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ABSTRACT
Background. Conserving biodiversity in tropical landscapes is a major challenge to
scientists and conservationists. Current rates of deforestation, fragmentation, and
land use intensification are producing variegated landscapes with undetermined
values for the conservation of biological communities and ecosystem functioning.
Here, we investigate the importance of tropical variegated landscapes to biodiversity
conservation, using dung beetle as focal taxa.
Methods. The study was carried out in 12 variegated landscapes where dung beetles
were sampled using six pitfall traps, 30m apart from each other, along a transect in each
studied landscape use and cover classes—LUCC (forest fragment and corridor, coffee
plantation, and pasture). We baited each pitfall trap with 30 g of human feces and left
open for a 48 h period. We also measured three environmental variables reflecting
structural differences among the studied classes: canopy cover, local vegetation
heterogeneity and soil sand content.
Results. We collected 52 species and 2,695 individuals of dung beetles. We observed
significant differences in the mean species richness, abundance and biomass among
classes, with forest fragments presenting the highest values, forest corridors and coffee
plantations presenting intermediate values, and pastures the lowest values. Regarding
community structure, we also found significant differences among classes. Canopy
cover was the only variable explaining variation in dung beetle species richness,
abundance, biomass, and community structure. The relative importance of spatial
turnover was greater than nestedness-resultant component in all studied landscapes.
Discussion. This study evaluated the ecological patterns of dung beetle communities
in variegated tropical landscapes highlighting the importance of these landscapes
for conservation of tropical biodiversity. However, we encourage variegation for the
management of landscapes that have already been fragmented or as a complementary
initiative of current conservation practices (e.g., protection of natural habitats and
establishment of reserves).
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INTRODUCTION
Conserving biodiversity in tropical landscapes is a major challenge to scientists and
conservationists (Tilman et al., 2011). The tropics sustain most of the world’s described
biodiversity (Brown, 2014), but suffer from the highest rates of deforestation and land use
intensification—mainly due to rapid agricultural expansion (Wright & Muller-Landau,
2006; Gibbs et al., 2010). This scenario yields mosaics of multiple artificial/semi-natural
areas of land use abruptly (fragmentation) or gradually (variegation) bordering natural
habitats (Fischer & Lindenmayer, 2007), often resulting in the loss of native species (Arroyo-
Rodriguez et al., 2013) and, in some cases, local extinctions (Newmark, 1991; Lehtinen &
Ramanamanjato, 2006). Such a depletion of biodiversity can result in biotic homogenization
(Solar et al., 2015) and, consequently, alter ecosystem functioning, leading to deterioration
in the provisioning of ecosystem goods and services (Olden et al., 2004; Clavel, Julliard &
Devictor, 2011;Mitchell et al., 2015).

Nevertheless, human modified landscapes are still useful for species conservation
(Chazdon et al., 2009; Gardner et al., 2009), especially if patches of natural vegetation are
present (Nichols et al., 2007; Fahrig, 2013), and if the matrix is highly suitable for local
biodiversity (Prugh et al., 2008; Franklin & Lindenmayer, 2009). Consequences of human
activities may differ between fragmented and variegated landscapes. While fragmented
landscapes generally host isolated populations in habitat patches surrounded by hostile
matrices (Fahrig, 2003; Fahrig et al., 2011), variegated landscapes present multiple artificial
or semi-natural land uses that are gradually different from the natural habitats (McIntyre
& Hobbs, 1999; Fischer & Lindenmayer, 2007). These landscapes may be more permeable to
species movement, exhibiting distinct biodiversity patterns in response to human activities
(Daily, 2001; Rös, Escobar & Halffter, 2012), and thus have high conservation value (Barlow
et al., 2010; Gibson et al., 2011).

