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INTRODUCTION 

Local ablation therapy is considered as a conventional treatment 

option for patients with early stage hepatocellular carcinoma 

(HCC) according to the latest Barcelona Clinic Liver Cancer (BCLC) 

classification system.1 Local ablation modalities can be divided 

into chemical ablation and energy-based ablation.2 Ethanol abla-

tion is a representative therapy of chemical ablation for HCC. En-

ergy-based ablation includes radiofrequency (RF) ablation, micro-

wave ablation, cryoablation, ultrasound ablation, laser ablation, 

and irreversible electroporation. Among these local ablation mo-

dalities, the first-line technique is now RF ablation.3 Although RF 

ablation is the most commonly used ablation modality, the use of 

other modalities such as cryoablation or microwave ablation has 

been increasing. Microwave ablation uses heat to destroy a tumor 

similar to RF ablation, but cryoablation uses cold. Because of its 

different mechanism of tumor ablation, cryoablation has several 

potential advantages over RF ablation. This article aims at review-

ing the mechanisms, technique, treatment outcomes of cryoabla-

tion and suggesting potential indications of cryoablation for treat-

ment of HCC. 

MECHANISMS

Mechanism of tissue freezing and thawing

Cryoablation destroys tissue by the application of alternating 

freezing and thawing. The thermodynamic mechanism of freezing 

and thawing is based on the Joule-Thomson effect. The Joule-
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Thomson effect describes the temperature change of a gas when 

it is forced through a valve while kept insulated so that no heat is 

exchanged with the environment (Fig. 1). In cryoablation, as com-

pressed gas is delivered to the tip of the cryoprobe in a closed cir-

cuit and expanded through a minute pore, gas pressure falls, and 

it changes its temperature. The currently available cryosystems 

use argon gas and helium gas. For argon gas, the expansion re-

sults in reduction of the temperature and freezing under higher 

pressures (3,500 pound-force per square inch [PSI]). On the other 

hand, helium gas releases energy to the environment, thereby 

generates heat when it expands. In the cryosystems using both 

argon gas and helium gas, argon gas is used for freezing and heli-

um gas is used for thawing. On the other hand, cryotechnology 

that uses only argon gas for both freezing and thawing has been 

introduced. This system has an additional electrical heating source 

embedded in the cryoprobe. Joule-Thompson coefficients of gases 

vary with pressure and temperature. For argon gas, cooling effect 

becomes negligible when the gas expands under lower pressure 

(200-500 PSI). In this modified cryotechnology, argon gas is used 

for freezing and also used to heat the cryoprobe shaft by spread-

ing the heat generated by an electrical heating source embedded 

in the cryoprobe for thawing. 

Mechanisms of tissue destruction

There are two main mechanisms of tissue destruction in cryoab-

lation: direct cellular injury and vascular-related injury.4,5 Direct 

cellular injury relies on ice crystal formation in extracellular and 

intracellular spaces. As the temperature falls into the freezing 

range, ice crystal formation first occurs in the extracellular spaces. 

Extracellular ice formation withdraws water from the extracellular 

environment and induces hyperosmotic extracellular environment 

that in turn draws water from the cells. As this process continues, 

ice crystals grow, cells are dehydrated, and membranes and en-

zymes are damaged. With further cooling, intracellular ice crystal 

formation occurs. The cell membrane can be a barrier to ice crys-

tal formation to temperatures of about -7 to -10ºC. May cells con-

tain ice crystals by -15ºC and all water in transformed to ice below 

-40ºC. Intracellular ice crystals disrupt cell membrane and damage 
vital cell structures mechanically. This intracellular ice crystal forma-

tion occurs with rapid freezing rates. Direct cellular injury occurs in 

process of thawing as well as freezing. When the temperature of 

frozen tissue rises above -40ºC and especially -20 and -25ºC, ice 
crystals fuse to from large crystals, and additional damage occurs 

in the cellular structures. In addition, as the ice crystals melts, the 

extracellular space become hypotonic state, and water move into 

the damaged cells, and cell membranes may rupture.

The second mechanism of tissue injury is vascular-related injury. 

As the temperature of tissue falls, vasoconstriction and a decrease 

in the flow of blood occur, and finally the circulation stops. As a 

result, inflammatory change and tissue ischemia or necrosis are 

induced. During the thawing phase, brief hyperemic change and 

increased vascular permeability occurs. These changes enhance 

endothelial damage, which results in increased permeability of 

the capillary, edema, platelet aggregation, and microthrombus 

formation. As a result, many small blood vessels are completely 

occluded, and tissue necrosis occurs.

