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Abstract 

Single-cell transcriptomics (scRNA-seq) has become essential for biomedical research over the past decade, particu‑
larly in developmental biology, cancer, immunology, and neuroscience. Most commercially available scRNA-seq pro‑
tocols require cells to be recovered intact and viable from tissue. This has precluded many cell types from study and 
largely destroys the spatial context that could otherwise inform analyses of cell identity and function. An increasing 
number of commercially available platforms now facilitate spatially resolved, high-dimensional assessment of gene 
transcription, known as ‘spatial transcriptomics’. Here, we introduce different classes of method, which either record 
the locations of hybridized mRNA molecules in tissue, image the positions of cells themselves prior to assessment, or 
employ spatial arrays of mRNA probes of pre-determined location. We review sizes of tissue area that can be assessed, 
their spatial resolution, and the number and types of genes that can be profiled. We discuss if tissue preservation 
influences choice of platform, and provide guidance on whether specific platforms may be better suited to discovery 
screens or hypothesis testing. Finally, we introduce bioinformatic methods for analysing spatial transcriptomic data, 
including pre-processing, integration with existing scRNA-seq data, and inference of cell-cell interactions. Spatial 
-omics methods are already improving our understanding of human tissues in research, diagnostic, and therapeutic 
settings. To build upon these recent advancements, we provide entry-level guidance for those seeking to employ 
spatial transcriptomics in their own biomedical research.
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Background
Why study ‘cells’ with ‘‑omic’ detail?
As an early pioneer of the microscope, Robert Hooke 
coined the term ‘cell’ in the 1600s to describe struc-
tures observed under magnification in plant material; 
~ 400 years later, the word and the concept has stuck, 
achieving primacy as a fundamental unit of life on Earth. 
Unicellular organisms epitomize how cells are governed 
by their nucleic acids, by their DNA, which houses ‘genes’ 
that encode proteins, and messenger RNAs (mRNA), 
which act as an intermediary between the two. This is 
also true for multi-cellular life, including human beings. 

Indeed, our understanding of ‘cell theory’ underpins 
almost every aspect of human health and disease, from 
islet cells in the pancreas protecting against diabetes, 
immune cells making protective antibodies against bacte-
ria and viruses, or neuronal cells storing life experiences 
and memories. A comprehensive understanding of how 
individual cells employ their mRNA and proteins in dif-
ferent tissues of the human body may lead to new strate-
gies to prevent or treat infections, cancers, neurological 
or metabolic disorders, and a plethora of other condi-
tions. Thus, the ongoing challenge is to examine individ-
ual cells at genome-scale, and with molecular detail.

A decade of studying mRNA in single cells
It is universally accepted, although no less remarkable for 
it, that the hundreds of types of cells that comprise the 
human body possess essentially the same DNA. Thus, 
cellular diversity and cell-specific function, initiated 
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during embryogenesis and perpetuated throughout adult 
life, is best assessed not at the DNA level, but at the pro-
tein level. However, there are no commercially available 
methods for quantifying the thousands of proteins within 
individual cells of our bodies. Instead, in 2009 came the 
first description of the entire repertoire of mRNA (up 
to ~ 20,000 genes) from a single cell, known as the tran-
scriptome [1]. This triggered an explosion in efforts to 
study heterogeneity and dynamic change in eukaryotic 
cells using single-cell transcriptomics, more commonly 
referred to as single-cell RNA-seq (scRNA-seq) [2].

Most scRNA-seq methods have required single cells to 
be released intact and viable from tissues, which are then 
assessed and/or labelled individually using microfluidic, 
droplet-based, or limiting dilution methods—a notable 
exception is single-nucleus RNA-seq, in which nuclei 
from tissues are mechanically recovered and processed 
[3]. The (current) most common commercially available 
platform, the Chromium Controller from 10x Genomics, 
isolates single cells or nuclei in droplets in an oil-based 
emulsion, where mRNA capture, reverse transcription, 
and molecular and cellular barcoding is conducted. This 
technology has permitted unbiased, genome-scale assess-
ments of cellular identity, heterogeneity, and dynamic 
change for thousands to hundreds of thousands of cells. 
Continued scaling of such projects means it will be com-
monplace to study millions of cells, as computational and 
financial challenges are navigated [4].

What is ‘spatial transcriptomics’ and why is it useful?
Despite the ongoing success of scRNA-seq, a crucial 
practical obstacle exists: the need to liberate viable cells 
from whole tissue without inducing stress, cell death, 
and/or cell aggregation. Immunologists have perhaps 
benefitted the most from scRNA-seq because many 
immune cells (particularly T and B lymphocytes) are not 
always anchored in tissues and are therefore relatively 
easy to isolate from circulating blood, lymphoid organs, 
peripheral tissue, and even tumours [2, 5–7]. In contrast, 
many other cell types, e.g. neurons in the brain, remain 
less amenable to scRNA-seq analysis, requiring special-
ized tissue dissociation protocols to recover them [3, 8]. 
Therefore, purely from a technological standpoint, there 
has been an impetus to conduct transcriptomics on 
intact tissue. Since spatial information is preserved by 
studying intact tissue, these methods have been referred 
to as spatially-resolved transcriptomics, or simply ‘spatial 
transcriptomics’.

The position of any given cell, relative to its neigh-
bours and non-cellular structures, can provide help-
ful information for defining cellular phenotype, cell 
state, and ultimately cell and tissue function. Location 
can determine the signals to which cells are exposed. 

While endocrine signals act at macroscopic scales, 
many other types of signals act upon neighbouring cells 
via cell-cell interactions or via soluble signals acting in 
the vicinity. One form these signals can take is of cell 
surface-bound protein receptors and ligand pairs, the 
mRNA for which can be detected by transcriptomics 
[9]. Therefore, a prime driver for rapid developments 
in spatial transcriptomics is the assertion that tissue 
context aids assessment of cell biology, which has been 
true for 2-photon intravital imaging of immune cells in 
tissues [10], and will likely also apply to transcriptomes 
within tissue.

Furthermore, it is becoming increasingly apparent that 
sub-cellular localization of mRNAs varies according to 
gene function, regulating for example where a protein 
product is produced and trafficked in cells [11]. This is 
a common phenomenon, affecting an estimated 70% of 
transcript species [11, 12]. In past decades, these infer-
ences were made by targeted screens of specific mRNAs 
but are beyond the current capabilities of scRNA-seq. 
Emerging spatial transcriptomics techniques promise to 
profile simultaneously hundreds to thousands of genes at 
subcellular resolution.

Although technologies for counting and profiling tran-
scripts in tissue have existed for decades, it was only in 
2021 that spatial transcriptomics was named ‘Method of 
the Year 2020’ by Nature Methods [13]. The field contin-
ues to grow fast, driven by numerous factors including 
the reduced cost of next-generation sequencing (NGS), 
initiatives such as the Human Cell Atlas (HCA), and the 
BRAIN Initiative Cell Census Consortium (BICCC) [14, 
15], increases in computing capacity, and improvements 
in microscopy and imaging. During this growth phase, 
wet-lab technologies and computational approaches for 
generating and analysing spatially-resolved transcrip-
tomic data are rapidly evolving and improving, as was the 
case for scRNA-seq from 2009. While scRNA-seq tech-
niques have seen widespread uptake, much of the current 
literature on spatial transcriptomics is technical, and not 
oriented to researchers unfamiliar with the field. Here, 
we draw on spatial transcriptomics literature and several 
recent reviews [16–19] to provide an introductory guide 
to spatial transcriptomics, covering available techniques, 
experimental design considerations, and bioinformatic 
analyses needed to reveal novel biology. In particular, we 
provide a summary of existing spatial transcriptomics 
techniques and literature, and a framework for research-
ers to: 1. determine an experimental design shaped by 
sample availability and specific features of biological sys-
tems being studied; 2. select the best-suited spatial tran-
scriptomics technique; 3. maximize output from spatial 
transcriptomic studies using complementary data such 
as single-cell transcriptome reference data and auxiliary 
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stains; and 4. analyse these data with specialized algo-
rithms for spatial -omics.

