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INTRODUCTION 
 

Ovarian cancer has raised worldwide concern because it 

has the highest fatality rate among cancers affecting 

only women [1–3]. WHO statistics indicate that 

225,500 women are diagnosed with ovarian cancer, and 

140,200 of them die from this malignant disease 

annually [4]. Women in developing countries and 

developed countries both suffer from a high death rate 

from ovarian cancer. Even in developed countries, a 

large number of patients cannot be diagnosed at an early 

stage [5]. Cumulative evidence has reported that ovarian 

serous carcinoma (OV) has the highest mortality among 

all histological subtypes of ovarian cancer. As shown in 

a recent study, we found that the survival data have not 

changed since 1980 in many areas [6–8]. Consequently, 

molecular markers will play an essential role in 

diagnosing OV at an early stage and assist in the 

treatment of patients. 

 

Accumulating statistics indicate that among a series of 

RNA modification adenosines, N6-methyladenosine 

(m6A) plays the most significant role in modulating 

numerous cellular processes of eukaryotes [9–11]. 

Currently, an increasing number of scientists are 

committed to exploring the relationship between m6A 

and cancers, comparing differences between various 

types of tumors [12–14]. At the same time, a recent 

study revealed that m6A is linked to the pathogenesis 
and development of ovarian cancer by regulating 

several targeted genes [15]. The main regulators of 

m6A RNA methylation include “writers”, “erasers” and 
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ABSTRACT 
 

AlkB family of Fe (II) and α-ketoglutarate-dependent dioxygenases plays essential roles in development of ovarian 
serous carcinoma (OV). However, the molecular profiles of AlkB family in OV have not been clarified. The results 
indicated that the expression of ALKBH1/3/5/8 and FTO was lower in OV patients while ALKBH2/4/6/7 expression 
was higher. There was a strong correlation between ALKBH5/7 and pathological stage of OV patients. Kaplan-
Meier plotter revealed that OV patients with high ALKBH4 level showed longer overall survival (OS). However, 
patients with high levels of ALKBH5/6 and FTO showed shorter OS and progression-free survival (PFS). Genetic 
alterations using cBioPortal revealed that the alteration rates of FTO were the highest. We also found that the 
functions of AlkB family were linked to several cancer-associated signaling pathways, including chemokine 
receptor signaling. TIMER database indicated that the AlkB family had a strong relationship with the infiltration of 
six types of immune cells (macrophages, neutrophils, CD8+ T-cells, B-cells, CD4+ T-cells and dendritic cells). Next, 
DiseaseMeth databases revealed that the global methylation levels of ALKBH1/2/3/4/5/6/7/8 and FTO were all 
lower in OV patients. Thus, our findings will enhance the understanding of AlkB family in OV pathology, and 
provide novel insights into AlkB-targeted therapy for OV patients. 

mailto:xzj1322007@csu.edu.cn
https://creativecommons.org/licenses/by/3.0/
https://creativecommons.org/licenses/by/3.0/


 

www.aging-us.com 9680 AGING 

“readers”, which are named based on their biological 

functions. The AlkB family of Fe (II) and α-

ketoglutarate-dependent dioxygenases are “erasers” and 

play essential roles in RNA m6A modification [16, 17]. 

Furthermore, another recent study conducted by Jiang et 

al. indicated that the expression of ALKBH5 in ovarian 

cancer tissue is higher than that in normal tissue. 

Consequently, ALKBH expression is linked to 

modulating ovarian cancer [18]. In addition, ALKBH5 

plays an essential role in the regulation of cancer cell 

proliferation and invasion [19]. However, the specific 

mechanisms of AlkB family members in OV 

development and progression still require further 

confirmation and research. 

 

The aim of our study was to evaluate the biological 

significance of AlkB family members in OV patients 

using comprehensive bioinformatics databases 

(Supplementary Table 1). 

 

RESULTS 
 

Aberrant expression of the AlkB family in OV 

patients 

 

We used the GEPIA databases to evaluate the mRNA 

expression levels of AlkB family members in OV tissues 

and normal tissues. We found that the expression levels 

of ALKBH1, ALKBH3, ALKBH5, ALKBH8 and FTO 

were significantly downregulated in OV patients. 