PROCESS OF PERCUTANEOUS CRYOABLATION 

Patient selection

Indication of percutaneous cryoablation for HCC is similar to 

that of other local ablation therapies, especially RF ablation: (1) 

patient with a single HCC less than 5 cm in diameter, or up to 

three HCCs less than 3 cm in diameter (ie, within the Milan crite-

ria), (2) absence of portal venous thrombosis, (3) Child-Pugh class 

A or B, (4) no significant coagulopathy.6 

Technique

Targeting of the tumor and monitoring of cryoablation can be 

performed under the guidance of ultrasound (US), computed to-

mography (CT), and magnetic resonance imaging (MRI).7-10 On US, 

Figure 1. Joule-Thomson effect. As compressed argon gas is delivered 
to the tip of the cryoprobe in a closed circuit and expanded through a 
minute pore, gas pressure falls, and it decreases its temperature. 
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the ice ball is seen as hyperechoic line representing the proximal 

edge of the ice ball with posterior acoustic shadow (Fig. 2A). The 

ice ball is identified as low attenuation (~0 HU) region on CT (Fig. 

2B) and signal void region on MRI. Although MRI is a good imag-

ing modality for monitoring cryoablation, US and CT are used in 

most practices because interventional MRI is only available in a 

limited number of center. Percutaneous cryoablation is usually 

performed under conscious sedation not general anesthesia. In 

contrast to other heat-based ablation modalities, cryoablation 

causes less pain.11,12 

To achieve complete tumor destruction, it is necessary to obtain 

appropriate ablative margin beyond the borders of the tumor. In 

general, 5-10 mm of ablative margin is acceptable for HCC.13 To 

obtain the ideal ablative margin, accurate placement of cryo-

probes is essential. In general, the cryoprobes should be placed 

within 1 cm of the tumor border, with no more than 2 cm of sepa-

ration between cryoprobes.14 

During the cryoablation, ice ball formation can be visualized 

with US and CT. The temperature at the outer margin of ice ball is 

0ºC. In one study, the relationship between the ice ball and the 

necrotic area after cryoablation was evaluated in the porcine liver, 

and the authors revealed that there was an approximately 1.1 mm 

gap between the margin of the visible ice ball and the zone of ne-

crosis.15 It means that the size of ice ball on US or CT overesti-

mates the size of true necrotic zone. This difference between the 

ice ball and the zone of necrosis is because of lethal temperature 

of cells. In experiments with the animal liver, the authors insisted 

that tissue temperatures in the range of -15 to -20ºC were ade-

quate for destruction of normal liver tissue.16-19 However, cells 

have different susceptibility to freezing injury. Some malignant 

cells are resistant to injury at temperatures up to -40ºC.20-22 Al-
though there are a variety of opinions on the lethal temperature, 

the -20ºC is considered adequate to cause necrosis in watery tu-
mors or tissues.14,23 Therefore, the margin of the iceball must ex-

ceed that of the tumor. 

Cycle times of freezing and thawing influence the size of the 

iceball and the degree of necrosis. Repeated freezing and thawing 

cycles will increase the size of iceball24,25 and will induce more 

confluent and complete cellular death compared to a single cy-

cle.26,27 Although an animal study revealed that a triple-freezing 

and thawing protocol produced a larger cryoablation zone of 

completer necrosis than a dual-freezing and thawing protocol,28 a 

dual-freezing and thawing protocol is widely accepted in clinical 

practice. The duration of freezing ranges from 10 to 20 minutes 

and the duration of thawing ranges from 5 to 10 minutes each 

cycle depending on reports.29-32

	

Laboratory test after cryoablation

Although cryoablation for hepatic tumors is relatively safe treat-

Figure 2. Iceball on ultrasound (A) and computed tomography (B). On US, the ice ball is seen as hyperechoic line (arrowheads) representing the proxi-
mal edge of the ice ball with posterior acoustic shadow (white star). On CT, the ice ball is identified as low attenuation (~0 HU) region (arrows).

A B
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ment modality, serious complications such as severe thrombocy-

topenia, liver failure, and cryoshock (multiorgan failure and dis-

seminated intravascular coagulation) have been reported.33-36 

According to one study,37 aspartate aminotransferase (AST) and 

alanine aminotransferase (ALT) values peaked at 6 hours after 

cryoablation. Although AST and ALT decreased at 1-2 weeks after 

procedure, the mean values at 1-2 weeks were slightly higher 

than those at baseline. The mean nadir in platelet count was seen 

at 12-24 hours after cryoablation and the value returned to base-

line at 1 week. Myoglobin levels increased above normal in 44% 

patients. The peak was seen at 6 hours and returned to baseline 

1-2 weeks. Ablation volumes correlated with changes at 0-6 

hours in AST, ALT and myoglobin values and percent maximal de-

crease in platelet count correlated with peak change in AST and 

ALT. Based on these results, recommendations for laboratory test 

after percutaneous cryoablation of liver tumors are as follows: 

complete blood count (CBC), liver function tests, and myoglobin 

level at 6 hours; CBC at 12-24 hours; CBC and liver function tests 

at 1-2 weeks. 