Spatial transcriptomics in current biomedical 
research
Spatial transcriptomic techniques have existed for almost 
a decade, but until recently only at the institutes where 
they were developed. Commercialized techniques such 
as Spatial Transcriptomics [20], released as Visium by 
10X Genomics, as well as GeoMx [21] and CosMx [22] 
by Nanostring, have made spatial transcriptomics more 
accessible. Other -omics techniques such as ‘spatial pro-
teomics’ (a term currently employed to describe tar-
geted assessment of tens of proteins via antibody-based 
methods), spatial assays for chromatin accessibility, and 
spatial genomics have also contributed recent findings 
[23–27]. Here we showcase recent applications of spatial 
-omics, with a focus on transcriptomics, to elucidate, for 
example, broad patterns of gene expression in tissue dif-
ferentiation, spatially localized disease mechanisms, and 
specific cell types driving disease, in cancer, neurosci-
ence, and reproductive biology.

At a broad level, spatial transcriptomics can be used to 
characterize transcriptional patterning and regulation in 
tissues. For example, in reproductive biology, one goal 
has been to define mechanisms regulating cellular dif-
ferentiation in the endometrium, the mucosal layer of 
the uterus, as it grows and is shed at menstruation [28]. 
Applying Visium and scRNA-seq to human endometrial 
samples revealed patterns of gene expression in healthy 
tissues such as gradients of WNT and NOTCH pathways 
in different epithelial cell states located at specific regions 
of the tissue. Large field-of-view imaging can also reveal 
new structural features in diseased tissues. Recent spa-
tial proteomic studies, targeting 40-50 proteins in human 
tumours, revealed gradients of histological features such 
as grade and morphology that coincided with protein 
gradients in colorectal cancer [29], and immunologi-
cal correlates of complete response to therapy in HER2+ 
breast cancer [30]. Spatial -omics techniques have also 
revealed genomic features in healthy and diseased tissue, 
for example the spatial distribution of cancer clones in 
mouse models of metastasis and primary human cancer 
[26]. Thus, spatial -omics techniques can improve our 
understanding of tissue architecture and its molecular 
underpinning in health and disease.

At a finer level, spatial transcriptomics can reveal tis-
sue neighbourhoods and local features contributing to 
disease. In neuroscience, spatial transcriptomics’s advan-
tages are two-fold. Firstly, it removes the need for tissue 
dissociation of delicate neurons. Secondly, it preserves 
the spatial context of cells. One study employed Spatial 
Transcriptomics to determine gene modules expressed 

in the local vicinity of amyloid plaques in murine Alz-
heimer’s disease model [31]. Using spatial transcriptom-
ics, and contrary to earlier reports, this study suggested 
that proximity to amyloid plaques induced gene expres-
sion programs for inflammation, endocytosis, and lyso-
somal degradation [31]. They also observed changes 
specific to oligodendrocytes, including upregulated 
myelination genes. Finally, these transcriptomic changes 
were also observed in human tissue using a different 
targeted, high resolution spatial transcriptomics tech-
nique, in situ sequencing (ISS). In this case, spatial con-
text revealed differential regulation of immune genes, 
particularly complement genes in the vicinity of amyloid 
plaques, suggesting a novel disease mechanism. A study 
of primary cutaneous melanoma used high-plex, sub-
cellular-resolved, fluorescent protein imaging via CyCIF 
[25] to identify molecular programs associated with 
histopathologic progression [32]. This revealed highly 
localized immunosuppressive niches containing PDL1-
expressing myeloid cells in contact with PD1-expressing 
T cells, often juxtaposed by areas of T cell immunoedit-
ing. Finally, a recent study of distal regions of the healthy 
human lung discovered new types of fibroblast, alveolar, 
and secretory cells [33]. Thus, spatial technologies are 
providing new information on specific tissue niches in 
health and disease.

Spatial transcriptomics has been used to study in detail 
individual cells and cell types. For example, a recent 
human breast cancer study [34] used an unbiased (i.e. 
characterizing expression of every gene in the genome) 
technique, Visium, as well as droplet-based scRNA-seq 
to profile 26 cancer sections of various clinical subtypes 
including ER+ and HER2+. The authors computationally 
identified tissue regions representing tumour cell, stro-
mal, and immune cell regions solely from gene expression 
profiles. The regions agreed with pathologist annotations, 
but interestingly did not require manual intervention for 
annotation; in doing so this provided detailed expression 
profiles for thousands of genes. Second, spatial analysis 
based on a droplet-based scRNA-seq reference, revealed 
PD-L1 and PD-L2-expressing macrophages enriched in 
CD4+ and CD8+ T cell areas, which was associated with 
poor survival in a large patient dataset. Others have used 
highly-resolved multiplexed imaging techniques to probe 
expression of pathways in individual cells, for exam-
ple, a glioblastoma study used CyCIF to identify CD73-
expressing tumour cells colocalizing with microglial cells 
that expressed CD39 [35]. These two molecules act in a 
purinergic signaling pathway to support tumour prolifer-
ation and invasion, with this spatial colocalization associ-
ated with poorer clinical outcome [35].

Overall, spatial transcriptomics is broadly applicable 
to human and mouse tissues in both steady state and 
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disease. Spatial techniques can reveal features from tis-
sue-wide patterning to disease-promoting cell niches and 
even single-cell biology. Until recently, only a few com-
mercial spatial transcriptomics platforms have existed, 
e.g. Visium from 10x Genomics, and GeoMx from 
Nanostring [21], or high-resolution, targeted methods 
like RNAscope [36]. Increasingly, a wider array of tech-
nologies with diverse technical foundations and research 
capabilities are entering the market, which will be dis-
cussed in the next section.

Spatial transcriptomic technologies
Spatial transcriptomics aims to count the number of tran-
scripts of a gene at distinct spatial locations in a tissue. 
Different techniques have different technical parameters. 
The tissue size can vary from a small (<1mm2) section to 
whole organ sections from model organisms; the number 
of genes counted can vary from tens to thousands or even 

the whole genome; a spatial location may range from a 
whole tissue domain, to a large 500 μm × 500 μm region 
of interest, down to a single cell or even finer. With cur-
rent technologies, there is often a trade-off between the 
number of genes profiled and the efficiency of the tech-
nique—the proportion of transcripts of interest that 
are successfully counted, ranging from near 100% to as 
low as 1% [17]. Here, we review different methods for 
conducting spatial transcriptomics and their technical 
parameters.

Broadly, recent reviews [16–18] propose that there 
are two ways to profile transcriptomes while preserving 
spatial information; firstly, by imaging mRNAs in situ 
via microscopy (Fig.  1). This is the foundation of imag-
ing-based spatial transcriptomics technologies. When 
imaging mRNAs in situ there must also be a means of dis-
tinguishing different mRNA species, of which there are 
two [17]. One is hybridization of mRNAs to fluorescently 

Fig. 1  Four different ways to record location and species of mRNA transcripts. Transcripts can be imaged directly in intact tissue by hybridization 
to fluorophore-labelled probes, or their locations can be recorded before they are extracted and undergo NGS. Transcript species can be imaged 
repeatedly with the same probes but different fluorophores to create a gene-specific barcode as in ISH. Short probes can also be imaged to read 
along an amplified transcript and determine its sequence as in ISS. Arrays of spatially barcoded probes can be used to label mRNAs with a sequence 
indicating location before undergoing NGS. Finally, cells or regions of interest can be directly microdissected and their locations recorded before 
their transcriptomes undergo NGS. Created with biore​nder.​com

http://biorender.com
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labelled, gene-specific probes. Hybridization refers 
to polymerization of single-stranded mRNAs to sin-
gle-stranded probes with a complementary sequence. 
This spatial transcriptomics technique is called in situ 
hybridization (ISH). The other is in situ sequencing (ISS) 
of amplified mRNAs, in which transcripts are directly 
sequenced inside a tissue block or section by sequencing 
by ligation (SBL) technology, discussed below. Among 
imaging-based technologies we therefore highlight in situ 
hybridization (ISH)-based methods and in situ sequencing 
(ISS)-based methods (Fig. 1).

Secondly, the other broad method of spatial transcrip-
tomics is to extract mRNAs from the tissue while pre-
serving spatial information and subsequently profile 
mRNA species via next-generation sequencing (NGS) 
techniques (Fig. 1). This is the foundation of sequencing-
based spatial transcriptomics technologies (sequencing 
referring to NGS rather than ISS). Common methods 
of preserving spatial information are (1) via direct cap-
ture and recording of location, such as via microdissec-
tion and microfluidics, and (2) via ligation of mRNAs to 
spatially-barcoded probes in a microarray [17]. Hence, 
among sequencing-based technologies we highlight 
array-based methods and microdissection-based methods 
(Fig. 1).

Below, we review published spatial transcriptomics 
techniques regardless of commercial availability to out-
line and compare technologies, advantages, disadvan-
tages, and applications.

