (747) of the inter-
genic regions, and 53.3% (1469) of the intergenic frag-
ments at some point during the development processes
(Table S2). Therefore, in the entire genome, we estimated
that 8350 intergenic regions would show positive amplifi-
cation signals, and likely encode ncRNAs.

Furthermore, different chromosomes and developmen-
tal stages showed significantly different levels of ncRNA
expression. Intergenic transcription was more common
on chromosomes 2 and 4 than on chromosomes X and
3. The carly stages of development, the embryo stages
had the highest numbers of detectable intergenic frag-
ments, whereas the later stages had lower numbers of
detectable intergenic fragments. These data revealed high
numbers of expressed ncRINA genes in the early develop-
mental stage and drastically reduced numbers of the
expressed ncRNA genes in the late developmental pro-
cesses (Table 1, panel B; Figure 2).

Using these large datasets, we conducted a systematic
comparison with a large dataset from one developmental
stage with less laborious tiling array approaches (14).
Using the publicly available EST databases, we indepen-
dently checked the correspondence of both our RT-PCR-
generated candidates and the tiling array-generated
candidates with EST sequences from the same intergenic
regions. We discuss below the comparative analyses and
reported estimates for the false positive rates of both the
current RT-PCR and previous tiling array approaches.
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Figure 1. Examples of the ncRNA detected in the intergenic regions.
3L63d, 3L72a, 3L75f, 3L83¢c, 3L102b and 3L199b were six detected
intergenic fragments in either of four developmental stages (6-8h
stage, 20-22 h stage, larva stage and adult stage). Gapdh2 was positive
control and II171a was negative control. Genomic DNA and cDNAs of
four stages were used as templates for PCR amplification. For rows of
Gapdh2* and II171a*, genomic DNA and DNase I-digested RNAs of
four stages were used as templates for PCR amplification, and the
results ruled out contamination of RNAs with genomic DNA.

DISCUSSION

Our analyses detected transcription of putative ncRNAs
from a high proportion of intergenic regions in D. mela-
nogaster, and revealed that ncRNA transcription was
more common in early developmental stages. The
ncRNA genes we identified provided new rich databases
for various development stages in fruit flies for further
analyses of functions, structures and evolution of
ncRNAs. One interesting issue is the detection power for
previously published methods, e.g. the tiling array method
(14), and the false positive rates for these methods.
Especially, previous estimates by tiling array hybridization
in one development stage (14) did not consider false pos-
itive rate and some of the detected ncRNA candidates
were falsified recently (15,16). Thus, it is necessary to com-
pare our method with the early methods and data and
measure false positive rates for the ncRNA detection
using genomic techniques.

We compared the RT-PCR results in our investigated
intergenic fragments with the previous published tiling
array data (1) in the same embryo stages, 6-8h and
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Table 1. Detection of intergenic fragments and intergenic regions in various developmental stages

Stage®/Chromosome®

A: Proportions of detected intergenic regions

X(165) (in %) 2L(172) (in %) 2R(191) (in %)

2(363) (in %)

3L(180) (in %) 3R(243) (in %) 3(423) (in %)  4(76) (in %)

6-8h 52.1 64.0 63.4 63.6
20-22h 46.1 57.6 58.6 58.1
Embryo® 62.4 74.4 71.2 72.7
Larvae 37.6 29.7 29.3 29.5
Adult 35.2 35.5 25.7 30.3
Sum 70.3 79.1 75.4 77.1

322 53.9 44.6 94.7
33.9 47.3 41.5 60.5
44.4 61.7 54.2 96.1
322 333 328 42.1
344 40.3 37.7 60.5
56.7 72.0 65.3 97.4

B: Proportions of detected intergenic fragments

X(492) (in %) 2L(478) (in %) 2R(504) (in %)

2(982) (in %)

3L(447) (in %) 3R(646) (in %) 3(1093) (in %) 4(188) (in %)

6-8h 29.1 45.2 39.3 422
20-22h 238 36.4 34.7 355
Embryo® 36.8 56.5 47.2 51.7
Larvae 17.9 13.6 15.5 14.6
Adult 17.7 20.3 13.1 16.6
Sum 45.7 63.2 52.0 57.4

19.7 314 26.6 81.9
19.5 28.3 24.7 41.0
28.4 41.2 36.0 86.7
17.0 15.6 16.2 223
18.6 19.0 18.8 38.8
39.6 51.9 46.8 89.4

“The developmental stages we chose to present RT-PCR experiments.
°Different chromosomes are listed separately.