Nevertheless, studies on the responses of biodiversity to tropical variegated landscapes
with large number of replicates are scarce (Fischer & Lindenmayer, 2007). The few related
studies indicate that variegated landscapes are, in fact, more connected than fragmented
landscapes and have variable importance for biodiversity conservation, sustaining high
levels of biodiversity in the tropics (Barlow et al., 2007; Rös, Escobar & Halffter, 2012).
However, these studies are generally conducted in recently modified areas that are under
great influence from natural habitats (Barlow et al., 2010). Thus, it is difficult to disentangle
the contribution ofmodified areas from that of natural habitats to biodiversity conservation.
The investigation of older tropical variegated landscapes may offer important insights
about future biodiversity patterns in these areas. Also, considering that most of the world’s
terrestrial ecosystems and one quarter of world’s threatened species are living outside
protected areas, understanding the importance of these human modified landscapes for
biodiversity conservation becomes crucial (Rodrigues et al., 2004; Jenkins & Joppa, 2009;
Troupin & Carmel, 2014; Ekroos et al., 2016).

Here, we investigated biological communities present in tropical variegated landscapes
that have been subject to intense pressures of urbanization, agriculture and livestock
production since the 18th century (ca. 300 years) (Zemella, 1990; Vilela, 2007). Our
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studied area is composed of mosaics of semi-deciduous secondary forest fragments (of
variable sizes and regeneration status), native and introduced pasturelands, monocultures
(mainly coffee plantations), and hedgerows (forest corridors) (Burel, 1996; Oliveira-
Filho & Fluminhan-Filho, 1999; Castro & Van den Berg, 2013). We aimed to assess dung
beetle communities in twelve 300-year-old tropical variegated landscapes in order to find
empirical evidence of their conservation value to biodiversity. We used dung beetles as our
focal taxa because species of this group are abundant in our studied area, easily sampled
and identified, play important ecological roles, are associated with vertebrates, and are
widely used as bioindicators (Nichols et al., 2007; Nichols et al., 2008; Nichols & Gardner,
2011; Gillett et al., 2016). Furthermore, dung beetle communities from tropical forests are
greatly influenced by vegetation structure, due to their association with specific climatic
(physiological intolerance) and edaphic conditions (Halffter & Arellano, 2002; see Nichols
& Gardner, 2011 and references therein; Griffiths et al., 2015).

We investigated the extent towhich dungbeetle species richness, abundance andbiomass,
and community structure are affected by (1) land use and cover class—LUCC (i.e., forest
corridors, forest fragments, coffee plantations and pastures), and (2) structural differences
among habitats (i.e., variation in canopy cover, local vegetation heterogeneity and soil sand
content). We also assessed the importance of landscape variegation to conservation of dung
beetle regional diversity (3), disentangling the relative contribution of nestedness-resultant
and spatial turnover to beta-diversity patterns in variegated landscapes.

MATERIAL & METHODS
The studywas carried out in a 70-km2 area of themunicipality of Lavras, southeastern Brazil
(21◦15′S–21◦18′25

′′

S; 45◦00′57
′′

W–44◦54′34
′′

W), in the transition between two biodiversity
hotspots: the Cerrado (tropical savanna) and the Atlantic Forest (semideciduous seasonal
forest) (Fig. 1). The climate in this region is humid subtropical (Cwa), according to
Köppen climate classification, and experiences cold-dry winters and hot-rainy summers.
The annual precipitation and mean temperature are 1,460 mm and 20.4 ◦C, respectively,
and the elevation varies between 967 m and 1,055 m (Schiffler, 2003; Dantas, Carvalho &
Ferreira, 2007). During the studied period (January 2011—summer) the total precipitation
and mean temperature were about 1,364 mm and 23.0 ◦C, respectively (Source: INMET
network data). This season is considered the best period of the year to sample dung beetles
in tropical areas (Martínez & Vasquez, 1995; Lobo & Halffter, 2000;Milhomem, VazdeMello
& Diniz, 2003).

