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Hepatocellular carcinoma (HCC) represents one of the most frequent type of primary liver

cancers. Decorin, a small leucine-rich proteoglycan of the extracellular matrix, represents

a powerful tumor cell growth and migration inhibitor by hindering receptor tyrosine

kinases and inducing p21WAF1/CIP1. In this study, first we tested decorin expression in

HCCs utilizing in silico data, as well as formalin fixed paraffin embedded tissue samples

of HCC in a tissue microarray (TMA). In silico data revealed that DCN/SMA mRNA

ratio is decreased in HCC compared to normal tissues and follows the staging of the

disease. Among TMA samples, 52% of HCCs were decorin negative, 33% exhibited

low, and 15% high decorin levels corroborating in silico results. In addition, applying

conditioned media of hepatoma cells inhibited decorin expression in LX2 stellate cells

in vitro. These results raise the possibility that decorin acts as a tumor suppressor

in liver cancer and that is why its expression decreased in HCCs. To further test the

protective role of decorin, the proteoglycan was overexpressed in a mouse model of

hepatocarcinogenesis evoked by thioacetamide (TA). After transfection, the excessive

proteoglycan amount wasmainly detected in hepatocytes around the central veins. Upon

TA-induced hepatocarcinogenesis, the highest tumor count was observed in mice with

no decorin production. Decorin gene delivery reduced tumor formation, in parallel with

decreased pEGFR, increased pIGF1R levels, and with concomitant induction of pAkt

(T308) and phopho-p53, suggesting a novel mechanism of action. Our results suggest

the idea that decorin can be utilized as an anti-cancer agent.

Keywords: decorin (DCN), hepatocellular carcinoma, proteoglycan (PG), hepatocarcinogenesis, extracellular

matrix (ECM)

INTRODUCTION

Hepatocellular carcinoma (HCC) is one of the most common primary liver malignancy and
it is the fourth cancer-related death cause in the world. Incidence of HCC is higher among
males than females, it occurs mainly in Northern and Western Africa (Egypt, the Gambia,
Guinea) Eastern- and South-Eastern Asia (Mongolia, Cambodia, and Vietnam), Melanesia, and
Micronesia/Polynesia (1). Hepatitis B (HBV) or hepatitis C virus (HCV) infection, aflatoxin,
smoking, type 2 diabetes, and alcohol abuse represent the main risk factors for the development of
HCC (1, 2). In HCC, chronic inflammation usually precedes malignant transformation progressing
from fibrosis to cirrhosis and tumor formation (2–4). However, a small fraction of cases occurs
without cirrhosis. HCC can be treated curatively with surgical resection or liver transplantation if

https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org/journals/oncology#editorial-board
https://www.frontiersin.org/journals/oncology#editorial-board
https://www.frontiersin.org/journals/oncology#editorial-board
https://www.frontiersin.org/journals/oncology#editorial-board
https://doi.org/10.3389/fonc.2020.00645
http://crossmark.crossref.org/dialog/?doi=10.3389/fonc.2020.00645&domain=pdf&date_stamp=2020-05-12
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles
https://creativecommons.org/licenses/by/4.0/
mailto:baghy.kornelia@med.semmelweis-univ.hu
mailto:baghy.kornelia@med.semmelweis-univ.hu
mailto:bcory6@gmail.com
https://doi.org/10.3389/fonc.2020.00645
https://www.frontiersin.org/articles/10.3389/fonc.2020.00645/full
http://loop.frontiersin.org/people/856501/overview
http://loop.frontiersin.org/people/685365/overview


Reszegi et al. Decorin in Primary Hepatocellular Carcinoma

diagnosed at an early stage (2–4). Surgery can only be performed
in about 15% of patients and they generally have a poor prognosis
with median survival times of <1 year (2, 3).