“Results of 6-8h embryo stage and 20-22h embryo stage were combined and shown as Embryo stage.

04
03

02

8-8h embryo

Detection Frequency

20-22h embryo Larva Adult

——Detected ge specific detected

Figure 2. ncRNA amount in different developmental stages. The distri-
bution of detected ncRNAs that were detected from the 2755 regains in
the four developmental stages.

20-22 h embryo stages. Because transcripts might or might
not be present in an intergenic fragment in both the tiling
array and the RT-PCR methods, we categorized three
possible cases, excluding the case that both methods
detected no transcripts: (i) the RT-PCR method detected
transcripts when the tiling array method detected no tran-
scripts, (ii) the tiling array detected transcripts when the
RT-PCR method detected no transcripts and (iii) both
methods detected the same transcript. Figure 3 lists the
distribution for these comparisons.

Figure 3 reveals that the two methods showed signifi-
cant differences. Figure 3 indicates that in case (i), only
RT-PCR method that detected transcripts (PCR(+)
TA(—)) accounted for 72-89% on different chromosomes,
whereas there are only 1-15% of tiling array-detected
transcripts that cannot be verified by RT-PCR (PCR(—)

Embryo 6-8h intergenic fragment detection

chr2L chr2R chr3L chr3R chr4 chrX

B PCR(+)TA(-) ®PCR(-)TA(+) " PCR(+)TA(+)

Embryo 20-22h intergenic fragment detection

chr2L chr2R chr3L chr3R chr4 chrX

B PCR(+)TA(-) ®PCR(-)TA(+) " PCR(+)TA(+)

Figure 3. Comparison of results (the relative proportions of the three
categories above) from RT-PCR and tiling array. RT-PCR detected
intergenic fragments with tiling array-detected transfrags in the 6-8h
embryo stage and the 20-22h embryo stage.

TA(+)). In only 7-14% of the cases, the two methods can
detect the same transcripts (PCR(+)TA(+)). In general,
these comparisons showed a surprisingly low degree of
overlapping. Thus we further asked what factors



Table 2. RT-PCR-detected intergenic fragments matched with
transfrags before and after elongation of intergenic fragments across
the assembled EST sequences

Before After
PCR(+)TA(-) 70 10
PCR(+)TA(+) 43 103

contribute to such a difference and which method was
more reliable.

We infer that because of the different methodology
involved, the RT-PCR and the tiling arrays would have
different levels of sensitivity. Because the transfrags iden-
tified by the tiling array required a minimal run of 90 bp
with no more than 40 bp (1) gaps in it thus the ncRNAs,
the probes with less than four consecutive oligos would
have a significant chance to be missed. The application of
a sliding window, as installed in the tiling array analysis,
increased the risk when the neighbouring signal is low.
Take miRNAs for an example. miRNAs range from 21
to 23nt, and are excised from pre-miRNAs (stem-loop
RNA) with the length of around 100nt. We tested 10
miRNAs that were previously reported (19), using the
RT-PCR method (Table S1). Nine of them were detected
(e.g. see Figure S2). However, the tiling array technique
(14) detected no transfrags that were overlapping with
these nine pre-miRNAs, although the array probes cov-
ered these genes. This analysis suggests that the tiling
array is less sensitive for transcripts shorter than 120 nt.