The studied area has historically experienced pressures from agro-pastoral activities
and urbanization, which generated the variegated landscapes. Overall, the landscapes
are composed of fragments of secondary semideciduous forests (forest fragments)
interconnected by hedgerows (forest corridors), and human settlements immersed in
matrices of coffee plantations or introduced pastures. We delimited twelve 500 × 500
m experimental landscapes in which we selected one site of each of the main land
uses: forest fragments (with average size of 18.25 ha), forest corridors (colonization of
land plot boundary ditches, typical of this region—Castro & Van den Berg, 2013), coffee
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Figure 1 Study area map showing. (A) localization of the studied region within the Minas Gerais State—
Brazil, (B) the 12 studied landscapes (represented by each sample point) and the different types of land use
and cover classes in the studied region. Map thematic source: Tainá Assis.

plantations (traditional management—Coffea arabica L.) and pastures grazed by cattle
(exotic plants—Urochloa spp.). The selected forest corridors were connected to forest
fragments and adjacent to coffee plantations and pastures. Coffee plantations were not
present in four of the landscapes. Thus, we sampled 12 forest fragments, 12 forest corridors,
12 pastures and eight coffee plantations. We established one 150 m transect in each of the
44 sampling sites.

Sampling of dung beetles
We sampled dung beetles using six pitfall traps, 30 m apart from each other, along each
transect (Total: 6 × 44 = 264 traps). We used a smaller distance between traps than
recommended by some authors (Larsen & Forsyth, 2005; Silva & Hernández, 2015) because
our fragments were small and our sample unit was the area of LUCCs (each pitfall value of
each dung beetle attribute was pooled in a sample unique per transect). Each pitfall trap
consisted of a plastic container (19 cm diameter, 11 cm depth), half filled with a solution
of saline and detergent (5%) to break the surface tension of the water and preserve dung
beetles, and a hanging bait compartment with a lid to protect against rain and desiccation
by the sun. We placed the pitfall traps, which were baited with 30 g of homogenized human
feces, between 9:00 am and 4:00 pm, and left them open for a 48 h period. After sampling,
dung beetles were sorted, counted and identified to the lowest taxonomic level possible
with the help of available taxonomic keys (e.g., Vaz-de-Mello et al., 2011) and the CREN
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(Neotropical Dung Beetles Reference Collection, at the Universidade Federal of Lavras).
Voucher specimens were deposited at CREN. All dung beetles were dried at 40 ◦C in order
to preserve the specimens and to obtain their dry body weight. In order to calculate species
mean biomass, we weighed 20 individuals (or the maximum possible) of each species using
a precision scale balance (0.0001 g).

Dung beetles were sampled on farms with the permission of the landholders. We also
possessed an IBAMA/SISBIO license (number 10061-1) in the name of Julio Louzada.
In addition, the feces used in the study was donated by the authors, who all agreed on
donating it.

Measuring structural differences among land classes
To explain variation in the studied community parameters, we measured three
environmental variables reflecting structural differences among LUCCs: canopy cover
(CC), local vegetation heterogeneity (LH) and soil sand content (SS). To estimate CC, we
used hemispherical canopy photographs taken 1.5 m above the soil next to each pitfall
trap with an 8-mm fisheye lens (Engelbrecht & Herz, 2001). We analyzed the photographs
using the software Gap Light Analyzer 2.0 (GLA, Frazer, Canham & Lertzman, 1999) and
quantified the percentage of pixels related to vegetation in each photograph as a proxy
for canopy cover. We measured the fractal dimension (number that characterizes the
geometry of a fractal) of the understory vegetation to use as a proxy for LH. To do so,
we took photographs of the understory, according to a methodology adapted from Nobis
(2005), and analyzed them in the software SIDELOOK (Nobis, 2005), which calculates the
fractal dimension of each photograph. Photographs of a black panel (1 × 1 m) placed
behind vegetation 3 m away were taken with a camera with a 52-mm lens positioned 1
m above the soil adjacent to each pitfall trap. To measure SS, we used a homogenization
of all the soil samples taken next to the pitfall traps of a transect (Total = 44 samples).
Homogenized soil samples were analyzed for their texture, meaning content of sand, silt
and clay in each soil sample. As these variables are highly correlated, we only used sand
content (percentage in the sample), as a measurement of soil structure. Sand content is a
soil variable related to an important dung beetle behavior (digging) that plays an essential
role in ecosystem functioning (Halffter & Edmonds, 1982;Davis, 1996;Griffiths et al., 2015).