The extracellular matrix (ECM) is a highly dynamic
structure that is present in all tissues and continuously
undergoes controlled remodeling (5). ECM macromolecules
exhibit important functional roles in the control of several
cellular events such as adhesion, migration, proliferation,
differentiation, and survival (5–7). The matrix is well known
for its ability to provide structural and biochemical support for
organs and tissues. The ECM is composed of collagens, elastin,
proteoglycans (PGs), and non-collagenous glycoproteins (5, 6).

Matrix remodeling plays an important role in the
development of HCC. This process involves quantitative
and qualitative changes in the ECM (6). Tumor cells can
manipulate their microenvironment to enhance their own
survival, thereby creating a positive tumorigenic feedback loop
(8). Accordingly, during the last decades extensive research
activities focused on the better understanding of the cancer cell
and stroma interactions.

Decorin is a member of the ECM small leucine-rich
proteoglycan (SLRP) gene family (9–11) containing a single
chondroitin sulfate or dermatan sulfate chain and is expressed
mainly by fibroblast and myofibroblasts (12–14). In healthy
liver, a small amount of decorin is deposited around the central
veins and in the portal tracts. However, during fibrogenesis
together with other matrix proteins the amount of decorin
significantly increases in the connective tissue septa (14–16).
Decorin has been described to be involved inmany biological and
physiological processes including growth regulation (17–20), cell
differentiation (19), collagen fibrillogenesis (21–24), muscular
development (25), wound healing (26), stem cell biology (27),
kidney and liver fibrosis (28, 29), angiogenesis (30), regulation
of inflammation and autophagy (31).

Decorin represents a powerful tumor cell growth and
migration inhibitor by interaction with matrix constituents and
regulating several signaling pathways (19). The first growth factor
discovered as a decorin interacting partner was the transforming
growth factor-β (TGF-β). Binding of TGF-β by the proteoglycan
attenuates proliferation of tumor cell lines dependent on the
growth factor (18, 32). Previous studies have shown that decorin

Abbreviations: BCLC, Barcelona Clinic Liver Cancer staging; BSA, bovine
serum albumin; cDNA, complementary deoxyribonucleic acid; CM, conditioned
medium; DAB, 3,3-diaminobenzidine tetrahydrochloride; DAPI, 4′,6-diamidino-
2-phenylindole; DCN, decorin; DMEM, Dulbecco’s modified Eagle’s medium;
ECM, extracellular matrix; EDTA, ethylenediaminetetraacetic acid; EGFR,
epidermal growth factor receptor; ELISA, enzyme-linked immunosorbent assay;
ErbB2, receptor tyrosine-protein kinase erbB-2; erythroblastic oncogene B; FBS,
fetal bovine serum; FFPE, formalin fixed paraffin embedded tissue; GAPDH,
glyceraldehyde 3-phosphate dehydrogenase; HBV, hepatitis B virus; HCC,
hepatocellular carcinoma; HCV, hepatitis C virus; HSCs, hepatic stellate cells; IGF-
IR, insulin-like growth factor 1 receptor; MFs, myofibroblasts; mRNA, messenger
ribonucleic acid; NAT, non-tumorous adjacent tissues; PBS, phosphate buffered
saline; PDGFR, platelet-derived growth factor receptor; PG, proteoglycan; pLIVE,
Liver in vivo Expression vector; PVDF, polyvinylidene difluoride; RTK, receptor
tyrosine kinase; RT-qPCR, Reverse Transcription PCR; SEAP, secreted alkaline
phosphatase; SLRP, small leucine rich proteoglycan; SMA, smooth muscle actin;
TA, thioacetamide; TBS, tris buffered saline; TGF-β, transforming growth factor
beta; TMA, tissuemicroarray; VEGFR, vascular endothelial growth factor receptor.

is an endogenous, soluble pan-receptor tyrosine kinase (RTK)
inhibitor, known to interact with variety of cell surface receptors
including epidermal growth factor receptor (EGFR/ErbB1) (9)
as well as another members of the ErbB RTK family (33–
35). Moreover, decorin negatively regulates insulin-like growth
factor receptor I (IGF-IR) (36–39), the hepatocyte growth factor
receptor Met (40), vascular endothelial growth factor receptor
2 (VEGFR-2) (41) and platelet-derived growth factor receptor
(PDGFR) (14).