Imaging‑based technologies
Imaging-based spatial transcriptomics use in situ hybrid-
ization of mRNAs with labelled complementary probes, 
detected by microscopy to quantify transcripts. A recent 
review [17] identifies early steps towards these technolo-
gies as beginning in the 1960s, with labelling of nucleic 
acids via complementary probes in 1969 [37, 38], label-
ling of specific sequences in 1973 [39], and fluorescent-
labelling in the late 70s [40, 41]. This in situ hybridization 
(ISH) was first used on a whole organism (Drosophila) in 
1989 [17, 42]. ISH was useful for profiling gene expres-
sion patterns in tissue sections and whole organisms but 
was largely qualitative. A quantitative method for imag-
ing probe-labelled transcripts emerged in 1998, single-
molecule fluorescence in  situ hybridization (smFISH), 
in which each labelled transcript appears as a single spot 
via microscopy [43]. Variations of this have been com-
mercially available for some time, such as RNAscope 
[36]. Modern imaging-based spatial transcriptomics is 
founded on smFISH. As in recent reviews [17, 18], we 
specify below two categories of imaging-based spatial 
transcriptomics: ISH-based, and ISS-based.

Current ISH methods include seqFISH [44], seqFISH+ 
[8], and MERFISH [45]. All three extend upon smFISH by 
employing multiple rounds of hybridization. Instead of 
1:1 fluorophore to gene correspondence, which is impos-
sible for thousands of genes, seqFISH (sequential fluo-
rescence in  situ hybridization) uses a temporal barcode 
of fluorophores in which the same probes are hybridized 
in different rounds of hybridization, but each time with 
a different fluorophore. The combination and order of 
fluorophores is specific to a gene. In contrast, seqFISH+ 
uses primary gene-specific hybridization probes, each 
with multiple binding sites to hybridise secondary fluo-
rophore-labelled probes. In each successive round of 
hybridization, the next binding site is hybridized to a 
fluorescent probe and the whole sample is imaged, with 
the sequence of fluorophores defining the mRNA spe-
cies. seqFISH uses 4 fluorophores, with barcode length n 
depending on the number of genes targeted, to profile up 
to the whole genome in vitro [44]. However, it is limited 
in practice by optical crowding if too many transcripts 
are profiled [8]. seqFISH+ can profile 10,000 genes in a 
single cell using, instead of 4-5 fluorophores, 60 ‘pseudo-
colours’ and labelling only a fraction of transcripts with a 
fluorophore at each hybridization round, avoiding optical 
crowding [8]. Each pseudocolour is derived from a com-
bination of 20 individual hybridization rounds. MERFISH 
(multiplexed error-robust fluorescence in situ hybridiza-
tion) also uses sequential hybridization, but instead of 
a sequence of fluorophores uses a sequence of sites for 
binary-encoded secondary probes: fluorophore-labelled 
or unlabelled [45]. Each hybridization round in any imag-
ing technique is subject to a risk of error; the risk of an 
error for any transcript grows exponentially with each 
round [45]. MERFISH’s binary approach is robust to 
error as it reduces the chance of an irreconcilable error 
from one round preventing identification of a transcript, 
because if an unexpected sequence is determined, it 
can more easily be corrected to an expected sequence 
than if 4 fluorophores were used. Other than error, two 
limitations noted for some ISH-methods are the small 
size of tissue profiled [46], ~1mm2 for seqFISH+, and 
time required to repeatedly image. A recent technique, 
enhanced electric FISH (EEL FISH), electrophoreti-
cally transfers mRNAs from tissue onto glass coverslips 
prior to FISH [46], which condenses tissue depth (z-axis), 
allowing greater signal strength for images captured in 
the x/y plane and reducing imaging time. This is under-
going commercialization as Rebus Biosystems’s Esper 
instrument. Finally, EASI-FISH, or expansion-assisted 
iterative fluorescence ISH, which uses hydrogel expan-
sion of cleared tissue [47] to clear thick tissue, blocks 
up to 300 microns thick, before using a seqFISH-like 
encoding strategy of direct probe hybridization to target 
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mRNAs and imaging [48]. Thus, the technique offers 3D 
resolution of gene expression in tissue. Recent commer-
cial techniques for 3D resolution of gene expression in 
tissue include Nanostring’s CosMx ISH-based instrument 
[22].

ISS methods, instead of using gene-specific probes, 
use probes to profile 1–2 bases at a time of primed and 
amplified transcripts in the tissue. Each base or 2 base 
sequence is linked to a different fluorophore, enabling 
visualization and recording that leads ultimately to the 
identification of each transcript. Primers may be targeted 
or untargeted, with amplification usually via rolling cir-
cle amplification (RCA), which preserves spatial localiza-
tion. The first example of this for spatial transcriptomics 
was released in 2013, before being commercialized as 
Cartana [49], later purchased by 10X Genomics. Car-
tana, a targeted method, used one query base per round, 
with later untargeted techniques, e.g. fluorescence in situ 
sequencing (FISSEQ) and ExSeq (a combination of FIS-
SEQ with expansion microscopy) using two bases per 
round [50, 51]. Finally, STARmap extends methods to 
3D tissue blocks and employs error-robust sequencing 
with error-reduction by dynamic annealing and liga-
tion (SEDAL) with a combination of 1 and 2 query base 
probes [52]. However, imaging in the z-axis may require 
long microscopy times [46], particularly if multiple 
rounds of STARmap to profile different panels of genes in 
the same block are performed.

ISH and ISS methods are useful due to their high spatial 
resolution, which is capable of profiling mRNA at subcel-
lular level. ISH methods detect mRNA more efficiently 
than ISS methods because rolling circle amplification 
can be selective [17]. However, ISS methods can examine 
larger tissue areas because RCA increases signal-to-noise 
permitting lower magnification. Both ISH and ISS-meth-
ods suffer some similar technical limitations, in particular 
a requirement for many hours to days of imaging time on 
a microscope, thus generating terabytes of data. Finally, 
these methods require some trade-off between capture 
efficiency vs number of genes profiled. ISH methods such 
as seqFISH can count almost all target transcripts in a 
sample, but the more genes are profiled, the more rounds 
of hybridization are required and the greater the poten-
tial for compounded errors. Conversely, ISS methods 
such as Cartana require lower magnification settings, 
but RCA is inefficient and non-amplified transcripts are 
not counted, meaning capture efficiency is comparable to 
sequencing methods discussed below [17, 18].

Sequencing‑based technologies
Sequencing technologies capture mRNAs from the 
tissue, synthesize cDNAs, then count gene-specific 
sequences via NGS. Importantly, positional information 

is retained at the point of mRNA capture. An early pre-
cursor technology was laser capture microdissection 
(LCM), in which specific tissue regions were processed 
for transcriptomic profiling via microarrays [17]. This 
was followed in the 2000s by Tomo-seq, in which tissue 
was cryosectioned, with each section undergoing RNA-
seq profiling [53]. Geo-seq is similar, but tissue sections 
are subjected to scRNA-seq [54]. Modern microdissec-
tion techniques include Nanostring’s GeoMx DSP [21] 
with variable spatial resolution down to near single cells, 
in which genes are barcoded with gene-specific photo-
cleavable probes. When UV light is shone on the tissue, 
one region of interest at a time, probes are released and 
sequenced. Due to laser-induced mRNA degradation 
during LCM, and practical considerations such as the 
number of independent library preparations, STRP-seq 
was developed to profile gene expression in 2D across 
consecutive thin sections that are then cross-sectioned at 
different angles and sequenced to reveal gene expression 
patterns [55]. Overall, these microdissection-based tech-
niques provide a useful first set of techniques for profiling 
unbiased, spatially resolved transcriptomes, but they are 
limited by their spatial resolution, degradation of mRNAs 
when LCM is used for microdissection, and by the need 
to process many samples for sequencing [17].

