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Abstract
Visual neglect is a debilitating neuropsychological phenomenon that has many clinical implications and—in cognitive
neuroscience—offers an important lesion deficit model. In this article, we describe a computational model of visual neglect
based upon active inference. Our objective is to establish a computational and neurophysiological process theory that can be
used to disambiguate among the various causes of this important syndrome; namely, a computational neuropsychology of
visual neglect. We introduce a Bayes optimal model based upon Markov decision processes that reproduces the visual searches
induced by the line cancellation task (used to characterize visual neglect at the bedside). We then consider 3 distinct ways in
which the model could be lesioned to reproduce neuropsychological (visual search) deficits. Crucially, these 3 levels of pathology
map nicely onto the neuroanatomy of saccadic eye movements and the systems implicated in visual neglect.
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Introduction
Visual neglect is a common syndrome in which patients neglect
one side (typically the left) of space (Halligan and Marshall 1998).
It is often caused by right middle cerebral artery strokes, but has
also been reported as a consequence of inflammatory (Gilad et al.
2006), metabolic (Auclair et al. 2008), and degenerative (Ho et al.
2003; Andrade et al. 2010) diseases. It has also been observed as a
feature of seizure activity (Heilman and Howell 1980; Turtzo et al.
2008; Schomer and Drislane 2015), and as part of a migraine aura
(Di Stefano et al. 2013). In addition to the wide range of pathologi-
cal processes which can cause the syndrome, visual neglect can
be caused by a range of anatomical lesions. These include both
cortical (Corbetta and Shulman 2002) and subcortical (Karnath
et al. 2002) insults. There is some evidence that the heterogeneity
of the causes of visual neglect map on to distinct behavioral phe-
notypes (Hillis et al. 2005; Grimsen et al. 2008; Medina et al. 2009;
Verdon et al. 2009), and this has the potential to be exploited clin-
ically and scientifically.

Eye tracking provides one way to characterize behavioral defi-
cits in visual neglect. These measurements have demonstrated

that patients with visual neglect perform saccades to the right
side of space with a disproportionately high frequency, compared
with leftward saccades. This occurs both spontaneously (Fruhmann
Berger et al. 2008; Karnath and Rorden 2012) and during search
tasks (Husain et al. 2001). While these biases will form the main
subject of this article, it is important to note that it may be pos-
sible to elicit signs of neglect in patients with no deficit in ocular
exploration. For example, in tasks requiring a manual response,
it is possible that patients may exhibit a normal pattern of sac-
cadic eye movements, but that they may be impaired in execut-
ing a response (Ladavas et al. 1997; Bourgeois et al. 2015). In this
article, we consider the control of eye movements, and the con-
ditions that would have to be fulfilled in order to explain the sac-
cadic patterns observed in visual neglect. We aim to show that
there is a well-defined and distinct set of conditions that can
reproduce the neglect syndrome.

Active inference provides a principled framework in which
to define these conditions—in terms of the prior beliefs that a
patient would have to possess for their behavior to be Bayes
optimal. The notion of optimal pathology might seem a strange
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one, but the existence of a set of prior beliefs that renders any
behavior optimal is mandated by the complete class theorems
(Wald 1947; Daunizeau et al. 2010). This means that we can
characterize pathology in terms of optimal inference, but in a
system or subject that operates under a poor model of its envi-
ronment (Conant and Ashby 1970). In the following, we briefly
review active inference and show how this normative approach
can be used to identify the functional lesions that could cause
visual neglect. We then propose a neuroanatomical network
that is consistent with the neuronal message passing implied
by active inference. This allows us to equate functional lesions
to anatomical lesions, and to simulate saccadic eye movements
for each lesion in silico. We explore the influence of subcortical
structures (Karnath et al. 2002) in visual neglect, and the notion
that visual neglect is a type of disconnection syndrome
(Bartolomeo et al. 2007; He et al. 2007). The article concludes by
asking the question whether the different sorts of (saccadic)
behavior induced by distinct sorts of lesions this sufficient to
identify the locus of the lesion. We address this question using
in silico neuropsychology and Bayesian model selection.

The purpose of this paper is to describe the active inference
scheme and establish its predictive validity in (simulated)
visual neglect. In subsequent papers, we will validate the
underlying functional anatomy using eye tracking and MEG in
real (normal) subjects. Our ultimate objective is to translate
this model into clinical studies—to provide a functionally and
biologically grounded characterization of neuronal computa-
tions in patients with visual neglect.

Active Inference
The formal or normative framework used to characterize
hemineglect calls on the notion of active inference. Active
inference provides a Bayes optimal account of perception and
action by appealing to some fundamental (variational) princi-
ples that apply to any system that has evolved to maintain an
adaptive exchange with its environment. In brief, to sustain
their integrity, adaptive systems must minimize the dispersion
of their states (Friston et al. 2006). Mathematically, this disper-
sion corresponds to entropy, and is equivalent to surprise
averaged over time (Friston 2009). Surprise, in the information
theoretic sense used here, is the negative log probability of
making a particular observation. A surprising observation is
one that is unlikely under the prior beliefs possessed by an
adaptive system, or subject. An intuitive example is that of
blood pressure control. Animals are compelled to keep their
blood pressure within narrow bounds in order to survive. The
baroreceptor system implicitly “expects” blood pressure to be
within this range with a high probability, so it is surprising
when pressures outside this range are sensed. It is clear from
this example that surprise is something to be avoided, if life is
to pursue its familiar course. To interact with the environment,
without incurring potentially fatal surprises, it is necessary to
possess a generative model that describes how observations are
generated. In most situations, the processes generating observ-
able outcomes are sufficiently complex that it becomes intracta-
ble to compute surprise explicitly. Instead, a quantity called free
energy can be computed (Dayan et al. 1995; Beal 2003; Friston
2003). This furnishes an upper bound on surprise, through
Jensen’s inequality (The average of a log is less than or equal to
the log of an average. This is a consequence of the concavity of
the logarithmic function.).
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Minimizing the free energy therefore minimizes surprise
(when the bound is tight). In this equation, x represents hidden
(latent) variables, and õ represents the sequence of observa-
tions made over time. The particular form of the hidden vari-
ables depends upon the generative model. ( ˜ )P o x, describes the
joint probability distribution of observations (i.e., consequences)
and hidden variables (i.e., causes) under the generative model.