However, the expression levels of ALKBH2, ALKBH4, 

ALKBH6 and ALKBH7 were higher in OV tissues than 

in normal tissues (Figure 1). When evaluating the 

relative levels of the AlkB family in OV tissues, we 

found that the expression of ALKBH7 was the highest, 

while that of ALKBH8 was the lowest (Figure 2). 

 

Then, we analyzed the association between the 

expression profiles of the AlkB family and the 

pathological stages of OV patients. As shown in Figure 

3, ALKBH5 expression (p = 0.00266) displayed a 

negative correlation with pathological stage. In contrast, 

ALKBH7 expression (p = 0.0352) displayed a positive 

correlation with pathological stage. These data 

suggested that aberrant expression of AlkB family 

members might participate in disease progression in OV 

patients. 

 

The prognostic value of the AlkB family in OV 

patients 

 

Then, we used Kaplan-Meier plotter to assess the 

prognostic value of the AlkB family for patients with 

OV. The data of the OS curves are shown in Figure 4. 

 

 
 

Figure 1. Differential mRNA expression analysis of the AlkB family in OV and normal tissues. The expression profiles were 
collected from the GEPIA databases. 
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We found that a high transcriptional level of ALKBH4 

(p = 0.0027) was highly related to a longer OS time. In 

addition, we also concluded that high transcriptional 

levels of ALKBH1 (p = 0.035), ALKBH5 (p = 0.03), 

ALKBH6 (p = 0.0052) and FTO (p = 0.001) had an 

important association with a shorter OS time. At the 

same time, we evaluated the prognostic value of the 

AlkB family on the PFS of OV patients. From Figure 5, 

we know that low levels of ALKBH5 (p = 0.00053), 

ALKBH6 (p = 9e-07) and FTO (p = 0.00045) have an 

important association with a longer PFS time. 

 

Genetic alteration of the AlkB family in OV patients 

 

To further analyze the alteration profiles of AlkB family 

members in patients with OV, we conducted a series of 

 

 
 

Figure 2. The relative expression levels of the AlkB family in OV patients. GEPIA databases were used to evaluate the relative 

expression levels of the AlkB family in OV patients. 

 

 
 

Figure 3. The relationship between the expression of the AlkB family and the pathological stage of OV patients (GEPIA). 
GEPIA databases were used to evaluate the correlations of the AlkB family with the pathological stage of OV patients. 
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surveys as follows. First, we evaluated the genetic 

alterations of the AlkB family by using the cBioPortal 

database. As shown in Figure 6A, we confirmed that the 

alternation rate of FTO was the highest in 25% of cases, 

whereas the lowest was for ALKBH7, which was only 

1%. In addition, ALKBH1, ALKBH2, ALKBH3, 

ALKBH4, ALKBH5, ALKBH6 and ALKBH8 

mutations occurred in 16, 7, 6, 12, 16, 16 and 8% of the 

samples, respectively (Figure 6A). 

 

Interaction analyses of the AlkB family in OV patients 

 

Furthermore, we used STRING to evaluate the 

associated molecules of the AlkB family and found 

 

 
 

Figure 4. The correlations of AlkB family expression with patients’ OS. These OS survival curves were collected from Kaplan-Meier 

plotter. 

 

 
 

Figure 5. The correlations of AlkB family expression with PFS in OV patients. Kaplan-Meier plotter was used to assess the 

correlation of AlkB family members with the patients’ PFS time. 
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that in the interactive network, 9 AlkB family 

members were all included and served as hub nodes 

(Figure 6B). At the same time, to explore the 

association between the AlkB family and other 

signaling pathway-associated biomarkers, we used 

GeneMANIA to find the functions of the AlkB family 

(ALKBH1, ALKBH2, ALKBH3, ALKBH4, 

ALKBH5, ALKBH6, ALKBH7, ALKBH8 and FTO) 

were associated with chemokine signaling pathways, 

including chemokine receptor binding and cytokine 

activity (Figure 6C). 

 

Additionally, we used cBioPortal to extract the 150 most 

frequently altered genes that were significantly linked to 

the AlkB family in OV patients (Supplementary Table 2). 

The data indicated that several hub genes, such as 

COL1A1, COL1A2, COL3A1, FN1, COL5A1 and 

POSTN, were closely linked to the biological processes of 

AlkB family modulation in OV patients (Figure 6D). 