We also considered the second possibility that the RT-
PCR only detected a small part (~100 bp) of the ncRNA
genes whose other regions were detected by the tiling array
method. Drosophila EST data (see ‘Materials and
Methods’ section) were used to test this possibility. We
searched the EST database (Web address) (ftp://ftp.ncbi.
nih.gov/blast/db/) and identified EST sequences that
matched 113 RT-PCR-detected fragments. We observed
that 61.9% of these RT-PCR-detected fragments were not
detected by the tiling arrays (Table 2). Then we elongated
these RT-PCR-detected fragments by assembled EST
sequences. However, when we used the elongated frag-
ments to search the predicted transfrags, we observed
that only 8.8% (10) of the RT-PCR-detected fragments
were not detectable by the tiling array method, i.e. 91.2%
of the RT-PCR-detected fragments were detected by the
tiling array method. These support that, despite likely
missing short ncRNAs, tiling array method may detect a
majority of ncRNA genes that have reasonably large
lengths. Moreover, we identified 268 tiling array-detected
intergenic fragments that had also been tested by our
RT-PCR experiments. We found that 205 (76.5%) of
these fragments that had either been detected by
RT-PCR (188) or EST evidence (60), with 43 detected
by both. This once again revealed the vast majority of
the tiling array-identified fragments may be authentic.

With these data of abundant transcripts from inter-
genic regions, some of which were confirmed by both
PCR-based and tiling array-based methods (14), we
should ask whether they represent alternatively spliced
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exons encoding 5 UTR of protein-coding genes or inde-
pendently transcripted ncRNAs or the both cases. First,
the tiling array analyses showed that only a small propor-
tion (15.6%) of the detected intergenic transcripts might
be 5 exons of protein-coding genes and the vast majority
had no evidence to be associated with the protein-coding
genes (14). Second, our approach tried to avoid the
regions close to flanking genes so were less likely to
detect the 5" exons than the tiling array method. Third,
our approach indeed detected previously reported
ncRNAs (miRNAs) with a very high detection rate.
These observations, with the fine protein-coding gene
annotations in this genome, favour a conclusion that the
most detected intergenic transcripts more likely represent
ncRNAs, although we should not reject possibility that a
low percentage of the detected transcripts are likely
unknown 5" UTR exons of certain protein-coding regions.

The RT-PCR method added the first detection of inter-
genic ncRNAs in D. melanogaster that was independent of
the tiling array method. We observed that this approach
appeared to be more sensitive than previous tiling array
method, especially, for detecting short ncRNAs, which
were almost undetectable using tiling array method.
However, the high proportion of matches (91.2%) of
RT-PCR-detected fragments with the tiling array candi-
dates was in consistence with the credible rate of false
positives for duplicate polymorphisms (14%) in the inde-
pendent PCR tests for genomic DNA hybridization with
the tiling arrays recently detected in the populations of D.
melanogaster (20).

Our results revealed that there was widespread expres-
sion of intergenic regions. This striking observation
suggests the functional importance of non-coding regions
in genomes. It has been known that many ncRNAs were
associated with regulatory functions of protein-coding
genes and non-protein coding genes (e.g. 2,4). Thus, in
the light of our finding and these previous observations,
the intergenic regions were no longer merely linked
regions of adjacent genes. Instead, the intergenic regions
may provide regulatory functions or various other molec-
ular  functions through RNA-protein complexes.
Furthermore, the intergenic regions were conventionally
viewed in evolution as neutral regions because of the
belief of the lack of functional elements in the regions,
except for a recent report that detected evolutionary
signal from the possible coding potential in non-coding
regions of the Drosophila genomes (29). Our findings fur-
ther discounted the conventional notion and detected
abundant ncRNAs encoded in the intergenic regions,
which likely contributed to the functional evolution of
non-coding regions. Our data also uncovered a large
variation of ncRNAs in different developmental stages
and provided credible estimates of false positive rates
associated with the genomic measurement of ncRNAs.
The rich ncRNAs at the early stage manifested the more
frequent turning-on events of the genes important for the
start of many developmentally important processes.

SUPPLEMENTARY DATA
Supplementary Data are available at NAR Online.
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