( )Q x is an arbitrary distribution which becomes an approximate
posterior as the free energy is minimized. Note that the first
equality holds simply because ( )Q x on the right hand side can
be canceled, resulting in a marginalization of the joint distribu-
tion over all hidden variables.

The above demonstrates the (implicit or explicit) free energy
minimization in adaptive systems. A system which does not
minimize its free energy will fail to bound its entropy and, over
time, will cease to exist; that is, will dissipate and decay. Active
inference takes this further, by equipping an agent with beliefs
about the policy (sequence of actions) it will pursue (Friston,
Samothrakis, et al. 2012). A consequence of the imperative to
minimize free energy is that, a priori, agents must believe
they will minimize the free energy expected and allowable
policies. Specifically, policies which are associated with a
smaller expected free energy should be considered more
likely than those associated with a larger expected free
energy.

Generative Model
Markov Decision Processes

Given the discrete, serial, nature of saccadic sampling, an
appropriate model structure—for the purposes of this article—
is a Markov decision process (MDP) (Mirza et al. 2016). These
models are defined in terms of a discrete state space, with
observations made at discrete time points. The generic struc-
ture of an MDP is shown in Figure 1. The hidden variables in
this model are the hidden states, τs , the parameters of the like-
lihood mapping, A, and the policy π . The free energy can be
expressed in terms of these unknown or hidden quantities
(The notation [ ⋅ ]EQ means the expectation under the distribu-
tion Q.).

π π= [ (˜ ) − (˜ ˜ )] ( )π(˜ )F E Q s A P o s Aln , , ln , , , 2Q s A, ,

An MDP is structured such that observable outcomes
depend only on the hidden states. The probabilistic mapping
from hidden states to outcomes is expressed in the matrix A, in
which = ( = = )τ τP o i s jAij . The hidden states depend only on
the previous hidden state, and on the transition matrix B,
which is a function of the policy. Preferences are specified in
terms of the prior beliefs an agent has about the outcomes they
will observe, and these are contained in the matrix C. D deter-
mines the probabilities of the initial states. The vectors E and G
correspond to prior expectations about policies and expected
free energy respectively (please see below).
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This generative model allows the factorization of π( ˜ ˜ )P o s A, , ,
into conditionally independent factors. Using a “mean field
approximation,” we can additionally factorize π(˜ )Q s A, , into
approximately independent factors. It is then possible to derive
update equations for each factor of Q , by taking the derivative of
the (variational) free energy with respect to that factor, and set-
ting the result to zero (see Appendix for the derivation of the hid-
den state updates). In doing so, the update equations shown in
Figure 2 are obtained (Friston, FitzGerald, Rigoli, Schwartenbeck
and Pezzulo 2016). Reassuringly, when the variables in these
equations are mapped out in terms of the influence each has
over the others, the emergent structure closely resembles the
architecture of cortical microcircuits, cortical hierarchies, and

even corticosubcortical loops involved in policy evaluation. This
loop is consistent with the structure and function of the basal
ganglia (Jahanshahi et al. 2015). See Figure 2.

Memory and Short-Term Plasticity

Given that the probability distributions are specified as cate-
gorical distributions, the appropriate conjugate prior for the
likelihood A matrix is a Dirichlet distribution. This means
that the probability can be represented simply in terms of
Dirichlet concentration parameters. For each state, =τs j,
there are a set of Dirichlet parameters, aij, one for each out-
come, =τo i, which could be associated with this state. These

Figure 1. Markov decision process. The Bayesian network shown on the left describes the conditional dependencies in a Markov decision process (MDP). Each variable

is shown in a circle, with shaded circles being observed variables. Arrows from one circle to another indicate that the probability of the second variable is conditioned

on the first. The forms of these conditional distributions are given in the panel on the right. Cat means a categorical distribution, while Dir is a Dirichlet distribution.
σ is a softmax (normalized exponential) function. Please see main text for a fuller explanation of the variables.

Figure 2. Variational update equations. The equations in the left panel can be obtained through a minimization of the variational free energy with respect to posterior

expectations of each variable in the MDP model described in Figure 1. Each expectation is expressed as a vector, each component of which corresponds to the approx-

imate (Q ) distribution for a particular value of that variable. H is the entropy of the likelihood matrix. On the right, variables have been assigned to neuronal popula-

tions, and the connections between these populations determined from the update equations. The result closely resembles a cortical column with a

corticosubcortical loop. The modulation of this loop by the precision (γ ) unit, which is thought to correspond to dopaminergic activity (Friston et al. 2013) is suggestive

of a nigrostriatal influence. The 2 opposing inputs to the policy unit could reflect the direct and indirect basal ganglia pathways. Notably, E (prior expectations about

policies) does not depend on current beliefs about states, while G (expected free energy) is context dependent. Correspondingly, indirect pathway neurons in the stri-

atum have relatively small dendritic trees with limited cortical input, while direct pathway neurons have very large dendritic trees (Gertler et al. 2008).
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are initially “pseudo-observations,” as no observation has yet
been made. The belief about the probability of outcome i given
state j is as follows:

=
∑

( )
a

a
A 3ij

ij

k kj

As observations are made, the agent is able to learn—that is,
accumulate its Dirichlet parameters—to better fit its observations.
This process of learning simply involves increasing the Dirichlet
parameter representing a particular outcome when that is
observed (Beal 2003; Blei et al. 2003). The amount it is increased
by the (approximate) posterior probability that each hidden state
was occupied when the observation was made. This allows an
agent to remember the observations they sampled when they
believed they were in a particular state (Friston, FitzGerald, Rigoli,
Schwartenbeck, O’Doherty, et al. 2016). The notion that the map-
ping between representations of 2 variables should be increased
when the 2 are simultaneously active is strikingly similar to
Hebbian plasticity (Hebb 1949; Brown et al. 2009). This analysis
suggests that this form of memory could be implemented by
short-term changes in synaptic efficacy.