To better understand the role of decorin in HCC, the aim
of this study was to examine the expression of decorin in
liver tumor using in silico approaches as well as FFPE tissue
microarray (TMA) samples of HCC with or without cirrhosis.
Our previous studies (14, 42) showed that the lack of decorin
favors primary hepatocarcinogenesis resulting in higher tumor
incidence. In addition, decorin expression is decreased in HCC.
Thus, to confirm the protective role of decorin in the other way
around, we designed a model system to investigate the effects of
overexpressed decorin in mouse model of hepatocarcinogenesis
evoked by thioacetamide (TA).

MATERIALS AND METHODS

Data Acquisition and Preprocessing
The gene expression datasets for HCC and non-tumorous
liver samples were collected from the public microarray
repository ArrayExpress database (43), provided by the
European Bioinformatics Institute (Saffron Walden, UK). Our
datasets with accession E-MTAB-950 (https://www.ebi.ac.uk/
arrayexpress/experiments/E-MTAB-950/) includes 36 normal,
112 tumors, and 10 pair of tumors–non-tumorous adjacent
tissues (NATs). Most of the HCC patients have the underlying
etiology of Hepatitis C Virus and Hepatitis B virus infection. All
the raw data were processed using R programming language due
to its detailed clinicopathological data.

Tissue Microarray (TMA)
Tissue blocks were collected from the Biopsy archive of the 1st
Department of Pathology and Experimental Cancer Research,
Semmelweis University. The FFPE tissue samples were used
with the approval of Semmelweis University Regional and
Institutional Committee of Science and Research Ethics (TUKEB
permit number: 95/1999). Representative normal and tumorous
areas were selected by two independent pathologists for TMA
construction. We utilized FFPE tissue samples of HCC with and
without cirrhosis. Biopsy samples of 29 HCCs (20 cirrhotic, 9
non-cirrhotic) and 9 control livers (hemangioma) were selected
for TMA assembly. A detailed list of biopsy samples is provided
in Table S1. From each HCC, one core from the tumor and
one from the non-tumorous adjacent tissue (NAT) was selected.
TMA block was sectioned, and slides were immunostained for
decorin and smooth muscle actin (SMA) (Table S2). Staining
intensities were analyzed by Pannoramic Viewer software using
a 12-score system and evaluated by two independent pathologists
visual scoring. Every sample was given a score according to the
intensity of the decorin staining (no staining = 0, low decorin
staining = 1–6, and high decorin staining = 7–12). The final
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label is determined by averaging two pathologists’ scores. HCC
samples were divided into decorin negative, low and high
decorin expressing categories. To compensate for the variation
of fibroblast content, decorin expressions were normalized to
SMA content.

Immunostaining
Immunohistochemistry was performed on FFPE sections, and
fluorescent staining was made on methanol-acetone-fixed
liver tissues according to standard protocols (42). Antibodies
specifications and dilutions are listed in Table S2.

Real Time q-PCR
For RT-qPCR, total RNA was isolated from macro-dissected
FFPE liver tissue samples and treated LX2 cells. After
homogenization, total RNA was purified using the PureLink
FFPE Total RNS isolation kit (Life Technologies, Carlsbad CA,
USA) for FFPE samples, and RNEasy Mini kit (Qiagen, Hilden,
Germany) for cell samples according to the protocols provided by
the manufacturers. The integrity of the total RNA was analyzed
on the Experion Automated Electrophoresis Station (Bio-Rad
Laboratories GmbH, Münich, Germany).