Data analysis
Comparisons of species richness among LUCCs could be biased because of possible
differences in sample coverage or low sample coverage—which would mean that dung
beetle communities were under-sampled (Chao & Jost, 2012). To make more accurate
comparisons, we calculated LUCC-level sampling coverage using iNEXT package in R
(Chao et al., 2014; Hsieh, Ma & Chao, 2016). This package also allows us to compare
species richness of standardized samples at the same sample completeness based on a
rarefaction/extrapolation sampling curve (R/E curve) (Hsieh et al., 2016).

We used dung beetle species richness, abundance, biomass, and community structure as
response variables and LUCC as the explanatory variable to answer our first question. First,
we used Generalized Linear Models (GLM) with species richness (total number of species
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per transect), abundance (total number of individuals per transect) and biomass (total dry
body weight per transect) as response variables. We submitted models to pairwise contrast
analysis (lsmeans package—Lenth, 2016), in order to combine statistically similar classes
of land uses and cover. Models were built and compared using R language (R Development
Core Team, 2015). Second, we conducted Principal Coordinate Analysis (PCO—Gower,
1966) followed by Permutational Multivariate Analysis of Variance (PERMANOVA—
McArdle & Anderson, 2001)—to test for significant clustering of sites with respect to
different LUCCs.We used community structure (matrix based on square-root transformed
abundance data and Bray Curtis dissimilarity index) as the response variable. Finally, we
performed tests for homogeneity of multivariate dispersions (PERMDISP—Anderson,
2006), to check for differences in variance dispersion of community structure data among
LUCCs. This analysis was performed using the software Primer v.6 with PERMANOVA +
(Clarke & Gorley, 2006).

We used dung beetle community structure as the response variable and CC, LH and
SS as explanatory variables to answer our second question. First, we used Hierarchical
Partitioning to assess the influence of CC, LH and SS on species richness, abundance and
biomass. This method provides an estimate of the independent effects of each explanatory
variable on the response variable (Chevan & Sutherland, 1991; Mac Nally, 2000). We
performed this analysis using R language (R Development Core Team , 2015). Second,
we used Distance-based Multivariate Analysis for a Linear Model (DistLM, Legendre &
Anderson, 1999; McArdle & Anderson, 2001) to assess the influence of CC, LH and SS on
community structure. DistLM analyzes and models the relationship between a multivariate
data cloud and one or more independent variables (Anderson, Gorley & Clarke, 2008).
DistLM allows independent variables to be fitted individually or together in user specified
sets. The DistLM routine was based on the AICc model selection criterion (Burnham &
Anderson, 2004) using a ‘‘step-wise’’ selection procedure. Primer 6.0 and PERMANOVA+
for PRIMER software were used (Clarke & Gorley, 2006; Anderson, Gorley & Clarke, 2008).

In order to answer our third question, we decomposed beta diversity of dung beetle
communities into spatial turnover and nestedness-resultant components to determine
their relative contributions to beta-diversity patterns in the studied landscapes. The
beta diversity was decomposed into Sørensen (βSOR) and Simpson (βSIM) dissimilarity
indices (Baselga, 2010). Sørensen (βSOR) dissimilarity represents the total beta diversity and
incorporates both species replacement and nestedness-resultant dissimilarities. Simpson
(βSIM) dissimilarity describes species turnover, or replacement, and it is equal to βSOR in
the absence of nestedness. Thus, the difference between these indices is a measure of the
nestedness-resultant component of beta diversity (βSNE= βSOR−βSIM (Baselga, 2010)).

We calculated multiple-site dissimilarity to estimate the overall beta diversity of dung
beetle communities among all sites in each landscape (Baselga, 2013). In order to represent
the relative contribution of the nestedness-resultant component to overall beta diversity,
we calculated its proportion for overall multiple-site dissimilarity (βratio = βSNE/βSOR).
Where, βratio <0.5 represents dominance of species replacement in beta diversity patterns
and βratio >0.5 represents dominance of the nestedness-resultant component (Dobrovolski
et al., 2012).
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Figure 2 Sample coverage-based species accumulation curve of dung beetle sampled in forest frag-
ment, forest corridor, coffee plantation, and pasture of 12 landscapes in Lavras, Brazil (A). Estimated
average species richness and standard deviation at the same sample coverage (77.6%) in FF, forest frag-
ment; FC, forest corridor; CP, coffee plantation and P, pasture (B). The shaded area indicates the 95%
confidence interval and the dashed line represents extrapolation data.