An important consequence of the Dirichlet parameterization
concerns the scaling of parameters. The scaling of the Dirichlet
parameters does not influence the values in the likelihood matrix.
However, it does influence the degree to which these change fol-
lowing an observation. If all the concentration parameters are
very large (as would be the case if many past observations had
been made), a single observation will make a very small differ-
ence to the likelihood, A. If the parameters are very small, an
observation can trigger one-shot learning, suggesting a rapid
short-term plasticity effect. Such effects have been proposed as
one mechanism underlying working memory (Mongillo et al.
2008). This behavior is of particular interest in the current context,
as will become apparent in the next section, where the form of
the MDP used to model hemineglect is described.

Saccadic Cancellation Task
The task performed by the particular MDP model used in this
work is based on the pen-and-paper line cancellation task
(Albert 1973; Fullerton et al. 1986). This task is used to assess
visual neglect clinically, and is very sensitive (Ferber and
Karnath 2001). Despite its popularity, it is worth noting that there

are many possible reasons that performance of this task might
be impaired. We will demonstrate this for a few of these reasons
below. We will use a saccadic version, which involves presenting
the subject with an array of targets that can be placed at various
locations on an 8 × 8 grid. The task is to look at each of the tar-
gets until all targets have been sampled (i.e., canceled). When a
target has been fixated, it changes color from black to red (see
the right panel in Fig. 3), indicating that it has been seen. The
model used to emulate this behavior is shown in Figure 3, in
terms of the variables in the MDP. The only hidden states in this
model correspond to the location currently foveated. An identity
matrix maps these deterministically to proprioceptive observa-
tions, ensuring there is no uncertainty about the hidden state
(i.e., where the subject is currently looking). The uncertainty in
the model is contained in the (likelihood) mapping from hidden
states to visual outcomes. There are 3 possible outcomes: no tar-
get (white), target (black), and canceled target (red). The prior pre-
ferences of the simulated agent are that it has equal preferences
over all proprioceptive outcomes, prefers to see targets that have
not been canceled, and does not expect to see targets that have
already been canceled. The subject begins with (almost) uniform
beliefs about the A matrix (i.e., what will happen if she looks at a
particular location). However, these incorporate very weak, but
accurate, beliefs concerning the locations of the targets. On
foveating a target, the first visual outcome is a black target. This
observation allows the appropriate Dirichlet parameters to be
accumulated. During fixation, the target changes from black to
red, and this causes further changes in the Dirichlet parameters,
so that the subject remembers she has already canceled that
location. This implements a synaptic form of spatial working
memory (Mongillo et al. 2008). The subject may saccade to any
location at any time, meaning there are 64 possible actions, each
of which is associated with a corresponding transition (B) matrix.
Having established the basic form of the generative model, suffi-
cient to simulate visual search, we now turn to the finer details
of the implicit epistemic foraging and how salient targets are
selected—and what can go wrong under pathological priors.

Computational Neuropsychology
In principle (under the complete class theorem), all neuropsy-
chological syndromes can be formulated in terms of active
inference. The challenge is to find the prior beliefs a subject

Figure 3. Generative model for the saccadic cancellation task. The structure of the particular generative model used for the saccadic cancellation task is shown on the

left. See Fig. 1 for the definitions of the symbols used. The hidden states in this model are the locations in the visual field that are fixated. These are indicated by the 8 ×

8 grid on the left of this figure. The start location, is specified by D. The agent may saccade to any location on the grid (three possible saccades are shown), and the par-

ticular saccade is defined by u, which selects the appropriate B matrix. Each component of this matrix defines the probability of a saccade to a given location (j k, , or l
in the figure), given a current location (i in the figure). There are 2 A matrices which provide a probabilistic mapping from the hidden states to the visual (A1) or proprio-

ceptive (A2) outcome modalities. Prior preferences are defined by the C matrices, which are defined for each modality. On the right is a depiction of the structure of the

task resulting from the generative model. The dotted line is the saccade path, and this demonstrates the change from black to red of targets as they are canceled.
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would have to possess to render their behavior Bayes optimal.
For visual neglect, we consider the abnormal patterns of sac-
cadic eye movements in patients (Husain et al. 2001; Fruhmann
Berger et al. 2008; Bays et al. 2010; Karnath and Rorden 2012),
and the beliefs which would engender these patterns. For each
saccadic policy, the generative model specifies the prior proba-
bility that the policy will be pursued. By analysing the form of
this prior belief, one can develop a differential diagnosis for the
computational lesions in visual neglect. As noted above, the
prior belief about policy should depend on the expected free
energy. The smaller the expected free energy under a policy,
the more likely it will be pursued. We can express this formally
as follows:

π σ γ π( ) = (− ⋅ ( )) ( )P G 4

In this equation, σ (⋅) is a softmax function, which ensures
the resulting distribution will sum to one, making it a proper
probability distribution. The scale parameter γ is an inverse
temperature parameter, which acts as a precision over policy
priors. π( )G is the expected free energy associated with each
policy π . This is defined as the sum of expected free energies
for each future time point.

∑π π τ( ) = ( ) ( )
τ>

G G , 5
t

The expected free energy has a similar form to that of the
variational free energy. However, there are 2 key differences.
The first is that it must be conditioned on the policy pursued,
and the second is that, by definition, future observations have
not yet been made. This means the expectation in Equation 2
must now include beliefs about future outcomes. Defining

ο π π˜ ( | ) = ( | ) ( | )τ τ τ τ τQ s A Q s A P o s A, , , , allows us to express
expected free energy as follows:

π τ π π( ) = [ ( | ) − ( | )] ( )τ τ τ˜G E Q s A P o s A, ln , ln , , 6Q

Rearranging this, we can separate out the key terms that
influence policy selection in the generative model described
above.
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The second (salience) term in this equation, in the context
of the generative model used here, is identical for all policies.
This is because the identity mapping from the hidden states
representing locations to the proprioceptive outcomes allows
the subject to infer location in visual space with no certainty.
This means there is no information gain or epistemic value
that would otherwise resolve uncertainty about the hidden
state. The key terms that determine policy selection are the
first and third. The former implies that a policy which is
expected to fulfill the agent’s prior beliefs (preferences) about
outcomes has a lower expected free energy than one which
does not. The latter suggests that a policy which affords the
greatest change in the beliefs about the likelihood mapping,

π( | )τP A o , , from beliefs prior to seeing counterfactual outcomes,
π( | )Q A , has the lowest expected free energy. Heuristically, poli-

cies that elicit observations that enable large Bayesian belief

updates become more attractive. In other words, the subject
will be attracted to novel contingencies that resolve uncertainty
about the consequences of being in a particular state; that is,
the likelihood mapping.