 

Functional enrichment analysis of the AlkB family 

 

In our study, we applied the WebGestalt database to 

evaluate the biological functions of the AlkB family. As 

shown in the GO pathways (Figure 7A), we know that 

the most highly enriched biological process (BP) 

category was biological regulation, followed by 

metabolic process, response to stimulus, multicellular 

organismal process, cell communication, developmental 

process and localization. In the cellular component  

(CC) categories, membrane, nucleus, cytosol, protein-

containing complex, membrane-enclosed lumen, 

endomembrane system, vesicle, extracellular space, cell 

projection, and cytoskeleton were highly enriched. In 

the molecular function (MF) category, the AlkB family 

members were mainly enriched in protein binding, ion 

binding, nucleic acid binding, transferase activity and 

hydrolase activity. In addition, the KEGG pathway 

results are shown in Figure 7B. We can conclude from 

the picture that protein serine/threonine kinase activity, 

peptidyl-tyrosine modification, negative regulation of 

cellular component movement, positive regulation of 

neurogenesis, maintenance of location, regulation of 

transsynaptic signaling, leukocyte differentiation, 

neuronal cell body, gland development, gland 

development and covalent chromatin modification  

were strongly linked to the potential biological 

functions of the AlkB family in the occurrence and 

development of OV. 

 

Immune cell infiltration of the AlkB family 

 

To explore the relationship between immune cell 

infiltration and the expression profiles of the AlkB 

family, we searched the information from the Timer 

database. The expression of ALKBH1 was positively 

linked to the infiltration of macrophages (Cor = 0.177, p 

= 9.26e-05), neutrophils (Cor =0.143, p = 1.69e-03) and 

dendritic cells (Cor =0.119, p =9.16e-03) (Figure 8A). 

ALKBH2 expression had a positive relationship with 

the infiltration of CD8+ T cells (Cor = 0.09, p = 4.87e-

02) and B cells (Cor = 0.075, p = 1.02e-01), whereas it 

 

 
 

Figure 6. Genetic alterations and interaction analyses of the AlkB family in OV patients. (A) Genetic alteration of the AlkB family in 

OV patients analyzed with cBioPortal. (B) The interaction analysis of the AlkB family was evaluated by STRING. (C) Analysis of the interaction 
between the AlkB family and chemokine signaling-associated biomarkers. (D) The 150 most frequently altered genes identified from 
cBioPortal that are linked to the AlkB family in OV patients. 
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had a negative relationship with the infiltration of CD4+ 

T cells (Cor = -0.059, p = 1.93e-01) (Figure 8B). There 

was a positive correlation between ALKBH3 expression 

and the infiltration of B cells (Cor = 0.142, p = 1.77e-

03), dendritic cells (Cor = 0.119, p = 8.87e-03) and 

neutrophils (Cor = 0.062, p = 1.73e-01) (Figure 8C). 

We concluded from Figure 8D that ALKBH4 

expression was negatively associated with the 

infiltration of macrophages (Cor = -0.152, p = 8.21e-

04), dendritic cells (Cor = -0.111, p = 1.50e-02) and 

neutrophils (Cor = -0.1, p = 2.91e-02). There was a 

negative correlation between ALKBH5 expression and 

the infiltration of CD8+ T cells (Cor = -0.172, p = 

1.59e-04), neutrophils (Cor = -0.157, p = 5.45e-04) and 

dendritic cells (Cor = -0.14, p = 2.07e-03) (Figure 8E). 

We also found that the expression of ALKBH6 was 

positively related to the infiltration of macrophages 

(Cor = 0.232, p = 2.71e-07), CD4+ T cells (Cor = 0.125, 

p = 6.04e-03) and neutrophils (Cor = 0.105, p = 2.08e-

02) (Figure 8F). There was a positive correlation 

between ALKBH7 expression and the infiltration of 

CD8+ T cells (Cor = 0.139, p = 2.26e-03), dendritic 

cells (Cor = 0.085, p = 6.43e-02) and neutrophils (Cor = 

0.069, p = 1.33e-01) (Figure 8G). There was a positive 

correlation between ALKBH8 expression and the 

infiltration of B cells (Cor = 0.148, p = 1.18e-03) and 

macrophages (Cor = 0.106, p = 1.97e-02) (Figure 8H). 