TREATMENT OUTCOMES: COMPARISION WITH 
RF ABLATION

Although there are many studies that reported treatment out-

comes of percutaneous cryoablation and RF ablation for hepato-

cellular carcinoma, comparative studies between two modalities 

are limited. There were four nonrandomized studies compared the 

outcomes of cryoablaton to RF ablation for hepatic malignancies 

in the late 1990s and the early 2000s.38-41 According the meta-

analysis based on these studies, RF ablation was significantly su-

perior to cryoablation in terms of complications and local tumor 

progression.42 However, in these studies RF ablation and cryoab-

lation were performed for various tumors including HCC and met-

astatic liver tumors and were performed under laparoscopic or in-

traoperative approaches as well as percutaneous approach. In 

addition, liquid nitrogen was used as a cryogen. However, recently 

percutaneous minimally invasive cryoablation with newer and saf-

er cryoablation systems using thin cryoprobes and argon-helium 

as a cryogen have replaced. There are two recent studies that 

compared treatment outcomes between percutaneous cryoabla-

tion and RF ablation using these newer and safer cryoablation 

systems.31,43 Wang, et al.31 compared the percutaneous cryoabla-

tion and RF ablation in patients with one or two HCCs ≤4 cm. 

According to the study, local tumor progression rate was signifi-

cantly lower in the cryoablation group than the RF ablation group 

(5.6% versus 10%). For lesion >3 cm in diameter, the difference 

of local tumor progression rate increased (7.7% versus 18.2%). 

Lower local tumor progression rate for HCCs with relatively large 

size was reported in the study of Ei et al. although cryoablation 

and RF ablation were performed percutaneously or intraopera-

tively in the study.32 This may be attributable to the potential ad-

vantages of cryoablation over RF ablation in producing larger ab-

lation zones with multiple probes. According to the study of Wang 

et al.31, the recurrence free survival rate and overall survival rate 

were not significantly different between two group. In terms of 

complication, the major complication rate between percutaneous 

cryoablation and RF ablation was comparable. The major compli-

cation rate was 3.9% following cryoablation and 3.3% following 

RF ablation in the study of Wang et al.31 and 6.1% following cryo-

ablation and 3.3% following RF ablation in the study of Dunne et 

al.43 In both two studies, there was no treatment-related mortali-

ty, renal insufficiency, or coagulopathy in either group. 

ADVANTAGES OF CRYOABLATION

Well visualization of the iceball

It is important to know the extent of tissue injury during local 

ablation therapy for achievement of technique success and avoid-

ance of injury of critical organs. The edge of iceball during cryoab-

lation is well visualized on CT and MRI. The anterior edge of ice-

ball is also well visualized on US although it is difficult to evaluate 

the posterior edge of iceball because of posterior shadowing. In 

addition, the size of iceball correlates with the extent of tissue in-

jury well although the size of iceball is slightly larger than that of 

tissue injury. Therefore, cryoablation has advantages in monitor-

ing the extent of tissue injury during procedure.

No causation of severe pain

Percutaneous ablation therapy is usually performed under con-

scious sedation. Heat-based ablation modalities such as RF abla-

tion and microwave ablation can cause severe pain. The severe 

pain sometimes interferes with appropriate completion of the 

planned ablation. In contrast to heat-based ablation modalities, 

cryoablation is a relatively painless procedure and thus patients 

are usually stable during procedure.
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Lack of severe damage to large blood vessels

RF ablation can cause thermal injury of portal and hepatic veins. 

Recently, a study reported that RF ablation induced hepatic pa-

renchymal hypoperfusion caused by portal vein obstruction or 

congestion from hepatic vein damage is a significant predictor of 

recurrence after RF ablation of HCCs.44 In addition, there have 

been several experimental studies in which it was reported that 

ischemia-reperfusion injury of the liver can promote cancer cell 

growth.45,46 On the other hand, vascular patency was maintained 

and structural function was preserved after cryoablation because 

of maintained elastin fiber composition in an animal study which 

was performed on murine abdominal aorta although smooth 

muscle cells were vacuolated and eventually dead.47 

Lack of severe damage to gallbladder

According to a study, no gallbladder-related complications oc-

curred after cryoablation for hepatic tumors adjacent to the gall-

bladder although the iceballs extended into the gallbladder lu-

men.48 There was only mild, asymptomatic focal wall thickening 

on imaging studies, which resolved on follow-up. 

CONCLUSION

Several clinical studies have shown that long term therapeutic 

outcomes of percutaneous cryoablation for HCCs are comparable 

to those of percutaneous RF ablation. Even percutaneous cryoab-

lation have shown superior local tumor control for relatively large 

HCCs. In the initial period of hepatic cryoablation, the rate of se-

vere complications was high. However, newer and safer cryoabla-

tion system has been developed and recently the complication 

rate after hepatic cryoablation became similar to that of percuta-

neous RF ablation. In addition, cryoablation has several advan-

tages over RF ablation such as well visualization of iceball, no 

causation of severe pain, and lack of severe damage to great ves-

sels and gallbladder. It is important to know the advantages and 

disadvantages of each ablation modalities for improvement of 

therapeutic efficacy and safety. 
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