In short, prior preferences and novelty are both important
factors in determining the selection of a location to saccade to.
This implies 2 possible computational mechanisms for visual
neglect. A subject may have a prior belief that she will experi-
ence the proprioceptive outcomes corresponding to the right
side of space with a greater probability than those correspond-
ing to the left. Alternatively, the subject may be more confident
in her beliefs about the mapping from states to outcomes on
the left, and therefore consider the right side of visual space
novel. This is equivalent to starting with very large Dirichlet
parameters (corresponding to a large number of pseudo-obser-
vations) for locations on the left. This follows because an obser-
vation resulting from a saccade to the left will induce a small
change in beliefs about the likelihood mapping.

A third possibility relates to (baseline) prior beliefs about
policies that may not depend upon expected free energy.
Although active inference mandates that an agent believes it
will pursue policies which minimize its expected free energy, it
does not preclude fixed prior beliefs over policies which, in
visual neglect, might identify saccades to the right to be a priori
more likely than those to the left. To express this formally, we
can augment the expression for priors over policies as follows:

π γ π( ) = − ⋅ ( ) ( )P E Gln ln 8

Here, E expresses the prior beliefs about policies that do not
depend on the expected free energy. In this form, the (log)
priors over policies are expressed as a linear function of
expected free energy, where E corresponds to the y-intercept
and precision is the sensitivity or slope.

In summary, the above formal considerations have led us to
identify 3 possible synthetic lesions which could give rise to
visual neglect. These are changes in the priors over policy E,
the Dirichlet parameters of the beliefs about A1, and the priors
concerning proprioceptive outcomes, contained in the matrix
C2. In the following section, we review plausible neurobiological
substrates for each of these computational pathologies.

The Neuroanatomy of Hemineglect
The Dorsal Attention Network

The superior colliculus, in the midbrain, is a key site for the
control of saccadic eye movements (Raybourn and Keller 1977).
It is also a point of convergence for the cortical and subcortical
structures involved in oculomotor control (Künzle and Akert
1977; Berson and McIlwain 1983; Fries 1984, 1985; Shook et al.
1990; Gaymard et al. 2003). The substantia nigra pars reticulata,
a GABAergic output nucleus of the basal ganglia, projects
directly to the colliculus (Hikosaka and Wurtz 1983), as do corti-
cal areas including the frontal eye fields (Künzle and Akert
1977) and the lateral intraparietal cortex (Gaymard et al. 2003)
(sometimes called the parietal eye fields (Shipp 2004)). These
dorsal frontal and parietal areas constitute the dorsal attention
network (Corbetta and Shulman 2002), and communicate via
the first branch of the superior longitudinal fasciculus (Makris
et al. 2004; Bartolomeo et al. 2012). The frontal eye fields are
well placed to house the hidden states representing eye posi-
tion, while dorsal parietal areas are suited to the representation
of proprioceptive information. The former are known to con-
tain spatial maps in egocentric space, as evidenced by
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demonstrations that stimulation of neurons in this region
induce saccades that end in specific egocentric eye positions
(Bruce et al. 1985; Sajad et al. 2015). The latter contain neurons
that are modulated by multiple spatial reference frames
(Andersen et al. 1985; Pouget and Sejnowski 2001).

The parietal cortex is part of the dorsal visual stream,
thought to carry information about the location of a stimulus
(Goodale and Milner 1992; Ungerleider and Haxby 1994). In the
present context, the first branch of the superior longitudinal
fasciculus would perform a coordinate transformation, bringing
spatial information about a stimulus into egocentric coordi-
nates; suitable for planning eye movements. This suggests that
the superior longitudinal fasciculus corresponds to the connec-
tivity or mapping encoding the likelihood matrix A2 (Fig. 3). In
our model, this is an identity mapping, but this is only the case
when the head is assumed to be in a fixed position. A model
which allowed for head movements would require this matrix
to represent a more complex coordinate transform. Given pro-
prioceptive outcomes are represented in the dorsal parietal
regions; inputs to this region must represent prior beliefs con-
cerning proprioception. A candidate structure providing this
information is the pulvinar, which is involved in visual search
behaviors (Ungerleider and Christensen 1979). The connections
from this region would then encode the C2 matrix.

The Ventral Attention Network

Despite the important role of dorsal frontoparietal areas in the
generation of saccadic movements (Corbetta et al. 1998), it is
more ventral frontoparietal lesions which are associated with
the visual neglect syndrome (Corbetta et al. 2000; Corbetta and
Shulman 2002, 2011). These regions are the constituents of the
ventral attention network, and are connected by the third
branch of the superior longitudinal fasciculus (Rushworth et al.
2005; Bartolomeo et al. 2012). The parietal part of this network
includes areas in the region of the temporoparietal junction,
closer to the temporal regions associated with the ventral
visual stream. This component of the visual system has been
described as the “what” pathway (Ungerleider and Haxby 1994),
propagating information concerning stimulus identity to com-
plement the “where” information of the dorsal stream. The
ventral temporoparietal regions are then good candidates for
the representation of the visual outcome modality of the
model, allowing them to influence eye movements in a
stimulus-driven manner (Shomstein et al. 2010). Connections
from the ventral frontal cortex could then carry information
concerning prior beliefs (equivalent here to the instructions a
subject would be given), consistent with the proposed role of
areas in this region in representing task demands (Duncan
2001; Dosenbach et al. 2006) and in target detection (Stevens
et al. 2005). This suggests that the third branch of the superior
longitudinal fasciculus is the anatomical substrate of C1.