Additionally, the expression of FTO was positively 

linked to the infiltration of macrophages (Cor = 0.159, p 

= 4.83e-04) and negatively linked to the infiltration of 

CD4+ T cells (Cor = -0.083, p = 7.07e-02) (Figure 8I). 

At the same time, we analyzed the relationship between 

the expression of the AlkB family and the infiltration of 

immune cells (Table 1). The Cox proportional hazard 

model included the following confounding factors:  

B cells, CD8+ T cells, CD4+ T cells, macrophages, 

 

 
 

Figure 7. The biological pathways of the AlkB family were evaluated by the WebGestalt database. (A) Bar plot of GO enrichment 

in cellular components, biological processes, and molecular functions. (B) The bar plot of KEGG enrichment. 
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neutrophils, dendritics, ALKBH1, ALKBH2, ALKBH3, 

ALKBH4, ALKBH5, ALKBH6, ALKBH7, ALKBH8 

and FTO. From Table 1, we found that CD4+ T cells  

(p = 0.000) and macrophages (p = 0.007) had a strong 

relationship with OV patient prognosis. 

Methylation level of the AlkB family 

 

Then, we analyzed the methylation levels of the  

AlkB family by searching the DiseaseMeth database. 

We found that the methylation levels of ALKBH1 

 

 
 

Figure 8. The relationship between immune cell infiltration and the expression of the AlkB family. The Timer database was used 

to analyze the effect of (A) ALKBH1, (B) ALKBH2, (C) ALKBH3, (D) ALKBH4, (E) ALKBH5, (F) ALKBH6, (G) ALKBH7, (H) ALKBH8 and (I) FTO on the 
abundance of immune cells in OV patients. 
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Table 1. The cox proportional hazard model of AlkB family and six types of immune cells in OV patients from 
timer database. 

 Coef HR 95%CI_l 95%CI_u P.value Sig 

B_cell -0.940 0.391 0.000 3.103130e+02 0.783  

CD8_Tcell -3.190 0.041 0.001 2.219000e+00 0.117  

CD4_Tcell -18.637 0.000 0.000 0.000000e+00 0.000 *** 

Macrophage 8.116 3346.999 9.360 1.196836e+06 0.007 ** 

Neutrophil 11.984 160162.297 13.497 1.900588e+09 0.012 * 

Dendritic -3.508 0.030 0.000 5.193000e+00 0.182  

ALKBH1 0.001 1.001 0.787 1.272000e+00 0.996  

ALKBH2 -0.079 0.924 0.751 1.137000e+00 0.457  

ALKBH3 -0.154 0.857 0.638 1.152000e+00 0.307  

ALKBH4 -0.289 0.749 0.492 1.139000e+00 0.177  

ALKBH5 -0.327 0.721 0.513 1.014000e+00 0.060 · 

ALKBH6 0.043 1.044 0.803 1.358000e+00 0.749  

ALKBH7 -0.102 0.903 0.745 1.095000e+00 0.299  

ALKBH8 0.117 1.125 0.918 1.377000e+00 0.256  

FTO 0.175 1.191 0.895 1.584000e+00 0.230  

 

(p = 3.666e-05), ALKBH2 (p = 3.971e-04), ALKBH3 

(p = 2.025e-01), ALKBH4 (p = 1.035e-04), ALKBH5 

(p = 6.684e-03), ALKBH6 (p = 2.458e-02), ALKBH7 

(p = 1.108e-02), ALKBH8 (p = 4.837e-04) and FTO  

(p = 3.028e-04) were all lower in OV patients than in 

healthy people (Figure 9). These downregulated 

methylation values might explain their difference in 

expression levels to some extent. 