In contrast, an early example of positionally-barcoded, 
‘array-based’ capture of mRNA was spatial transcrip-
tomics (ST) in 2016 [20]. Tissue was mounted over an 
array, such that released mRNA was captured locally 
by spatially-barcoded probes, converted to cDNA, and 
then sequenced. Probes were not gene-specific, as with 
ISH and some ISS methods, instead capturing polyade-
nylated mRNA in an untargeted manner. The spatial 
resolution of array methods is defined by the size of a 
capture area harbouring any given unique positional bar-
code, analogous perhaps to pixel size in photography. ST 
had 100 μm (centre-to-centre) capture areas, or pixels 
[20]. Its commercialization by 10X Genomics, termed 
Visium, improved this to hexagonal 55 μm resolution, 
with plans for 2 μm capture areas in 2022. Other devel-
opments included Slide-seq, which used arrays composed 
of 10 μm-diameter barcoded beads, with barcodes at each 
location determined prior to tissue mounting [56]. A 
version with improved barcoding and enzymatic library 
preparation, Slide-seqV2, recovers ~ 30–50% as much 
transcriptomic information per capture bead as droplet-
based single-cell transcriptomics from 10X Genomics, 
meaning that hundreds or thousands of genes can be 
detected per 10 μm-pixel [57]. High-definition spatial 
transcriptomics (HDST) works similarly to Slide-seqV2, 
with beads confined to wells etched in the slide and a 
spatial resolution of 2 μm [58]. Emerging technologies 
such as Stereo-seq have achieved even lower resolution by 
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labelling with barcoded RCA products deposited in wells 
0.5 μm apart [59, 60]; Stereo-seq and other very high reso-
lution sequencing techniques like PIXEL-seq [61] achieve 
similar mRNA recovery rates per unit area to Visium 
[17]. Stereo-seq is currently undergoing commercial 
development by BGI as its STOmics platform, currently 
in early access. Finally, while most of these techniques are 
designed for fresh frozen tissues stored below the tem-
perature at which mRNAs degrade, some methods such 
as Visium FFPE are compatible with tissues that are fixed 
with formalin and embedded in paraffin wax, although 
this requires extra steps to prepare the tissue for profil-
ing and a different, gene-specific probe-set (although all 
genes in the genome are nonetheless profiled). Indepen-
dently developed techniques to adapt Visium reagents to 
FFPE-preserved tissues are also available but it is unclear 
whether these are in active commercial development 
[62].

An alternative to mounting tissue onto an array is to 
‘print’ the array onto tissue using microfluidic channels, 
an approach used by deterministic barcoding in tissue for 
spatial -omics sequencing (DBiT-seq) [63]. Barcodes are 
deposited along one axis of a tissue section and then per-
pendicular to the first axis. The barcodes are then ligated 
to each other to produce a unique barcode at every point 
on the tissue. Capture area depends on the diameter of 
the microfluidic channel used, which can vary from 
10 μm to 25 μm or 50 μm. This approach can be advanta-
geous in avoiding potential diffusion of mRNA away from 
local capture areas and in allowing protein assessment 
by administering oligonucleotide-tagged antibodies in 
microfluidic channels prior to processing.

A disadvantage of these methods is that capture areas 
do not follow the complex contours of cellular morphol-
ogy. Hence, cells often straddle multiple capture areas, 
contributing mRNA to more than one pixel. Even when 
capture areas are smaller than a single cell (as in HDST), 
they still lack single-cell resolution, since they capture 
mRNA merely from a single-cell-sized area. Recent tech-
niques such as XYZeq [64] and sci-Space [65] have there-
fore employed a spatially-barcoded array not for mRNA 
capture but for intact cell labelling. Intact cells are then 
dissociated and undergo scRNA-seq with the spatially-
recorded barcode. mRNA recovery in these methods 
benefits from using established scRNA-seq technologies, 
with sci-Space detecting a mean of ~ 1200 genes/cell. 
However, they operate at comparatively low spatial res-
olution. sci-Space uses 80 μm-radius spots and XYZeq 
spots have a centre-to-centre distance of 500 μm.

Array-methods have various advantages and dis-
advantages compared to ISH and ISS-methods. They 
often profile larger tissue sections, for example up to 
6.5 mm × 6.5 mm for Visium compared to 0.5mm2 for 

seqFISH. By using NGS rather than microscopy, they 
avoid image-processing pipelines. Also, they are untar-
geted and can profile the whole transcriptome for any 
organism that uses polyadenylated mRNA. However, 
their spatial resolution and mRNA recovery rates are 
lower than ISH and ISS-methods [17]. Finally, by rely-
ing on a fixed array, transcripts from different cells can 
be captured at the same spot, meaning that sophisticated 
analyses are needed to determine what cell types were 
present at each spot.

Other ‑omics
There are now techniques for performing spatial genomic 
and proteomic experiments. In association with tran-
scriptomics, these can complement each other, allow-
ing researchers to trace gene activity from epigenomic 
regulation, to transcription, and finally to translated pro-
tein. Spatial genomics has benefitted from advances in 
large scale smFISH-based technologies which can easily 
be adapted from targeting mRNA to targeting genomic 
DNA. For example, DNA seqFISH+ [66] can report-
edly target ~ 3000 chromosomal loci at a range of reso-
lutions, from 25-kb resolution for a limited number of 
regions up to 1-Mb resolution for the whole genome. 
Imaging locations of specific loci allows the study of 
genomic organization across thousands of cells. The 
authors also demonstrate simultaneous multimodal pro-
filing of mRNA and sequential immunofluorescence for 
nuclear structures such as lamina, speckle, nucleolus, 
and others. Likewise, ISS-methods such as ReadCoor (i.e. 
FISSEQ) have also been adapted to genomics as in situ 
genome sequencing, or IGS, for studying genome struc-
ture in 3D [26]. In this case, the 30 bp reads yielded by 
ISS are unsuitable for studying the genome, which con-
sists of 3 billion bases and contains numerous repetitive 
regions. So, the authors inserted sequencing primers into 
the genome every 100–600 bp with Tn5 transposase, bar-
code insertion and RCA for each 100–600 bp region, in 
situ sequencing of barcodes, and finally ex situ sequencing 
(NGS) of each barcoded 100–600 bp region to generate a 
150-bp read. This allowed each region to be traced to a 
region of the genome and based on its barcode also to a 
spatial area inside a nucleus. Finally, while both the tech-
niques discussed here use imaging techniques, sequenc-
ing-based DBiT-seq’s approach of printing barcodes onto 
tissue prior to NGS can also be used to deliver barcodes 
for spatial labelling of genomic DNA after Tn5 transpo-
sition, allowing spatial profiling of chromatin accessibil-
ity (spatial ATAC-seq or assay for transposase-accessible 
chromatin) [27]. This technology is undergoing commer-
cialization by the company AtlasXomics. Overall, there is 
now a suite of published techniques for studying genome 
structure and accessibility in spatial context, and we 
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anticipate that these techniques will soon become com-
mercially available.

Spatial proteomics offers direct measurements of pro-
tein localization and abundance in space. While tran-
scripts are relatively easily profiled, profiling all proteins 
in a cell or tissue is much more challenging. In fact, the 
term ‘proteomics’ is perhaps misleading since the entire 
repertoire of proteins cannot yet be assessed. Nev-
ertheless, some approaches have been devised, with 
broad approaches such as mass spectrometry analysis 
of fractionated organelles to identify enriched proteins, 
affinity-purification mass spectrometry to identify inter-
actions by profiling proteins bound to their partners, and 
imaging-based proteomics [67]. Here, we briefly discuss 
antibody-dependent methods as an alternative to spatial 
transcriptomics, although it should be noted that reli-
ance on validated antibodies means that only a fraction 
of the proteome can currently be assessed in organisms 
such as humans and experimental mice. Immunofluores-
cence is limited by the number of fluorophores that can 
be distinguished, so recent techniques such as t-CycIF 
and CODEX have used sequential methods to read out 
a barcode for an antibody [24, 25]; CODEX reads out 
antibody-conjugated DNA barcodes with fluorescent, 
hybridizing nucleotides, demonstrated with a 30-anti-
body panel. Mass cytometry uses antibodies labelled with 
metals, which are profiled with cytometry by time-of-
flight. This is advantageous because it avoids problems of 
tissue autofluorescence and allows detection of all molec-
ular targets at once. A recent method, multiplexed ion 
beam imaging by time of flight (MIBI-TOF), and imaging 
mass cytometry (IMC) have resolutions of 1 μm or less 
when profiling 36–40 proteins [23, 68]. Spatial proteom-
ics techniques are increasingly being applied in research, 
such as in a recent study to characterize differential 
spatial activation and migration of macrophages with 
matrix-assisted laser desorption/ionization mass spec-
trometry imaging (MALDI-MSI) [69]. Overall, we antici-
pate that spatial proteomics will grow in prominence, 
although it does not yet yield genome-scale information.