Notably, the ventral attention network is lateralised to the
right cerebral cortex, while the dorsal network is much more
symmetrical (Corbetta et al. 2002; Thiebaut de Schotten et al.
2011; Vossel et al. 2012). This is consistent with the notion that
temporal regions could represent the “what” modality, as iden-
tity is largely independent of location, and therefore does not
require a bilateral representation (Parr and Friston 2017). There
is evidence to suggest that this unilateral representation of
identity is right lateralised (Warrington and James 1967, 1988;
Warrington and Taylor 1973), while left sided homologues
relate to object naming (Kirshner 2003). We note that, although
temporoparietal regions are thought to play a role in target

detection (Corbetta et al. 2000), they do not appear to be neces-
sary for object recognition. The involvement of the ventral net-
work is consistent with the fact that visual neglect is
frequently associated with right hemispheric lesions.

This leaves the question of how lesions in ventral regions
produce the saccadic deficits that might be expected from dys-
function of areas which are directly involved in saccadic control.
One answer to this question is that visual neglect involves dys-
function of the dorsal network as a consequence of the failure
of the ventral network, or of the interaction of the 2 networks
(He et al. 2007). The 2 networks are joined by the second branch
of the superior longitudinal fasciculus (Thiebaut de Schotten
et al. 2011), and it has been proposed that visual neglect repre-
sents a functional disconnection syndrome involving this path-
way. Given that this branch connects the parietal part of the
ventral system to the frontal part of the dorsal system, this cor-
responds exactly to the mapping described by A1. It is interest-
ing that this tract, heavily implicated in visual neglect (Doricchi
and Tomaiuolo 2003; Thiebaut de Schotten et al. 2005), appears
to be the anatomical homologue of the mathematical entity
identified above as a candidate for pathological priors—on
purely theoretical grounds.

Subcortical Structures

As stated above, an important input to the superior colliculus is
the substantia nigra pars reticulata. This structure is a point of
convergence for the direct and indirect pathways through the
basal ganglia. Both of these originate from the striatum, which
comprises the caudate nucleus and putamen. In visual neglect
patients with subcortical lesions, there is substantial lesion
overlap found in the putamen, and to a lesser degree in the
caudate (Karnath et al. 2002). As indicated in Figure 2, the puta-
men is involved in the evaluation of policies. This fits with the
proposed role of the basal ganglia. Additionally, as policies that
are independent of the expected free energy are equivalent to
habitual behavior, it makes intuitive sense that pathological
biasing of policies would take place within a structure which is
involved in habit formation; that is, the striatum (Yin and
Knowlton 2006). The consistency of the anatomy of the basal
ganglia with the policy update equations is further enhanced
when the hierarchical extension of these equations is con-
sidered (Friston et al. 2017). These imply multiple parallel loops,
originating and ending in the cortex, closely resembling those
described in subcortical structures (Haber 2003).

The pulvinar is another subcortical region that is strongly
implicated in visual search and neglect—and, as mentioned
above, connects to dorsal parietal areas (Weller et al. 2002;
Behrens et al. 2003). This makes it a plausible anatomical sub-
strate for the representation of prior beliefs about propriocep-
tive outcomes. This is consistent with accounts of the pulvinar
in directing attention (Shipp 2003; Kanai et al. 2015) and eye
movements (Petersen et al. 1985), and as a “salience map”
(Robinson and Petersen 1992 ; Veale et al. 2017).

There are other possible lesions which could be accommo-
dated by this model. For example, unilateral disruptions of the
connections from the substantia nigra pars reticulata to the
superior colliculus (Schiller et al. 1980, 1987; Hikosaka and Wurtz
1985a), or of the dopaminergic modulation of the striatum (Kato
et al. 1995; Kori et al. 1995), have been shown to cause visual
neglect-like syndromes. However, these lesions are rarely
reported as causes of neglect in human patients. We have priori-
tized the lesions corresponding to the white matter tract that
connects the dorsal and ventral attention networks, in addition
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to 2 common subcortical lesions; the putamen and pulvinar.
These closely resemble the theoretically motivated lesions of A1,
E, and C2.

Interhemispheric Interactions

In the above, our focus has been on disruption of the communi-
cation between posterior and frontal cortices, and on subcorti-
cal disconnections within the right hemisphere. Importantly,
there is good evidence (Vuilleumier et al. 1996; Rushmore et al.
2006; Dietz et al. 2014) that neglect involves interhemispheric
imbalances in addition to intrahemispheric disruptions
(Bartolomeo et al. 2007; Bartolomeo 2014). This is a key feature
of an existing model of neglect (Kinsbourne 1970). Fortunately
for our framework, the 2 are inherently linked. Examination of
the equations in Figure 2 (and the Appendix) reveals 2 key fea-
tures in the belief updates for hidden states. The first feature is
that beliefs about states are conditionally dependent upon poli-
cies. This means that any bias towards policies favouring sac-
cades to the right will increase the probability, on taking a
Bayesian model average over policies, of a fixation location on
the right. Given the contralateral cortical control of eye move-
ments, this corresponds to increased left hemispheric activity.
The second important computational feature is the softmax
function, which ensures posterior beliefs over allowable fixa-
tion locations sum to one (i.e., ensures a proper probability dis-
tribution). Such a constraint could be biologically implemented
by inhibitory interactions within and between the 2 frontal eye
fields. In other words, if fixations on the right side of space are
considered more probable, it must be the case that leftward
fixations are less probable. This necessarily implements a form
of interhemispheric competition—a competition that is won by

the left hemisphere if any of the lesions described in the previ-
ous section bias policies towards rightward saccades (Fig. 4).