 

DISCUSSION 
 

AlkB family members have recently been identified to 

be involved in the regulation of RNA m6A 

modification. AlkB family members mainly function as 

demethylases [20]. Some reports have shown that 

ALKBH5 (ALKB homolog 5) has a strong correlation 

with the inhibition of cancer growth [21]. A study 

indicated that ALKBH2 is highly expressed in bladder 

cancer [22]. Furthermore, two research groups have 

demonstrated that ALKBH1 and ALKBH5 are related 

to glioblastoma [23, 24]. At the same time, ALKBH5 

could serve as a tumor suppressor in the proliferation 

inhibition of HCC cells [25]. Previous study has shown 

that meclofenamic acid (MA) could serve as FTO 

inhibitor, which provided future directions of applying 

FTO inhibitors in the medicine [26]. Additionally, a 
 

 
 

Figure 9. The methylation levels of the AlkB family in OV tissues. The methylation values of AlkB family members were evaluated 

using the DiseaseMeth database. 
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report demonstrated that pharmacological function of 

FTO inhibitor could slow down the self-renewal of 

leukemia stem cells [27]. However, the detailed 

functions and mechanisms of the AlkB family in OV 

have not been fully explored and explained. 

 

In addition, a recent study demonstrated that the high 

expression of ALKBH5 played a significant role in the 

proliferation and invasion of OV cells [19]. Moreover, 

from the GEPIA database, we also concluded that the 

expression of the AlkB family is different in OV and 

normal tissues (upregulation of ALKBH2, ALKBH4, 

ALKBH6 and ALKBH7; downregulation of ALKBH1, 

ALKBH3, ALKBH5, ALKBH8 and FTO). Additionally, 

we also performed a correlation between the AlkB 

family and the patients’ pathological stage. We found 

that the expression of ALKBH5 decreased as OV cancer 

progressed and that the expression of ALKBH7 

increased as OV cancer progressed. OV patients with 

low levels of ALKBH1, ALKBH5, ALKBH6 and FTO 

had an association with longer OS curves. OV patients 

with low levels of ALKBH5, ALKBH6 and FTO had an 

association with better PFS curves. The results of these 

databases implied that the expression of the AlkB family 

is crucial for the progression of OV patients. However, 

more specific studies are needed to explore the 

expression and prognostic value of the AlkB family in 

OV patients. 

 

We explored the biological functions of the AlkB 

family by analyzing the GO and the KEGG pathways. 

These two enrichment pathways are targeted at 

exploring the functional meanings of genes at the 

molecular level and the biological interpretation of 

genome sequences [28–30]. Through this study, we 

found that the biological functions of the AlkB family 

were mainly linked to posttranslational modification 

pathways, such as protein serine/threonine kinase 

activity and peptidyl-tyrosine modification. A previous 

study has shown that tyrosine modification plays a 

significant role in the regulation of gene expression and 

the therapeutic response of ovarian cancer [31]. 

Accordingly, from other previous studies, enrichment 

pathway analysis revealed that protein serine/threonine 

kinase activity could also participate in the therapeutic 

response of epithelial ovarian cancer [32, 33]. 

Therefore, we can conclude that the AlkB family may 

be involved in the progression of OV by regulating 

protein posttranslational modification pathways. 

 

At present, there are many studies that indicate that 

RNA m6A methylation could modulate immunity, 

regulate tumor inflammation, and predict patient 
outcomes [34, 35]. In addition, some studies have 

revealed that immune cells could have important effects 

on the treatment efficacy of human cancers, such as in 

clinical immunotherapy [36, 37]. In our study, we found 

that the expression of the AlkB family is significantly 

linked to the infiltration of CD4+ T cells, macrophages 

and neutrophils. These data indicated that the AlkB 

family could regulate the infiltration of immune cells, 

which may affect the immune response of infiltrating 

immune cells in the tumor environment. 

 

However, our study still has some limitations. Firstly, 

although the study demonstrated that molecular 

profiles of the AlkB family would be a potential 

indicator of OV, the statistics we analyzed were all 

from the databases, lacking experimental researches. 

Secondly, the study did not conduct some survey 

concerning the therapeutic outcome of OV patients, we 

still need further studies to validate the therapeutic 

significance of the AlkB family. Thirdly, because of 

inconsistent data-sets used by the databases, some 

contradictory data need to be further clarified. Finally, 

it is important to explore more prognostic effects of 

OV patients in order to improve the application value 

of the AlkB family. 

 

In conclusion, our study evaluated the molecular 

profiles of the AlkB family in patients with OV. 

Moreover, the findings in this study might also be 

beneficial for the development of better diagnostic and 

treatment methods for OV patients to improve their 

prognosis. 