Total RNA reverse transcription and RT-qPCR from
samples were done as detailed previously (42). RT-qPCR
was accomplished by using TaqMan Gene Expression Assays
for human: decorin (DCN, Assay ID: Hs00370383_m1, Life
Technologies) and human smooth muscle actin (ACTA2,
Assay ID: Hs.PT.56a21389192) according to the manufacturer’s
protocol. Human glyceraldehyde 3-phosphate dehydrogenase
(GAPDH) (GAPDH, Assay ID: Hs.PT.39a22214836, Integrated
DNA Technologies) and 18S RNA (Part No.:4319413E) were
used as endogenous controls. All samples were run in duplicates.
Results were obtained as threshold cycle values. Expression levels
were determined by using the 2−11CT method.

Tissue Culture and Reagents
LX2 human hepatic stellate cell line was provided by Dr.
Scott Friedman, HepG2, and Hep3B cell lines were obtained
from the American Type Culture Collection (Manassas, VA),
HuH7 and HLE were acquired from the Japanese Collection
of Research Bioresources Cell Bank (Osaka, JP). Cells were
cultured in Dulbecco’s modified Eagle’s medium (DMEM-1000)
(Sigma Aldrich, St. Louise, MO, USA) with 1,000 mg/l (5.5
mmol/l) glucose concentration, supplemented with 10% [v/v]
fetal bovine serum albumin (FBS, Sigma Aldrich), and 1%
[v/v] Penicillin/Streptomycin (Sigma Aldrich) in an atmosphere
containing 5% CO2 at 37◦C.

To obtain cell conditioned medium (CM), hepatoma cell lines
(HepG2, Hep3B, Huh7, HLE) were cultured as described above
until 80% confluence and then the medium was changed with
fresh DMEM. CM was harvested and stored after 16 h.

LX2 cells were grown to 80% confluency in 6-well-plate.
At that time cells were exposed to hepatoma-CM for 24 h,
then starved overnight in FBS-free DMEM. LX2 cells with only
FBS-free medium served as control. After treatment, both cells
and supernatants were saved for protein and mRNA studies.
Experiments were repeated three independent times.

Phospho-Kinase Array, Western Blot, and
Dot Blot
For phospho-kinase array, western blot, and dot blot analyses,
frozen liver samples and cells were extracted in lysis buffer
containing 20mM TRIS pH = 7.5, 2mM EDTA, 150mM NaCl,
1% Triton X-100, 0.5% Protease Inhibitor Cocktail (Sigma, St.
Luis, MO, USA), 2mM Na3VO4, 10mM NaF. Western blot and
dot blot analyses were prepared as previously indicated (42, 44).
For Western blotting, 20 µg of proteins were loaded per lane
and for dot blot analysis 200 µl cell culture media was applied
on PVDF membrane. Antibodies specifications and dilutions are
listed in Table S2. Western and dot blot analyzes were performed
three independent times.

The activities of phospho-kinases were checked by using the
Proteome Profiler Phospho-Kinase Array Kit (R&D Systems,
Minneapolis, USA) according to manufacturer’s user guide. In
brief, pooled samples of four livers from the same experimental
group were homogenized in lysis buffer (described above) and
adjusted to 1,000 µg of protein per 2,000 µl lysate. Signals of the
Western blot, dot blot, and array membranes were detected by
SuperSignalWest Pico Chemiluminescent Substrate Kit (Thermo
Fisher Scientific Inc., Waltham, USA), and visualized on iBright
FL1500 Imaging System (Thermo Fisher Scientific).

DNA Plasmid
We used pLIVE expression vector (Liver in vivo Expression;
Mirus Bio, Madison, WI, USA) to achieve high level and
prolonged transgene expression in the mouse liver. The vector
is driven by a liver-specific chimeric promoter composed of
the mouse α-fetoprotein enhancer II and the minimal mouse
albumin promoter. In addition, pLIVE-SEAP (secreted alkaline
phosphatase) vector was created for use as positive controls.
Expression of the SEAP protein from pLIVE-SEAP can be
easily monitored using a quantitative chemiluminescence assay
of mouse serum.