Simulating Hemineglect
Heterogeneous Pathology to Homogenous Syndrome

Figure 5 shows the results of running the simulation for 20 sac-
cades, under different prior beliefs (i.e., lesions). Strikingly, all 3
lesioned models produce very similar behavioral patterns. This
heterogeneity of functional lesions is consistent with the diverse
set of anatomical lesions known to cause visual neglect. While
the nonlesioned model samples both sides of space, all 3 lesions
cause a bias towards sampling the right side of space. This
biased sampling is very similar to that observed in visual neglect
patients (Bays et al. 2010). It is worth noting that people may
have additional priors over their policies (contained in E), that
result in a slightly different pattern of saccadic search than that
depicted in Figure 5. For example, people might have a prior bias
towards performing a saccade to a nearby target. We have omit-
ted this additional prior, as our aim is to present a minimal
model that reproduces the important features of neglect.

The functional disconnection induced by altering the Dirichlet
parameters of A1 effectively increases the novelty associated with
saccades to the right hemifield. This corresponds to the func-
tional disconnection of the dorsal and ventral attention networks,
and can be thought of as impairing the “capture” of attention by
salient stimuli, consistent with existing theories of visual neglect
(Ptak and Schnider 2010) and attention (Shulman et al. 2009). The
simulated pulvinar lesion causes the agent to fulfill their prior
beliefs that they are more likely to be looking at the right side of
space, and the lesioned putamen biases policy selection in favor
of saccades in this direction.

Figure 4. Computational anatomy and lesion sites. This schematic illustrates the proposed mapping from the computational entities implicated by the model (Figs 2

and 3) and their neuroanatomical substrates. On the left the dorsal and ventral attention networks are shown. The former involves the frontal eye fields (FEF) and

posterior parietal areas in the region of the lateral intraparietal area (LIP) and intraparietal sulcus (IPS). The frontal areas of this network are assumed to represent the

hidden states, corresponding to the current fixation location. The parietal component represents proprioceptive outcomes (eye position). The connection between

these frontoparietal areas is the first branch of the superior longitudinal fasciculus (SLF I), mediating the likelihood mapping between the hidden states and proprio-

ceptive outcomes (A2). The ventral attention network includes the ventral frontal cortex (VFC) and the temporoparietal junction (TPJ). These are connected by SLF III,

which could carry prior preferences about visual outcomes (C1). Visual outcomes are assumed to be represented in the TPJ, which suggests the SLF II is the mapping

from hidden states to visual outcomes (A1), and it is in these connections that the beliefs about the target locations are encoded. Prior preferences for proprioceptive

outcomes are assigned to the pulvinar, a nucleus of the thalamus. On the right the connections from the pulvinar to the dorsal parietal cortex (LIP) are shown. These

are portrayed as conveying expectations about (proprioceptive) outcomes in C2. In addition, the pathways through the basal ganglia are also shown. The policy evalu-

ation processes shown in Figure 2 are depicted as stages in the direct pathway. In this scheme, the putamen evaluates the expected free energy, and baseline policy

priors, E. These are modulated by dopaminergic inputs from the substantia nigra pars compacta , in proportion to their precision γ , and the output of the putamen is

transformed by the substantia nigra pars reticulata into a distribution over policies. The simulated lesions we considered are numbered: 1—SLF II; 2—Putamen; 3—

Pulvinar. As in the previous figure, red connections are excitatory, blue inhibitory, and green modulatory.
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While mechanistically distinct, the behavioral profiles of
each of these lesions do not appear to lend themselves to pre-
cise diagnoses in terms of observable behavior. In the next sub-
section, we consider a more realistic approach to spatial
representations. We follow this with an attempt to determine
whether the syndrome generated by these lesions is really as
homogenous as it appears, or whether it is possible to identify
the lesion from saccadic behavior.

Representing Visual Space

Spatial representations in the brain involve multiple segregated
spatial scales, and resolutions. The magnocellular system, for
example, carries information with a relatively low spatial reso-
lution, while the parvocellular system provides higher resolu-
tion information (Livingstone and Hubel 1988; Zeki and Shipp
1988, 1989; Nealey and Maunsell 1994). Visual neglect provides
further evidence for the brain’s use of multiscale spatial repre-
sentations. One example of this is the Ota search task (Ota et al.
2001) in which participants are asked to identify, from an array
of shapes, which shapes are complete. While some visual
neglect patients fail to address any of the left hand side of the
array (“egocentric visual neglect”), others address all shapes,
but are impaired in determining which shapes are complete
(“allocentric visual neglect”). Specifically, those shapes which
have a deficiency on their right side are correctly identified as
incomplete, while those deficient on their left side are incor-
rectly identified as complete.

While many accounts have described the 2 perceptual def-
icits in terms of different spatial reference frames (Medina
et al. 2009), it has been argued that both forms are actually

different manifestations of an egocentric visual neglect
(Driver and Pouget 2000; Corbetta and Shulman 2011). If both
are considered to take place in the same reference frame, the
2 behavioral patterns would be consistent with visual neglect
operating at a coarse spatial scale in the first case, and a finer
scale in the second.

Equipping the model with a multiscale representation is
simple to do in our generative model; instead of representing
each of the 64 locations at a high resolution, we can encode
each location using 3 levels (i.e., factors) of resolution, each
level divided into 4 quadrants that, collectively, specify 43 = 64
locations. Technically, this means the A matrix now becomes 3
matrices encoding the likelihood mappings at low, intermedi-
ate, and high levels of resolution. Functionally, this means that
the subject perceives visual input at 3 levels of resolution—and
can entertain uncertainty (and novelty) at any level. This also
means we have the opportunity to model pathological (prior)
biases at the level of quadrants of the visual field, quadrants
within each quadrant and quadrants within those quadrants.

Figure 6 shows a multiscale representation in our model,
and its application to the saccadic cancellation task. The right
panel shows how the Ota task was used to motivate this
approach. If visual neglect is induced at a coarse scale—that is,
quadrant enclosed by the blue frame—an egocentric behavioral
pattern of saccadic sampling would be expected. However, if
induced at a finer scale (green frame), neglect would cause an
allocentric pattern. Figure 7 shows the simulated eye tracking
data generated under this multiscale representation. Lesions
are shown at each spatial scale and are induced by scaling the
corresponding Dirichlet concentration parameters. The other 2
types of functional lesion produce similar results. Crucially, dif-
ferent spatial scales of visual neglect could reflect different
lesion topologies, as more ventral lesions have been associated
more with neglect at the object scale (Grimsen et al. 2008;
Medina et al. 2009; Verdon et al. 2009).