 

MATERIALS AND METHODS 
 

GEPIA 

 

Gene Expression Profiling Interactive Analysis 

(GEPIA) is a database that is designed to help end users 

fully understand gene expression from a more holistic 

perspective [38]. We used “Single Gene Analysis” in 

GEPIA to evaluate the expression profiles of AlkB 

family members in OV tissues compared with normal 

tissues based on the data from TCGA and GTEx. We 

also used this database to evaluate the roles of the AlkB 

family in pathological stage, prognosis and so on. We 

set p-values at 0.05. 

 

Kaplan-Meier plotter 

 

Kaplan-Meier plotter is a database assessing the 

relationship between gene expression and the survival 

trend of various cancer patients [39]. In our study, we 

evaluated the prognosis of OV patients by means of 

overall survival (OS) and progression-free survival 

(PFS) curves. Additionally, we could identify the  

high expression and low expression groups from  

the figures, and it showed statistical significance if the 

p-value < 0.05. 
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cBioPortal 

 

cBioPortal includes statistics on over 200 cancer 

genomics and provides a user-friendly analysis strategy 

concerning gene-disease associations [40]. In this study, 

we analyzed the coexpression profiles and genetic 

alterations of the AlkB family in OV tissues by 

searching cBioPortal. 

 

STRING 

 

STRING was applied to explore potential protein-

protein interactions (PPIs). Furthermore, this database 

provides all resources concerning the interactive 

network of multiple proteins [41]. At the same time, we 

analyzed the AlkB family member-associated PPI 

network using STRING and Cytoscape [42]. 

 

GeneMANIA 

 

GeneMANIA has been applied in scientific research for 

many years and is very convenient for identifying 

protein-protein interactive networks [43]. Using 

GeneMANIA, we successfully identified the genes 

associated with the AlkB family. 

 

WebGestalt 

 

WebGestalt aims to provide users with a better 

understanding of gene interpretation. Researchers can 

obtain enrichment results from this database [44]. In our 

study, we analyzed several enrichment pathways 

associated with the AlkB family in OV disease. The 

main two enrichment pathways are Gene Ontology 

(GO) and Kyoto Encyclopedia of Genes and Genomes 

(KEGG). 

 

Timer 

 

Timer is used to evaluate the connection between 

infiltrating immune cells and cancer cells, which could 

provide more rational strategies for an improved 

therapeutic response and prognosis [45]. We mainly 

performed correlation analysis between OV and 

immune cells using the Timer database. 

 

DiseaseMeth 

 

DiseaseMeth collects the database of DNA 

methylation, which has a strong relationship with gene 

expression and disease incidence [46]. In our study, 

we evaluated the relationship between the expression 

of the AlkB family and methylation levels. We also 

analyzed whether methylation levels of the AlkB 

family have a potential influence on the survival of 

OV patients. 
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Supplementary Tables 
 

Please browse Full Text version to see the data of Supplementary Table 2. 

 

Supplementary Table 1. The main databases applied to evaluate the expression and functions of AlkB family in 
the biological process of ovarian serous carcinoma. 

Databases Authors Publication date Samples URL 

GEPIA2 Tang Z. et al. 2019 Tissues http://gepia.cancer-pku.cn/ 

Kaplan-Meier 

plotter 
Gyorffy B. et al. 2005 Tissues http://kmplot.com/analysis/ 

cBioPortal Cerami E. et al. 2012 Tissues http://www.cbioportal.org/ 

STRING v11 Szklarczyk D. et al. 2019 - https://string-db.org/ 

GeneMANIA Warde-Farley D. et al. 2010 - http://genemania.org/ 

WebGestalt Liao Y. et al. 2019 - http://webgestalt.org/ 

Timer2.0 Li T. et al. 2020 Tissues https://cistrome.shinyapps.io/timer/ 

DiseaseMeth2.0 Xiong Y. et al. 2017 Tissues http://bio-bigdata.hrbmu.edu.cn/diseasemeth/ 

GEPIA: Gene expression profiling interactive analysis; WebGestalt: the web-based GEne SeT AnaLysis Toolkit. 

Supplementary Table 2. The database of cBioportal applied to search the altered genes of the AlkB family in 
tissues of ovarian serous carcinoma. 
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