RESULTS
We collected a total of 2,695 individuals of 52 species of dung beetles from the tribes
Ateuchini (three genera, 11 species), Delthochilini (five genera, 13 species), Coprini (five
genera, 14 species), Oniticellini (one genus, four species), Onthophagini (one genus,
two species) and Phanaeini (four genera, eight species). Of these, 28 species occurred in
forest fragments (1,549 individuals), forest corridors (603 individuals) and pastures (211
individuals), and 19 species in coffee plantations (332 individuals) (Table 1). The highest
average sample coverage of our sampled LUCCs was for forest fragment samples (SC =
93.8%) and the lowest coverage was in pasture samples (SC = 77.6%—coffee plantation
= 92.49%, and forest corridor = 85.56%) (Table S1). When all LUCCs were compared
at equal sample coverage (in this case, we used rarefied coverages at the lowest average
value—app. 77.6%), estimated average species richness showed a different trend than those
of the raw data. All LUCCs had the same estimated species richness (Fig. 2B; Table S2).
Our R/E coverage-based curves (based on pooled data) showed similar patterns of species
accumulation between forest fragments and forest corridors (Fig. 2A).

We observed significant differences in the mean species richness, abundance and
biomass among LUCCs (Frichness = 2.8978, p = 0.04, df = 3; Fabundance = 6.7067,
p< 0.001, df = 3; Fbiomass= 7.1122, p< 0.001, df = 3). Overall, forest fragments exhibited
higher values than the other LUCCs, while forest corridors and coffee plantations
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Table 1 Dung beetles collected at Forest fragments (FF), Forest corridors (FC), Coffee plantation (CP),
and Pasture (P) in Lavras—Brazil.

Tribe/Species FF FC CP P Biome

Ateuchini
Ateuchus aff. carbonarius (Harold, 1868) 0 1 0 0 –
Ateuchus sp. 6 1 0 0 –
Ateuchus striatulus (Borre, 1886) 0 0 0 2 C
Canthidium aff. sulcatum (Perty, 1830) 0 0 2 0 –
Canthidium aterrimumHarold, 1867 403 28 125 19 AF
Canthidium barbacenicum Borre, 1886 0 3 2 4 C
Canthidium decoratum (Perty, 1830) 0 0 0 5 C
Canthidium sp.1 0 1 2 0 –
Canthidium sp.2 0 0 0 1 –
Canthidium sp.3 2 0 0 0 –
Uroxys sp. 1 3 14 1 –
Delthochilini
Canthon sp.1 13 67 0 0 –
Canthon aff. podagricusHarold, 1868 0 0 0 10 –
Canthon chalybaeus Blanchard, 1843 0 2 48 0 AF
Canthon lituratus (Germar, 1824) 0 0 0 2 C
Canthon septemmaculatus histrio (Serville, 1828) 18 0 1 0 C
Canthon sp.2 1 1 0 0 –
Canthon virensMannerheim, 1829 0 0 0 5 C
Deltochilum orbignyi (Blanchard, 1845) 0 0 0 1 –
Deltochilum rubripenne Gory, 1831 81 1 0 0 –
Deltochilum sp. 9 4 0 0 –
Pseudocanthon aff. xanthurus (Blanchard, 1843) 0 0 0 5 –
Scybalocanthon korasakiae Silva, 2011 219 96 0 0 AF
Sylvicanthon foveiventris Schmidt, 1920 390 95 0 0 AF
Coprini
Dichotomius aff. rotundigena Felsche, 1901 1 3 2 0 –
Dichotomius affinis Felsche, 1910 26 4 0 2 –
Dichotomius bicuspis (Germar, 1824) 22 34 68 1 AF
Dichotomius bos (Blanchard, 1843) 2 2 4 78 C
Dichotomius carbonariusMannerheim, 1829 5 52 44 7 C/AF
Dichotomius depressicollis (Harold, 1867) 4 1 0 0 AF
Dichotomius fissusHarold, 1867 5 0 0 0 AF
Dichotomius mormon Ljungh, 1799 234 29 2 1 AF
Dichotomius nisus (Olivier, 1789) 0 0 0 2 C
Dichotomius sp. 0 2 0 0 –
Eutrichillum hirsutum Boucomont, 1928 0 0 0 3 C
Isocopris inhiatus (Germar, 1824) 0 0 0 2 –
Ontherus aztecaHarold, 1869 5 4 0 0 C/AF
Trichillum externepunctatum Borre, 1886 1 0 0 6 C