A guide to designing a spatial transcriptomic 
experiment
We have so far reviewed various spatial transcriptomics 
technologies, each with different strategies for captur-
ing transcriptomes and preserving spatial information. 
These exhibit different technical capabilities, such as the 
size of the area profiled, number of genes that can be pro-
filed, spatial resolution, and mRNA capture rate. Below, 
we review and frame these capabilities in the form of a 
guide for those considering their first spatial transcrip-
tomic experiment (Fig.  2). Firstly, we discuss biological 
models and tissues amenable to spatial transcriptomics. 

Secondly, we discuss the practicality of different spa-
tial transcriptomics techniques for different experimen-
tal aims. Thirdly, we discuss elements of experimental 
design such as number of samples, controls, and other 
considerations like paired histological imaging, paired 
protein detection, and matched single-cell RNA-seq ref-
erences. Finally, we focus on a handful of techniques that 
are commercially available or nearing availability at the 
time of writing, representing the four classes of spatial 
transcriptomics techniques identified above: MERSCOPE 
(based on MERFISH ISH technology [45]), Esper (ISH-
based) [46], Xenium (based on Cartana [49] and FISSEQ 
[50] ISS technologies), Visium (based on spatial tran-
scriptomics array technology [20]), STomics (array-based) 
[60], GeoMx (microdissection-based) [21], and CosMx 
(ISH-based) [22].

Can I use spatial transcriptomics?
Any intact tissue containing viable mRNA is suitable for 
spatial transcriptomics. As we have demonstrated, spa-
tial transcriptomics techniques are useful in a variety of 
biomedical science subdisciplines such as neuroscience, 
cancer, immunology, and developmental biology. They 
also suit a variety of experimental designs ranging from 
atlas generation, untargeted hypothesis generation, and 
hypothesis testing. However, some initial considerations 
about the suitability of different tissues and models for 
different techniques must be made.

First, different tissues have different properties and 
spatial transcriptomics techniques must in some cases 
be optimized—that is, tailored—to a particular tissue. An 
advantage of established technologies such as Visium is 
the extensive list of optimized tissues covering most sys-
tems in human and mouse, as well as select tissues from 
rat and zebrafish. Optimization might aim to determine, 
for example, the optimal duration of tissue permeabiliza-
tion for mRNA release. In Visium, optimization requires 
extra reagents and hands-on time but does not require 
more sequencing. Instead, conversion of mRNA to cDNA 
takes place on a Visium slide and cDNAs are then fluo-
rescently labelled and imaged after a range of different 
permeabilization times to determine which time releases 
the most cDNA with the least lateral diffusion. Optimiza-
tion is not a consideration for some methods like Visium 
FFPE. It remains to be seen whether other technologies 
nearing commercial release will require optimization. 
In addition to optimization, human brain tissues may 
exhibit autofluorescence due to lipofuscin, an age-related 
lysosomal residue in neurons which has a detrimental 
effect for imaging-based techniques [46, 70]. Some com-
mercial methods may require extra processing steps to 
reduce autofluorescence.
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Second, some structures and genes might be difficult 
to detect with spatial transcriptomics. For example, rare 
cells will be difficult to study via methods like Visium 
where a cell cannot be profiled individually but its tran-
scriptome is mixed with surrounding cells. Small struc-
tures consisting of only a handful of cells could also pose 
a challenge. Finally, some genes such as transcription 
factors may be less transcribed than others, even though 
their function might have profound effects. Thus, meth-
ods with low capture efficacy might be ill-suited for stud-
ying spatial patterns of expression for lowly transcribed 
genes. Overall, we recommend that if studying rare fea-
tures, researchers carefully select a suitable technique 
and perform experiments such as immunohistochem-
istry in parallel tissue sections to ensure the presence of 
the desired feature.

Third, the quality of tissue may affect the choice of 
whether to employ spatial transcriptomics. Previously, 
few techniques were capable of profiling preserved tis-
sues such as formalin-fixed, paraffin-embedded tissues, 
as opposed to fresh-frozen tissues stored at low tem-
perature to prevent mRNA degradation. However, this 
is no longer a limitation for many technologies. A more 
important consideration now is mRNA quality in pre-
served tissue. Over time, RNA degrades and fragments. 

A common measure of fragmentation is DV200—the 
proportion of RNA fragments over 200 nucleotides in 
length. For Visium FFPE, a DV200 of ≥ 50% is recom-
mended. While this often correlates with the age of a 
tissue block, suboptimal storage can also accelerate 
mRNA degradation and DV200 testing is recommended 
to determine sample suitability. For degraded (DV200 
< 50%) FFPE tissues or delicate fresh tissues, one rep-
licate may be insufficient, particularly for array-based 
methods. This is because low DV200 may result in poor 
sequencing output. Furthermore, all commercial or near-
commercial spatial transcriptomics methods use tissue 
sections, which are susceptible to tearing and distortion 
when placing on a slide or array for profiling. Incorporat-
ing replicates may improve the likelihood that a reliable 
sample is obtained. For some methods, researchers can 
easily obtain (although at a cost) more replicates by plac-
ing more tissue sections on a slide; for example, a Visium 
slide contains four separate arrays for profiling four dif-
ferent tissue sections simultaneously.

Fourth, the objective, design, and models employed 
in the experiment are paramount. If the objective is 
hypothesis testing—e.g. determining the spatial expres-
sion patterns of a handful of target genes or pathways 
in high resolution—then a targeted, high-resolution 

Fig. 2  Design considerations for spatial transcriptomics experiments. Spatial transcriptomics technologies can satisfy a variety of experimental 
aims if the correct platform and design are chosen. Here, we have outlined a simple distinction between hypothesis testing—highly targeted 
experiments to examine regulation of defined genes and pathways—and hypothesis generation, which aims to reveal mechanisms without bias. 
Thus, we suggest hypothesis testing is best suited to efficient, targeted, and spatially-resolved ISH- and ISS-based methods. Conversely, hypothesis 
generation is best served by unbiased array- and microdissection-based methods that generate large volumes of data. However, researchers should 
note that there are a range of other considerations like the tissue type, quality of mRNA in the tissue, and amenability to generating a single-cell 
reference dataset that will also affect the choice of method or design
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method is required, such as imaging-based spatial 
transcriptomics or perhaps spatial proteomics. Con-
versely, if the aim is hypothesis generation—examining 
unbiased, whole transcriptomes—then an untargeted 
method is preferred. Experimental design also affects 
whether spatial transcriptomics is appropriate. For 
example, if many samples are desired, an imaging-based 
spatial transcriptomics technique might be impractical 
due to the amount of imaging time required. Published 
ISH techniques, while efficient at detecting mRNA 
and spatially highly resolved, can take weeks to image 
a large dataset [46, 71]. While we anticipate that tech-
niques like Esper will have lower imaging time with 
no user input required, it will still be an obstacle for 
experiments with multiple samples to be imaged con-
secutively. Likewise, while sample preparation can be 
parallelized for sequencing methods like Visium, costs 
will accrue with many samples not only for spatial tran-
scriptomic reagents but also for NGS and for generat-
ing companion scRNA-seq datasets (discussed below). 
Therefore, spatial transcriptomics techniques are cur-
rently not suited to experiments involving many sam-
ples, for example longitudinal assessments of tissues 
from multiple experimental animals. Because of this 
limitation, we suggest that spatial transcriptomics is 
best applied either to well-characterized, reproducible 
experimental systems, or to demonstrably representa-
tive samples where human tissue is used. For example, 
a parallel tissue section could be taken from the tissue 
of interest and profiled with immunohistochemistry to 
determine its suitability for spatial transcriptomics.

Having considered, tissue type, sample integrity and 
experimental objectives, multiple technical parameters, 
outlined below, should be considered:

•	 Sample number: For ISH and ISS-methods, e.g. 
MERSCOPE, Esper, Xenium, each sample is individu-
ally, repeatedly imaged using a specialist instrument, 
meaning that only one sample is generally assessed 
at a time. In array-methods, multiple sections can 
be assessed on one array, e.g. 4 sections per slide for 
Visium. (All methods discussed here used compara-
ble tissue section dimensions, > 1 cm × 1 cm)

•	 mRNA capture efficiency: ISH-methods, e.g. MER-
SCOPE and Esper, typically capture more of the 
available target mRNAs than ISS-based methods or 
sequencing-based methods. Efficiency can range 
from nearly 100% in ISH-based methods to as low as 
1–2% for some array-based methods

•	 Spatial resolution: ISH and ISS-methods can achieve 
subcellular resolution. In sequencing-based meth-
ods, mRNAs are released and collected on an array 
of fixed spatial resolution or in an ROI larger than a 

single cell. To date, only STomics achieves compara-
ble resolution to ISH and ISS-methods (< 1 μm)

•	 Number of genes profiled: MERSCOPE profiles up to 
1000 genes, and Esper up to 5000, array-based meth-
ods are untargeted, therefore providing genome-scale 
coverage

Based on these factors, we suggest that hypothesis test-
ing experiments are best suited to ISH- and ISS-methods 
like MERSCOPE, Esper, and Xenium. An untargeted but 
high-resolution technology such as CosMx may also be 
suitable. For example, a validation experiment to con-
firm differential gene regulation relative to a spatial fea-
ture does not require whole-transcriptome profiling but 
would benefit from the increased spatial resolution and 
mRNA capture efficiency of ISH- and ISS-based meth-
ods. Conversely, unbiased hypothesis generation and 
atlas generation experiments, perhaps with large tis-
sue areas, are best suited to array-based methods like 
Visium and STOmics. For example, a discovery experi-
ment aiming to uncover new pathways in a previously 
uncharacterized tissue would benefit from unbiased, 
whole-transcriptome profiling.