Full-length cDNA of human decorin (DCN) gene inserted
into the pGEM-1 expression vector was subcloned in the
pLIVE vector using BamHI and XhoI restriction sites. The
insertion was confirmed by DNA sequencing (Semmelweis
University). Plasmid DNA was amplified in Escherichia coli
DH5α cells and isolated by alkaline lysis and subsequently
purified by an anion exchange resin column according to
the manufacturer’s instructions (Qiagen, Valencia, CA). The
quality and quantity of the plasmid DNA was analyzed by
restriction endonuclease digestion, agarose gel electrophoresis
and absorbance at 260/280 nm by ND-1000 spectrophotometer
(NanoDrop Technologies, Wilmington, DE, USA).

Hydrodynamic Gene Delivery
All animal study protocols were conducted according to
the ethical standards of the Animal Health Care and
Control Institute, Csongrád County, Hungary. All animal
experiments were approved by the following ethical license:
XVI/ 03047-2/2008.

Thirty-six years two-month-old, 18–25 g male wild-type
C57BL/6 mice were used for our experiments. Plasmid DNA
[pLIVE-SEAP together with pLIVE-DCN, or pLIVE-SEAP with
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pLIVE-0 (control)] was injected by hydrodynamic technique
according to the manufacturer’s instructions (Mirus Bio LLC).
In brief, 15 µg of high quality/purity plasmid DNA was
prepared in 2ml of pharmaceutical grade saline solution at room
temperature. Mice were anesthetized, and the lateral tail vein was
accessed using a 27-gauge needle (according Mirus Bio LLC).
Administration of the solution was performed in 4–7 s, at a
constant rate, without extravasation. Each group was represented
by 18 animals.

Induction of Experimental
Hepatocarcinogenesis by Thioacetamide
Treatment
Induction of liver cancer was performed as previously described
(42). In brief, we utilized a total of 30 years 2-month-old male
mice all in a C57Bl/6 background. Mice were subjected to TA
treatment for 10 months. Age-matched untreated animals with
identical genetic background served as controls. Blood samples
were collected at the half time and at the end of the treatment. At
termination, half of the liver samples were fixed in formalin and
embedded in paraffin for histological analysis and the other half
was frozen for further experiments.

SEAP Reporter Gene Assay
SEAP activity from half-time treated mouse serum was
measured using the Phospha-LightTM SEAP Reporter Gene
Assay kit (Thermo Fisher Scientific), according to the
manufacturer’s datasheet.

Chemiluminescent plates were visualized by Kodak Image
Station 4000MMDigital Imaging System. The density of the dots
was quantified using the free ImageJ (Version 1.50b, NIH, USA)
software. Each assay was performed in duplicate, and the mean
values were used for statistical analysis.

Enzyme-linked Immunosorbent Assay
(ELISA)
The human decorin levels from half-time treated mice serum
were quantified by sandwich enzyme-linked immunosorbent
assay, using the Human Decorin ELISA Kit from Sigma-Aldrich
(Cat.No. #RAB0140 Sigma, St. Luis, MO USA), according to
the manufacturer’s instructions. Samples were evaluated from 10
mice per group. Each sample was performed in duplicate and the
mean values were used for statistical analysis. ELISA plates were
read at 570 nm with Labsystem Multiscan MS 352 (Labsystems,
Finland) plate reader.

Statistical Analysis
All statistical analyses were performed by Graphpad Prism
4.03 software (Graphpad Software Inc., La Jolla, CA, USA).
Data evaluation was performed using D’Agostino and Pearson’s
omnibus normality test and non-parametric tests (Mann–
Whitney) or Students’ t-tests depending on the distribution of the
data. The difference between control and DCN treated groups in
tumor prevalence was tested for significance by χ2-test. P < 0.05
level was declared statistically significant.