(continued on next page)
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Table 1 (continued)

Tribe/Species FF FC CP P Biome

Oniticellini
Eurysternus caribaeus (Herbst, 1789) 10 9 0 0 AF
Eurysternus cyanescens Balthasar, 1939 1 0 0 0 C/AF
Eurysternus hirtellus Dalman, 1824 38 6 0 0 AF
Eurysternus parallelus Castelnau, 1840 44 146 1 1 C/AF
Onthophagini
Onthophagus aff. hircullusMannerheim, 1829 0 0 2 0 –
Onthophagus ranunculus Arrow, 1913 0 0 2 25 C
Phanaeini
Coprophanaeus cyanescens Olsoufieff, 1924 1 5 4 4 C/AF
Coprophanaeus horusWaterhouse, 1891 0 0 5 11 C
Coprophanaeus spitzi (Pessôa 1935) 0 0 2 4 C
Dendropaemon sp. 1 1 0 0 –
Oxysternon palaemon (Laporte, 1840) 0 0 0 6 C
Phanaeus kirbyi Vigors, 1825 0 0 0 1 C
Phanaeus palaeno Blanchard, 1843 0 0 2 2 C
Phanaeus splendidulus Fabricius, 1781 6 2 0 0 AF
Abundance 1,549 603 332 211 –
Species Richness 28 28 19 28 –

Notes.
AF, species registered in Atlantic Forest samples; C, species registered in Cerrado samples; ‘‘–’’, uncertain/without identifi-
cation, based on Almeida et al. (2011), Campos & Hernández (2013) and Audino, Louzada & Comita (2014), Costa et al., 2016,
unpublished data.

had intermediate values, and pastures the lowest values; however, some pair-to-pair
comparisons were not significantly different (Fig. 3). All pair-to-pair comparisons and
results can be accessed in Table S3.

The PCO revealed three distinct groups (forest fragment + forest corridor, coffee
plantation, and pasture) with axis 1 and 2 explaining 43.6% of the variation in structure
(species composition—Fig. 4).However, dung beetle community structurewas significantly
different among the LUCCs (PERMANOVA, pseudo-F = 8.0969, p= 0.001, df = 3)
(Table S4). The LUCCs also exhibited differences in the dispersion of the variance of the
community structure data (PERMDISP, F = 3.5964, p= 0.05, df = 3), with higher values
in pasture in comparison to forest fragment (t = 2.9631, p= 0.017) and coffee plantation
(t = 4.1819, p= 0.003) (Table S4).

Canopy cover (CC) significantly influenced all community parameters studied.
Hierarchical partitioning revealed positive effects of CC on dung beetle species richness
(83.07% of independent effect), abundance (80.1%) and biomass (83.04%) (Table 2).
Likewise, community structure exhibited the same pattern (22.35% of independent effect)
(Pseudo-F = 12.090, p< 0.001, df = 42) (Table 3).