What instruments are needed?
All spatial transcriptomics techniques require instrumen-
tation. For ISH and ISS-methods, the primary instrument 
will be an imager, whereas array methods require an 
NGS sequencing platform. MERSCOPE and Esper pro-
vide bespoke imaging instrumentation (presumably also 
the case for unreleased Xenium) and software to handle 
preprocessing steps for image analysis (discussed below). 
Some sequencing-based methods require instruments 
for tailored mRNA capture—e.g. GeoMx and CosMx—
whereas Visium requires no specific instrumentation at 
all except access to NGS. While many of the techniques 
discussed here are in active commercial development, 
not all of them are yet available, so comparative capabili-
ties and costs of each instrument are not clear.

Incorporating scRNA‑seq and staining
Designing a spatial transcriptomic experiment requires 
careful consideration of technical and experimental 
parameters to ensure that aims are met. However, in 
this section, we will discuss some other data types that 
increase the utility of a spatial experiment.

Most spatial transcriptomics methods exhibit either 
low mRNA detection efficiency—around 10% or less of 
mRNAs for array-based methods—or smaller targeted 
gene panels. For example, MERSCOPE, profiles up to 
500 genes or about 2.5% of the genome (albeit at high 
sensitivity). Furthermore, array-based methods use fixed 
mRNA capture areas and therefore do not have cellular 
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resolution, even if the capture area is smaller than a cell, 
because mRNA may derive from multiple cells overlap-
ping the capture area. Even for imaging-based methods 
with single mRNA resolution, single-cell transcriptomes 
must usually be computationally reconstructed dur-
ing analysis [17]. Therefore, many spatial techniques are 
not truly ‘single cell’ and can benefit from a companion 
single-cell RNA sequencing dataset from the same tissue. 
For targeted technologies, an unbiased single-cell refer-
ence can be used to infer expression of genes that were 
not measured spatially, a task accomplished by numerous 
published bioinformatic tools, or for assigning individu-
ally imaged mRNAs to single cells. For array-based meth-
ods, a single-cell reference is often used to infer what cell 
types, and in what proportions, contributed to the mix-
ture of mRNA in each capture area; this process is called 
deconvolution. Second, in some cases, the reference may 
be used to impute expression of genes that were poorly 
profiled by spatial technology. Overall, when design-
ing a spatial transcriptomic experiment, we recommend 
that researchers working with tissues amenable to disso-
ciation consider generating a reference single-cell RNA-
sequencing dataset. This may not be possible for delicate 
tissues such as human brain.

Next, we recommend that researchers consider 
whether their selected spatial transcriptomics tech-
nique is compatible with auxiliary tissue staining. 
Staining, for example for nuclei, is advantageous 
for techniques with subcellular resolution such as 

imaging-based methods. In these methods, the loca-
tions of individual mRNAs are recorded, but the loca-
tions and extent of whole cells are not. Staining for 
nuclei, for example with DAPI, or for cell boundaries 
can help to infer the locations of cells and to computa-
tionally reconstruct single-cell transcriptomes from the 
observed mRNAs. We discuss methods for computa-
tionally identifying single-cell transcriptomes from data 
with subcellular resolution, or segmentation, below. 
Furthermore, some bioinformatic techniques such as 
stLearn can leverage stain imaging to identify tissue 
domains and features in tandem with gene expression 
data from sequencing-based techniques. Currently, 
only Visium and GeoMx offer paired auxiliary staining, 
e.g. H&E, among sequencing-based techniques.

A guide to spatial transcriptomic analyses
Techniques for analysing spatial transcriptomic data 
have proliferated over recent years. They serve a vari-
ety of purposes, including preparing, or ‘pre-process-
ing’ data for analysis (e.g. aligning microscopy images 
of labelled mRNAs), conducting biological analyses 
(e.g. spatial differential gene expression), combining, 
or ‘integrating’ with scRNA-seq data, or inference of 
cell-cell interactions (Fig. 3). Below, we review pre-pro-
cessing steps and provide guidance on some common 
analyses, with recent examples of each.

Fig. 3  Typical structure of spatial transcriptomics analysis. Data are first preprocessed using technique-specific methods and algorithms. 
Normalization methods account for technical variation. Downstream analyses may be performed with a range of general-purpose transcriptomic 
analysis packages or with specialized methods for spatial transcriptomics. Created with biore​nder.​com

http://biorender.com
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Pre‑processing spatial transcriptomic data
One of the first analytical tasks to perform is to prepare 
spatial transcriptomic data for analysis, known as pre-
processing. This usually serves to convert raw imaging 
or sequencing data to a matrix of transcript counts per 
gene by spatial capture areas, which we will refer to as 
gene-spot matrices (in multi-omic methods, genes may 
be accompanied by protein counts), with specific meth-
ods required for data generated by different techniques 
(Fig. 3).

Typical ISH- and ISS-based methods will read out a 
sequence or gene-specific barcode over multiple hybridi-
zation rounds, so the images are uninformative on their 
own. There are several steps required to convert these 
images to a gene-spot matrix. First, images are filtered to 
remove background and noise. Second, images from dif-
ferent hybridization rounds are aligned so that the same 
pixel location or spot in each one represents the same 
transcript. Third, signals at each spot are combined into 
a barcode or sequence that can be used to match spots to 
genes, with signals that do not match any gene rejected. 
Finally, an optional step is segmentation, discussed below. 
Tools for pre-processing ISH or ISS-based transcriptom-
ics are often targeted to a particular technique, e.g. MER-
FISH or seqFISH, but the recent package starfish provides 
a well-documented and more general-purpose pipeline 
[17, 72]. Like 10X Genomics’s pre-processing pipelines 
for data generated via their single cell and spatial tran-
scriptomics platforms, we expect that imaging-based 
platforms such as MERSCOPE, Esper, and Xenium will 
soon receive dedicated pre-processing pipelines.

For Visium, the only commercially available array-
based method, 10X Genomics has published a pre-
processing pipeline—Space Ranger—that performs 
pre-processing with minimal user input. To convert 
sequencing data to spatial transcriptomic data, it accepts 
raw sequences of captured mRNAs and microscopy 
images of the profiled tissue, performs alignment of reads 
to the genome, matches read barcodes to spatial locations 
in the array, and counts the number of gene transcripts at 
each spatial location to produce a gene-spot matrix.

A final pre-processing step in some methods is segmen-
tation. The aim of segmentation is to reconstruct single-
cell transcriptomes from spatial data with subcellular 
resolution. For example, segmentation could be used with 
imaging-based data from methods such as MERSCOPE, 
Esper, or Xenium to reconstruct single-cell transcrip-
tomes by inferring from transcript species and cluster-
ing which areas of the image likely encompassed one cell. 
Similar approaches can be used with subcellular array-
based data, e.g. STOmics, which generates sub-micron 
resolution data. Thus, segmentation transforms a gene-
spot matrix into an inferred gene-cell matrix. There are 

numerous published segmentation methods using differ-
ent approaches such as manual segmentation, prior infor-
mation from nuclear staining [73], deep neural networks 
[74], gene expression signatures from true single-cell 
references generated by scRNA-seq [73, 75], and some 
workflows such as spot-based spatial cell type analysis 
by multidimensional mRNA density estimation (SSAM) 
avoid segmentation entirely [17, 76]. Perhaps one reason 
for the diversity of approaches is that cell segmentation is 
a complex and computationally expensive process, espe-
cially when many cell types are present [73]. Where seg-
mentation is required, we recommend approaches that 
can leverage prior information from nuclear staining and 
scRNA-seq references, such as Baysor [73]. As with other 
pre-processing steps, we anticipate that commercial plat-
forms such as MERSCOPE, Esper, and Xenium will ship 
with built-in segmentation pipelines.