A simplification we have made in the generative model we
have used is that we have assumed the head position is station-
ary. This allows us to treat the coordinate transform, performed
by the first branch of the superior longitudinal fasciculus, as an
identity transformation. If we did not make this assumption, the
transformation would have to be modulated by a set of hidden
states representing the head position, as in established models
of parietal contributions to attention (Pouget and Sejnowski
1997, 2001). The influence of head position over the reference
frame—in which neglect is induced—allows for the possibility of
different egocentric coordinate systems. However, it may be that
a set of egocentric reference frames are insufficient, on their
own, to explain some neglect phenomena. There is evidence
that the orientation of the axes of reference frames can be influ-
enced by the spatial configuration of visual stimuli (Driver et al.
1994; Li et al. 2014), but the inferences involved in these pro-
cesses lie outside the scope of this article. Importantly, deficits
that are classically described as “object-centered” are rarely seen
in the absence of “egocentric” deficits (Rorden et al. 2012; Yue
et al. 2012). This suggests that such deficits are not an essential
part of the neglect syndrome, but may occur in larger lesions
that compromise additional connections.

In summary, we have seen that a normative (active infer-
ence) model of visual searches and biased (visual) sampling
can provide a sufficient, if minimal, account of the functional
deficits observed in patients during line cancellation tasks. The
computational architecture and message passing implied by
the active inference scheme is remarkably consistent with the
known functional anatomy of visual search and saccadic eye

Figure 5. Simulated saccadic cancellation task. Each of the panels shows the

simulated eye tracking data (blue) during 20 saccades. In all cases, the target

array was the same. The upper left panel shows the performance of the model

with no simulated lesions. The upper right panel shows the results when the

A1 Dirichlet parameters were increased for the left hemifield, corresponding to

a functional disconnection of the second branch of the right superior longitudi-

nal fasciculus. The lower left panel shows performance when there is a biasing

of policy selection, simulating a lesion of the putamen. The lower right panel

represents a lesion of the prior beliefs about proprioceptive outcomes, which

relates to a deficit in the inputs to the dorsal parietal cortex, likely from the

pulvinar.
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movements—and the deficits in epistemic foraging seen in
patients with neglect. In the final section, we turn to the practi-
cal issues of using this sort of model to make inferences about
lesions on the basis of saccadic eye movements.

Computational Lesion Deficit Analysis
We have established that, just as with anatomical lesions,
there are several functional lesions that can induce very similar
behavior. This raises an important question. Is the mapping
from lesion to behavior truly a many-to-one mapping? In other
words, is it possible, given the (simulated) behavioral data, to
determine which lesion model generated it? If so, this could
have important implications for clinical diagnosis, as it would
allow the separation of distinct functional categories of visual
neglect.

To answer this question, we used synthetic eye tracking
data from each of the lesion models. To assess the ability of the
paradigm to disambiguate among lesions, we computed the log
likelihood of simulated behavior for every combination of
lesion and model. This log likelihood or evidence was com-
puted by summing the likelihood of each saccade under the
posterior probability of saccade, under each MDP model.
Clearly, in a practical application, one would need to estimate
(subject specific) parameters that best accounted for the
observed behavior (Schwartenbeck and Friston 2016). However,
in this instance, there are no unknown parameters and the log
evidence for any given model reduces to the expected log likeli-
hood, under that model. Given that we know each set of lesion
data was generated by one of the models, we can calculate the
posterior probabilities of each model using a softmax function
of the likelihoods for each synthetic dataset.

The results of this Bayesian model comparison are shown in
Figure 8. It is clear from the confusion matrix shown in the fig-
ure that one can reliably disambiguate between health and
pathology. Furthermore, the lesions in A1 (i.e., a synthetic dis-
connection between dorsal and ventral attentional systems),
although visually very similar to those of the other 2 lesion
models, produce a characteristic behavioral pattern, allowing
the lesion identity to be recovered. We aim to use this disam-
biguation to provide an empirical test of our anatomical model.

Figure 6. Multiscale representations of space. In the illustration on the left, 2 fixation points in a sequence of saccades are highlighted. This is to demonstrate their

representation in terms of a multiscale spatial state space. In the center left, this state space is shown for each fixation point. This specifies a location in an 8 × 8

space, as before. However, the location is specified in terms of which quadrant (blue), which subquadrant (red) and which subsubquadrant (green) the location is

found. These 3 specifications constitute the hidden states of the multiscale model. An advantage of this model is that it allows visual outcomes to be defined at differ-

ent resolutions. This is shown in the center right. Each outcome corresponds to the density of targets in the quadrant, subquadrant, and subsubquadrant currently

fixated. Darker shades indicate a greater density. Note that the finest resolution is at the level of individual locations, so density is equivalent to the presence or

absence of a target. Canceled targets appear red at this level only—lower resolutions are considered to be color-blind; consistent with the properties of the magnocel-

lular system (Hubel and Livingstone 1987). As a saccade is made from a quadrant containing 3 targets to one containing 4, the lowest resolution (blue frame) outcome

becomes denser. Similarly, the subquadrant representation (red frame) becomes darker, as a subquadrant containing only one target is followed by a subquadrant

containing 2. The finest resolution (green frame) represents the maximum density (one target) for both fixation locations. The illustration on the right motivates the

multiscale representation in terms of the Ota task. This shows one quadrant of an array of shapes. If the blue frame was biased towards occupying the right side of

the array, this would resemble an egocentric hemineglect. If the green frame were biased towards the right, this would be closer to an allocentric hemineglect.