In the variegated landscapes studied, the decomposition of beta diversity revealed that
the main process driving beta diversity in these landscapes was spatial turnover, with βratio
<0.5 in all landscapes (Fig. 5).
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Figure 3 Boxplots showing the richness (A), abundance (B) and biomass (C) of dung beetle across the
land use and cover classes in Lavras—Brazil. FF, forest fragment; FC, forest corridor; CP, coffee planta-
tion and P, pasture. Different letters means significant differences at p < 0.05 among the land uses and
cover classes.
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Figure 4 PCO biplot of Bray–Curtis similarity matrix based on square-root transformed dung beetle
abundance data in land use and cover classes.

Table 2 Results of hierarchical partitioning analyses with all the environmental variables.

Variables %I I J I + J =R2
√
I

(a) Total richness
CC 83.072* 0.127 0.009 0.14 +0.37
SS 5.375 0.008 −0.003 0.005 0.09
LH 11.553 0.018 0.012 0.03 0.13

(b) Total abundance
CC 80.101* 0.130 0.031 0.162 +0.36
SS 0.424 0.0007 −0.0007 0.00003 0.03
LH 19.475 0.032 0.032 0.063 0.18

(c) Total biomass
CC 83.047* 0.13 0.026 0.156 +0.4
SS 0.537 0.0008 0.0006 0.001 0.03
LH 16.415 0.026 0.025 0.050 0.2

Notes.
%I , percentage of independent effect; I , independent explanatory power of the variable; J , Joint explanatory power of the vari-
able with all other variables listed; ( I + J = R2), univariate squared correlation, and;

√
(I ), square root of the independent ex-

planatory power, which may be interpreted as the independent correlation with the response variable; the sign is allocated to
that of the univariate correlation; CC, canopy cover; SS, soil sand content; LH, local vegetation heterogeneity.
*Indicates statistically significant variables at p≤ 0.05.
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Figure 5 Results from decomposition of dung beetle beta diversity in four land use and cover classes
at 12 variegated landscapes in Lavras—MG, Brazil.Grey bars represent spatial turnover component pro-
portion (βSIM/βSOR), white bars represent nestedness-resultant component proportion (βSNE/βSOR), and
black dots represent overall values of beta diversity (βSNE+βSIM) in each landscape.

Table 3 Results of distance based linear models (DistLM). Response variable is dung beetle species
composition and predictor variables are canopy cover (CC), soil sand content (SS), and local vegetation
heterogeneity (LH).

Variable AICc SS(trace) Pseudo-F P Prop Cumulative res.df

Marginal tests
SS – 3555.1 1.071 0.3621 0.025 – 42
CC – 31,958 12.1 0.0001 0.2235 – 42
LH – 18,590 6.3 0.0001 0.130 – 42

Sequential tests
CC 348.96 31,958 12.1 0.0001 0.2235 0.2235 42

Notes.
Prop, Proportion of explained variation.

DISCUSSION
This study evaluated the ecological patterns of dung beetle communities in variegated
tropical landscapes, highlighting the importance of these landscapes for conservation of
tropical biodiversity. Our 12 studied landscapes presented diverse dung beetle communities
that were structurally different among the LUCCs (high beta diversity), and capable of
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sustaining several species from both the Atlantic Forest and Cerrado (mainly from open
physiognomies).

Dung beetle communities respond differently to the LUCCs present in our studied
landscapes, with variation in species richness, abundance, biomass, and community
structure. The presence of well-defined communities in each LUCC highlights the
importance of their maintenance for conserving regional diversity. Because LUCCs vary
regarding their permeability to forest (fragments, corridors, and coffee) and Cerrado
(coffee and pasture) species, the studied landscapes were able to sustain a significant
group of native species from both the Atlantic Forest and Cerrado found in this region
(Table 1) (Schiffler, 2003; Almeida & Louzada, 2009; Almeida et al., 2011; Barragán et al.,
2011; Gries et al., 2012). However, in each modified LUCC (pasture, coffee plantation, and
forest corridor) we found more species at the regional level (all landscapes) than at the
local scale (per landscape). The low dung beetle abundance and biomass observed lead
us to believe that these land use classes are used as transitional habitats for dung beetles,
such as ecological corridors or stepping-stones (Fagan, Cantrell & Cosner, 1999; Estrada &
Coates-Estrada, 2002; Fischer & Lindenmayer, 2007; Díaz, Galante & Favila, 2010; Almeida
et al., 2011).