One final step in pre-processing the data is to apply 
statistical transformation to the gene-spot matrix to 
account for differences in mRNA capture rate across the 
tissue. This is an important step for data generated via 
all techniques but especially those with lower or variable 
capture rates such as array-based methods. In scRNA-
seq, the process of accounting for differences in mRNA 
capture between dissociated cells is called normaliza-
tion, and the same terminology is applied in spatial tran-
scriptomics. The most common normalization procedure 
is to divide each cell in a gene-spot matrix by the spot 
total, so that every spot has the same number of counted 
mRNAs in the processed matrix. This approach is used 
by general-purpose analysis packages such as Scanpy, 
Giotto, and Seurat. However, this approach assumes 
that all regions of the tissue have the same underlying 
mRNA abundance, or ‘library size’, an assumption that 
may not be true for tissues with regions of dense nuclei 
juxtaposed with regions of sparse nuclei and thus lower 
mRNA abundance. Seurat offers the method sctrans-
form, which normalizes not by total library size of each 
cell’s transcriptome but based on one group of genes at a 
time, with each group selected so that all the genes have 
similar abundances. Thus, the approach allows variation 
in total library size rather than enforcing it as a con-
stant metric. This is likely to be favourable for tissues 
with underlying variations in mRNA abundance driven 
by differential cell density. Also, in contrast to standard 
normalization, spatial and morphological expression 
(SME) from the stLearn python package presents a novel 
method for normalization which smooths library sizes 
in spots or segmented cells based on the library size of 
nearby spots within a radius d and their morphological 
similarity inferred by deep learning of features from his-
tological images while preserving larger-scale variations 
in mRNA abundance across the tissue [77]. Finally, one 
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report suggests that unnormalized (‘raw’) data are also 
informative and preserve information about cell densities 
[78], but their suitability for downstream analyses is not 
assessed so we recommend either library size normaliza-
tion or specialized techniques such as sctransform and 
SME depending on the library size variation across the 
sample.

Overall, several steps are required to convert raw image 
or sequencing data to processed, interpretable spatial 
transcriptomic data. The steps required vary between 
technologies, but there are tools to handle each of them, 
often published as a complete pre-processing pipe-
line such as in starfish for imaging-based data or Space 
Ranger for Visium data, as well as other method-specific 
pipelines that we anticipate will be released on instru-
ment computers as in MERSCOPE. The final step men-
tioned above, normalization, is often handled by separate 
pipelines for downstream analysis, a broad term encom-
passing all analysis techniques that aim to generate or 
test biological hypotheses with the data. Below, we will 
review some common pipelines for downstream analysis 
and examples of analyses specific to spatial data.

Generalized toolkits for downstream analysis
There are a range of different downstream analyses for 
spatial data, with different aims and different inputs. 
Spatial data may comprise raw gene-spot matrices, nor-
malized matrices, or accessory data such as inferred cell 
types and tissue domains to histological images taken 
before transcriptomic profiling. To provide a unified for-
mat for these data, and to simplify and standardise spatial 
analysis, utility packages such as Giotto, STUtility, Seurat, 
scanpy, stLearn, and squidpy have been developed [77, 
79–83]. Among their shared aims are, first, to provide 
a structure for spatial data matrices and for associated 
accessory data generated through downstream analysis. 
The latter might include dimensionality reductions such 
as UMAP, unbiased clustering results, annotations, and 
imputation, mapping or deconvolution results. A second 
aim is to provide functions to complete all those pro-
cesses. Third, they provide functions for data visualiza-
tion, combining spatial transcriptomic data with overlays 
such as microscopy data [81, 83]. Finally, they provide 
standardized workflows for quality control (e.g. filtering 
poorly expressed genes), pre-processing, and specialized 
analysis techniques for spatial data.

For a researcher selecting an analysis package, they 
most obviously differ in terms of capabilities, size of user 
communities, and the uptake of their data formats in 
the larger bioinformatics community. Currently, Seurat 
(in R and cited > 4700 times at the time of writing) and 
scanpy (in python and cited > 1600 times at the time of 
writing) benefit from extensive documentation generated 

over years, from large user communities, and from many 
packages that recognize or even operate directly on their 
formats (SeuratObject and anndata, respectively). Con-
versely, Giotto (in R) and stLearn (in python) benefit 
from workflows developed specially for spatial transcrip-
tomics and a greater variety of built-in tools for spatial 
downstream analyses. These include spatially variable 
gene identification, deconvolution, and cell-cell inter-
action inference, all outlined in the following section. 
Finally, STUtility and squidpy provide extended spatial 
analysis functions for Seurat and scanpy, respectively. 
STUtility focusses on analysis of multiple spatial tran-
scriptomic datasets and contains features for annotat-
ing tissue regions, alignment of parallel 2-dimensional 
spatial datasets, and visualization of resulting 3-dimen-
sional datasets. Squidpy likewise extends Scanpy and 
is from the same authors but provides a depth of func-
tionality akin to Giotto with specialized data structures, 
tools for performing spatial statistics, inferring intercel-
lular interactions, and visualizing data. Finally, STUtility, 
squidpy, and stLearn provide functions for analysing aux-
iliary image data. This can be challenging as the images 
are large and require significant memory to work with. 
STUtility works with H&E images generated alongside 
Visium data and transforms and aligns low resolution 
versions of these images before applying the transforma-
tions to higher resolution images; it uses these data for 
alignment of sequential sections and regional annotation. 
In contrast, squidpy provides a format for image data, 
ImageContainer, with lazy loading rather than reduced 
resolution to conserve memory, as well as a suite of anal-
yses to make use of these data. Finally, stLearn provides 
functions for incorporating image data with gene expres-
sion data such as in the normalization step (discussed in 
the previous section). Overall, we recommend Seurat and 
Scanpy for lay biomedical researchers due to their exten-
sive documentation and large user communities and 
recommend Giotto, stLearn, STUtility, and squidpy for 
researchers seeking more specialized spatial transcrip-
tomics analysis pipelines.

Identification of spatial features
An initial goal for many scRNA-seq analyses is to 
define the cell types. An analogous step in spatial tran-
scriptomics analysis might be the identification of spa-
tial features such as anatomical and microanatomical 
structures. To identify structures, existing algorithms 
can group transcriptomically similar spots or cells in an 
unbiased way to reveal spatial patterns of gene expres-
sion. However, newer methods have been developed to 
specifically leverage spatial data and identify features 
like tissue domains. Examples include BayesSpace, a 
Bayesian statistical tool that uses a clustering approach, 
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albeit with prior spatial information, to group tran-
scriptomically similar, proximally located spots. Addi-
tionally, it can perform resolution enhancement by 
reassigning gene counts from whole spots in array-
based data, e.g. Visium, to finer sub-spots with the use 
of spatial prior information from nearby spots [84]. 
Similarly, XFuse combines auxiliary histology (usu-
ally H&E) images with gene expression data via deep 
data fusion of spatial features to infer gene expression 
between spots in an array [85]. Other algorithms for tis-
sue domain identification include stLearn [77], which 
uses SME normalization with inference from histology 
images via deep learning (see pre-processing methods 
above) to infer clusters and then subclusters where 
there is spatial segregation, and HMRF (hidden Markov 
random field) [86], which assigns spots or cells to tis-
sue domains as a function of their gene expression, and 
the domain in which neighbouring cells reside, which 
is included in the Giotto analysis package. Overall, the 
choice of method will depend on the data available; for 
array-based methods with low resolution, BayesSpace 
might be favourable for resolution enhancement, but 
if histological images are available, then stLearn will be 
powerful for its ability to integrate them in its analysis 
of spatial transcriptomic data.