Figure 7. Lesions at different spatial scales. By changing the number of the ini-

tial Dirichlet parameters, we have simulated hemineglect at 3 resolutions. As

can be seen in the above, the course scale representation biases saccades to the

right side of the array, similar to the patterns seen in Figure 5. The medium

scale representation biases saccades to the right side within each of the 4 quad-

rants of visual space. Hemineglect at the finest scale biases saccades to the

right of each subquadrant (comprising 4 possible locations). For larger targets,

but the same spatial scales, each of these biased sampling policies would pro-

duce results very similar to those observed in patients performing the Ota task.
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If we use transcranial magnetic stimulation to disrupt the com-
munication between dorsal frontal and right temporoparietal
regions, we expect to find that a lesion deficit analysis using
eye movements will find greater evidence for an A1 lesion than
for any of the other lesion models. Lesions of E and C2 could
not be disambiguated from one another using only synthetic
saccades. That the latter model has a greater posterior proba-
bility for both sets of simulated data suggests that this is a sim-
pler explanation for the data, and has incurred a lower
complexity penalty during Bayesian model comparison.
However, they were clearly identified as being abnormal, and
not due to simulated lesions of the superior longitudinal fascic-
ulus; that is, A1. This suggests that distinguishing between the
2 may require an additional data modality, such as reaction
time, pupillometry, or electrophysiology.

Theoretical Neurobiology
The work presented in this paper closely relates to a number of
recent advances in theoretical neurobiology. We have built
upon previous formulations of visual exploration under active
inference (Friston, Adams, et al. 2012; Mirza et al. 2016), but
there are number of important distinctions between these
accounts and the current work. The first is that we have used
active inference to address the impact of (computational)
lesions, and to demonstrate how neuropsychological disorders
can be described functionally in terms of pathological priors.

The second difference is subtle: the formulations mentioned
above involved the selection of saccadic targets to minimize
uncertainty. This is shared with the current work, and with ear-
lier theories of visual salience (Itti and Baldi 2006), but the
quantities about which the simulated agent is uncertain differ.
Previously, we have emphasized uncertainty about hidden
states in the environment. Here, we focus on the uncertainty
about the relationship between hidden states and their sensory
consequences. It is this important difference that facilitates the
analysis of disconnection syndromes, as these can be formu-
lated as disruption of sensorimotor contingencies.

Previous models have addressed attentional processes in
general (Bundesen 1998; Heinke and Humphreys 2005), and
neglect specifically (Kinsbourne 1970; Heinke and Humphreys
2003). Our approach complements many of these models, while
making use of more recent theoretical developments. The belief
update scheme we have employed has been used to reproduce
a range of other behaviors (FitzGerald et al. 2014; Moutoussis
et al. 2014; Friston et al. 2015), physiological responses (Friston
et al. 2014; Schwartenbeck, FitzGerald, Mathys, Dolan and
Friston 2015), and pathologies (Schwartenbeck, FitzGerald,
Mathys, Dolan, Wurst, et al. 2015), emphasizing its plausibility
as a description of brain function. Additionally, our use of active
inference allows us to appeal to a physiologically plausible pro-
cess theory (Friston, FitzGerald, Rigoli, Schwartenbeck and
Pezzulo 2016), that facilitates the formation of empirical hypoth-
eses about electrophysiological data. For example, we would
expect that there would be an increase in the effective connec-
tivity (in healthy subjects) between the regions connected by
the second branch of the superior longitudinal fasciculus as
Dirichlet parameters are accumulated. We anticipate that this
should be reflected in the activities of neurons in these brain
regions, and that dynamic causal modeling for evoked
responses (David et al. 2006) provides a means to test this
hypothesis experimentally. The simulation of eye movements
adds to this, as we can use this behavioral data to complement
imaging data as in previous experimental work in this area
(Adams et al. 2016).

Conclusion
Visual neglect can be formulated as a computational bias in an
active inference scheme that can be quantified in terms of
abnormal prior beliefs. In the above, we identified 3, theoreti-
cally motivated, functional lesions. On defining a generative
MDP model that performed a cancellation task, we found that
the connectivity implied by the model structure corresponded
well to the anatomy of the dorsal and ventral attention net-
works, in addition to their subcortical influences. The

Figure 8. Confusion matrices constructed from 40 saccades. The matrix on the left shows the (log) model evidence ( ˜| )P o mln for each model, m (columns), given syn-

thetic eye tracking data, õ generated from each model (rows). This is equivalent to the (log) likelihood or model evidence, as there were no unknown parameters.

These results were generated using multiscale representations with lesions at the coarsest resolution in all cases. On the right is the matrix of posterior probabilities

( | ˜)P m o . This is obtained from the matrix on the left, using a softmax function applied to the log evidence is in each row (i.e., for different models of each synthetic

dataset).
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functional lesions in this anatomical assignment matched
lesions associated with visual neglect; namely, in the second
branch of the superior longitudinal fasciculus, the putamen,
and the pulvinar. The saccadic behavior generated under these
lesion models closely resembles that of patients with visual
neglect. To provide a more realistic spatial representation, we
used a multiscale encoding of visual state space, which imple-
ments a multiscale resolution. This allowed us to demonstrate
visual neglect at different scales. Encouragingly, although the
saccadic behaviors appeared homogenous across each lesion
model, we found that we could recover distinct groups of
lesions by comparing the evidence for each lesion in synthetic
data. In principle, this demonstrates that computational phe-
notyping of visual neglect patients is possible.
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Appendix
Update equations

Using the mean field approximation, and factorizing the
joint distribution according to the generative model, the free
energy can be rewritten as follows:
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To find the variational solution to the approximate posterior
for π|st , we can omit all terms which are constant with respect
to this variable. This gives:
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Taking the functional derivative with respect to π( | )Q st
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Setting equal to zero and rearranging gives the variational
solution
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This can be used to set up a biologically plausible gradient
descent scheme by defining an error term, which expresses the
difference between this and the current belief

ε = ⋅ + + ⋅ −π π − π − π π + πoA B s B s sln ln ln lnt t, ,t 1 ,t 1 ,t ,t 1 ,t

When this error is positive, πs ,t should increase. The gradi-
ent descent on variational free energy then corresponds to an
ascent of the form:

ν νσ ε= ( ) ̇ =π π ππs :t t t,t , , ,

These are the dynamics for the state updates in Figure 2.
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