These land use classes also harbor exclusive species, as the main process promoting beta
diversity in these landscapes is spatial replacement. In consolidated landscapes, such as
studied in this paper, environmental filters have already acted in each of the studied LUCCs,
showing that some dung beetle species apparently recognize different LUCCs as habitats
(Webb et al., 2010). The ability of a species to survive in human-modified landscapes is of
great importance (Gardner et al., 2009), since currently most ecosystems suffer some level
of perturbation. Of the environmental factors measured in this study, the most important
was canopy cover. This variable is often reported in scientific literature as a proxy for
habitat quality and resource availability for dung beetles (Halffter & Matthews, 1966;
Halffter, 1991; Halffter & Arellano, 2002; Louzada et al., 2010; Audino, Louzada & Comita,
2014). Although soil and vegetation parameters can influence dung beetle communities
(Gries et al., 2012; Farias et al., 2015), because they can affect larvae survival (Osberg, Doube
& Hanrahan, 1994; Davis et al., 2010), the present work found LH and SS not liable for
determining dung beetle community structure.

Our results provide additional evidence that variegation of a landscape can allow species
movement between habitats of variable suitability, favoring their long-term persistence
(Doerr et al., 2014). Such a scenario offers a better outlook for biodiversity conservation
than scenarios resulting from fragmentation. Fragmentation tends to confine species in
reduced patches of low-quality habitat, eventually leading populations to suffer from
problems related to endogamy (e.g., reduced genetic variability; enhanced susceptibility to
diseases and stochastic events) and local extinctions (Keller & Largiadèr, 2003;Keyghobadia,
2007; Delaney, Riley & Fisher, 2010). In our studied landscapes, we recorded several species
typical of the Atlantic Forest in forest fragments, forest corridors and coffee plantations
(Table 1). In addition, Cerrado species were dominant in pastures (Table 1), suggesting that
local species may be able to persist in human modified landscapes if enough time is given,
and if introduced habitats conserve at least some structural similarity with natural ones.
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Based on the ability of our studied modified habitats to conserve native species and
contribute to increased regional diversity, we encourage the consideration of variegation of
previously fragmented landscapes in the management of human modified landscapes (Rös,
Escobar & Halffter, 2012). Diversification of LUCCs may benefit biodiversity, improve
regional heterogeneity and connectivity, and help maintain the provisioning of critical
ecological functions (Andresen, 2002; Nichols et al., 2008; Braga et al., 2012; Braga et al.,
2013). In transitional areas, this diversification could be even more important for species
conservation. Human modification generally favors the occurrence of open landscapes
by: (a) suppressing the natural habitat of species from at least two habitat types (e.g.,
in a forest-forest transition), (b) favoring species of a single habitat type (e.g., forest to
non-forest transition), (c) homogenizing two open habitat types (e.g., conversion of native
savannas and fields into pastures) or (d) suppressing at least two natural habitat types (e.g.,
urbanization).

Finally, we caution against ignoring the negative effects of deforestation and habitat
degradation. For instance, a recent study by Barlow et al. (2016) showed that human
disturbances in the Amazon forest were responsible for reducing the diversity of dung
beetles, birds and plants with almost two times the strength of deforestation. This reinforces
the irreplaceability of natural habitats for biodiversity conservation and highlights the
need to reduce disturbances in the remaining habitats. Our results reflect a 300-year
old scenario of human-induced modification, which despite showing relatively good
prospects for biodiversity conservation, was responsible for the suppression of large areas
of natural habitats. Therefore, our studied landscapes may have already experienced strong
biodiversity losses. In face of current rates of tropical deforestation, degradation and
land use intensification, such landscapes are becoming more common. We encourage
the variegation of landscapes as a complementary initiative of current conservation
practices (e.g., protection of natural habitats and establishment of reserves). Together,
these management strategies may achieve partial recovery of biodiversity and ecosystem
functioning, even when landscapes are not able to sustain the entire biodiversity of native
communities (Barlow et al., 2010; Gray et al., 2016).
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