Alternatively, rather than identifying heterogene-
ity among cells and spots across the sample, one might 
search directly for genes that show biased, non-random 
spatial expression patterns. This can quickly elucidate 
anatomical features if known marker genes are detected. 
Numerous methods for detecting genes that vary spa-
tially have emerged over the past few years, with some 
implemented in popular tools such as Seurat as the func-
tion FindSpatiallyVariableGenes which estimates spa-
tial autocorrelation with Moran’s l over binned groups 
of spots rather than over individual spots for improved 
speed; in Giotto as BinSpect-k means or BinSpect-rank, 
both of which use (separate) techniques to binarize 
expression data and examine the correlation of a gene’s 
expression in one spot with that in neighbouring spots 
to estimate a p value; or as standalone analysis tools 
such as trendsceek, SPARK, and SpatialDE in python 
[81, 86–89]. Notably, Giotto’s methods for spatially vari-
able gene selection provide improvements in speed over 
some older methods such as SpatialDE, trendsceek, and 
SPARK, a key concern given the continuing trend of 
larger datasets in spatial transcriptomics [79]. sepal is a 
more recent method which takes a novel approach, simu-
lating the time taken for observed transcripts of a single 
species to diffuse across the sample to a random distribu-
tion, with this metric inferring the degree of spatial struc-
ture underlying the species’ distribution [90]. Binning 
approaches may be used to improve speed but this could 

result in loss of spatial detail depending on the size of the 
bins used.

Deconvolution
An important consideration for data generated by array 
methods with non-cellular resolution is that more than 
one cell type can contribute to each spot. This is particu-
larly important for Visium, since its spatial resolution of 
55 μm means each spot may capture many cells, the exact 
number depending on the tissue. The process of iden-
tifying and quantifying the relative contribution from 
each cell type in a capture spot is known as deconvolu-
tion. Numerous tools have been developed to perform 
this task, usually from an scRNA-seq reference. An early 
example was NMFreg, an approach that decomposed spot 
transcriptomes into contributions from cell types by non-
negative matrix factorization, developed for deconvolu-
tion of Slide-seq (V1) data [56]. SPOTlight also utilizes 
non-negative matrix factorization to estimate cell type 
proportions [91]. This was followed by robust cell type 
decomposition (RCTD), which used a different statisti-
cal model to explain gene counts in each spot as a mix-
ture of cell type contributions, unobserved platform—e.g. 
single-cell or spatial transcriptomics—effects, and spot-
specific mRNA sampling effects, allowing it confidently 
assign cell types to spots much more frequently than in 
NMFreg (86.9% of spots vs 24.8%) [92]. Because of the 
similar data structures between Slide-seqV2 and Visium 
data, these methods are also applicable to the latter. 
Alternatives include stereoscope, cell2location, Tangram, 
and destVI [93–96]. stereoscope, like RCTD, models the 
composition of each spot’s transcriptome as a mixture of 
transcripts from different cells with additional platform-
specific effects. Cell2location and destVI are both con-
tained within the scVI analysis framework and use deep 
learning approaches to achieve relatively high speed, as 
does Tangram. destVI is unique in that compared to the 
other tools discussed, which deconvolute spatial data 
from a reference of discrete cell types, it maps continu-
ous cell types. In effect, this allows it to map not only a 
known reference cell type but also variation within that 
cell type. Tangram also incorporates imaging data such 
as H&E staining during its deep learning process to first 
segment cells in the image and to use this as the basis 
for the number of cells inferred through deconvolution. 
Finally, utility packages such as Seurat and Giotto provide 
deconvolution methods [79, 81]. Giotto’s methods, PAGE 
and RANK, perform comparably in accuracy to RCTD 
[79]. Thus, to deconvolute spatial transcriptomic data not 
of single-cell resolution requires access to a ‘ground truth’ 
scRNA-seq dataset. When selecting a deconvolution 
technique, we suggest that users consider the run time 
as this step can require significant computing time and 
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power. Recent benchmarking studies will also help users 
select an algorithm [97].

Imputation and mapping single cells
Some computational methods aim to combine spatial 
transcriptomic and scRNA-seq, not for reasons of decon-
volution, but to infer where genes, while not detected, 
may actually have been expressed. This allows users to ‘fill 
in the blanks’ where spatial transcriptomic data’s targeted 
nature or, for some approaches, low sensitivity means a 
gene is not detected, a task known as imputation. Con-
versely, some methods take the opposite approach, using 
spatial datasets to infer spatial mappings for scRNA-seq-
derived single-cell transcriptomes, for example in Visium 
where single-cell measurements cannot be made.

An early integration approach was Seurat (prior to 
becoming a general-purpose analysis package), which 
maps single-cell transcriptomes to spatial coordinates. 
Seurat maps cells by expression of ‘landmark genes’, infer-
ring probabilities that a cell could have originated from a 
tissue location whose landmark genes match its own [98, 
99]. Since then, multiple other computational approaches 
have been devised. More recent mapping approaches 
include SpaOTsc, which relies on an optimal transport 
model to map single-cell transcriptomes to spatial data 
and also includes functions for inferring ligand-receptor 
interaction [100]. Imputing approaches include deep 
learning-based gimVI which learns an alignment between 
scRNA-seq and spatial transcriptome data, included 
in the python-implemented scRNA-seq analysis pack-
age scVI; Tangram, which uses a mapping step to inform 
the imputation process; and spatial gene enhancement 
(SpaGE), which aligns spatial and scRNA-seq data by 
domain adaptation to inform imputation [96, 101, 102]. 
gimVI and Tangram are deep learning-based methods, so 
the choice of method may depend on whether GPU com-
puting resources are available to researchers (they can 
be performed on CPUs, albeit with greater computing 
time). Mapping of single-cell transcriptomes will likely 
be useful for non-single-cell data such as unsegmented 
imaging-based data or data from any sequencing-based 
method. Conversely, imputation will be useful for infer-
ence of unmeasured genes in targeted spatial transcrip-
tomic data.

Cell‑cell interaction inference
A common goal in analysing transcriptomic data is 
to infer intercellular interactions based upon expres-
sion of ligands and receptors [9]. Typically, a cell-cell 
interaction inference tool combines a database of genes 
encoding proteins proven to participate in intercellular 
interactions, with an algorithm to infer the probability of 
an interaction from the gene expression data. There are 

now several examples of these tools for scRNA-seq data 
including CellPhoneDB v.2.0, iCellNet, CellChat, and Sin-
gleCellSignalR [103–106]. While effective for single-cell 
and some spatial data, these tools cannot leverage spa-
tial data when it is available. Recently, several techniques 
have been developed for this purpose including SpaOTsc, 
cell2cell, MISTy, and CellPhoneDB v.3.0 and one imple-
mented in the general-purpose spatial transcriptomics 
analysis package Giotto [28, 79, 100, 107–109]. Some of 
these techniques, such as SpaOTsc, can also infer differ-
ential gene expression with proximity to a signal-sending 
cell. More recent methods include graph neural network-
based NCEM, or node-centric expression model, which 
takes as input segmented data from imaging-based spa-
tial transcriptomics or proteomics and can be used to 
infer which cells are signal senders or receivers, as well as 
to infer domains in the tissue [110], and spatial variance 
component analysis or SVCA, which uses a Gaussian 
process-based framework to decompose gene expression 
variation across spots into intrinsic effects, environmen-
tal effects, and intercellular signalling effects [111]. We 
favour these recent tools for multipurpose analyses and 
in SVCA for its ability to model intrinsic gene expression 
perturbations, although users might also find built-in 
databases useful as in one author’s CellPhoneDB v.3.0.

A range of techniques are required to infer biologi-
cal processes from spatial transcriptomics: technique-
specific methods to prepare data, to identify regions 
corresponding to single cells and tissue regions from 
transcriptomes alone, to infer genes that may not have 
been profiled by spatial transcriptomics but instead by 
another modality, and to identify spatially-mediated biol-
ogy such as cell-cell interaction. Here, we have reviewed 
examples of tools for common spatial transcriptomics 
analyses; while we have commented on where these tools 
might be useful, we anticipate that many more, possibly 
more advanced, tools will be published beyond the time 
of writing.

Conclusions
Selecting a spatial transcriptomic method from those 
commercially available at the time of writing requires 
decision-making based on parameters such as spa-
tial resolution, tissue area, mRNA detection sensitiv-
ity, and number of genes profiled. We have proposed 
a framework for selecting the method that best aligns 
with research objectives along with experimental design 
considerations like number of samples required and 
other data modalities that can complement spatial tran-
scriptomics. Given the fast pace of technology develop-
ment, we expect new methods will appear that combine 
their best aspects to provide the ideal technology, that 
of single-cell spatial resolution and genome-scale gene 
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expression profiling at high sensitivity. In the meantime, 
improved multi-omics, auxiliary stains, and single-cell 
RNA-seq references will allow more powerful and flex-
ible bioinformatic analyses. Recent advances in assaying 
FFPE tissues will also dramatically increase utility in clin-
ical and biomedical research.
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