RESULTS

Downregulation of Decorin in Human
Hepatocellular Carcinoma in silico

Experiments
Analysis of HCC cases revealed that tumor samples had
significantly decreased decorin mRNA expression compared to
normal liver (p < 0.001) and displayed moderate increases
in NATs (p < 0.001; Figure 1A). When normalized to SMA
content, decorin expression was significantly reduced in tumor
samples compared to normal tissue and NAT sections (p <

0.001) (Figures 1A,B). However, no difference in the normalized
proteoglycan level of NAT and normal tissue was revealed
(Figure 1B). According to the in silico analysis, DCN/SMA
content distinguishes between normal and cancerous samples,
and is even characteristic for very early stage HCC (Figure 1C).
DCN/SMA ratio gradually decreases from very early to advanced
HCC, while it is overexpressed in cirrhosis (Figure 1C).

In addition, decorin expression seems to follow the BCLC
(Barcelona Clinic Liver Cancer) staging classification as
significantly decreased decorin level was observed in every
BCLC stage compared to normal liver (p < 0.001), and its level
gradually decrease from BCLC 0 to BCLC B (p < 0.05 and 0.01;
Figure 1D). All data of the TMA study are presented in Table S3.

Inhibited Decorin Production of Fibroblasts
at Protein Level in HCC
Next, we aimed to detect changes in decorin expression at protein
level. To this end, we utilized FFPE HCC tissue samples with
or without cirrhosis. From each HCC sample, one core from
the tumor and one from NAT was selected and immunostaining
specific for decorin and SMA was performed. Decorin and SMA
mRNA levels were determined by RT-qPCR analyzes.

Immunohistochemical staining of SMA reflects on the
number of activated hepatic stellate cells (HSCs), the main source
of decorin in the liver. In the normal human liver, SMA is
localized in the perisinusoidal area as well as in the vascular walls
of the portal tract and the central vein (Figure 2A). In control
liver, weak immunopositivity of decorin was detected around the
central veins and in the portal tracts (Figure 2B). DAB positivity
for SMA in cirrhotic and non-cirrhotic liver samples are strongly
and diffusely located in cytoplasm of fibroblasts in connective
tissue septa and in the perisinusoidal spaces of residual hepatic
parenchyma (Figures 2C,E,G,I).

In the NAT of both cirrhotic and non-cirrhotic HCCs,
a high number of α-SMA-positive activated HSCs were
detected (Figures 2E,I) with extremely strong decorin expression
(Figures 2F,J) along the sinusoids, the portal tracts and around
the central veins in the same tissue section. In contrast, a high
number of α-SMA-positive activated HSCs were detected in
the tumor stroma (Figures 2C,G), but there was hardly any,
or negative decorin expression (Figures 2D,H) in the same
sample. This observation was detected in both cirrhotic and
non-cirrhotic cases.

Immunohistochemical results were semi-quantified using
a 12-score system and evaluated by visual scoring of two
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FIGURE 1 | Distribution of human decorin in hepatocellular carcinoma. DCN/SMA content separates normal and cancerous samples. Decorin expression is extremely

low in tumor samples compared to normal and NAT sections (A,B). DCN expression seems to follow the classification of BCLC staging (D) and aggressiveness of

HCC (C) [(nnormal = 36, nHCC = 112)]. DCN, decorin; NAT, non-tumorous adjacent tissue; SMA, smooth muscle actin. All data are presented as mean of normalized ±

SD. ***p < 0.001; **p < 0.01; *p < 0.05.

independent pathologists. Significantly increased decorin and
SMA levels were observed in NAT samples compared to
normal liver (p < 0.001 for both decorin and SMA) and
tumor stroma (p < 0.05 for SMA; Figure 3A). Tumor
samples contained significantly less decorin and SMA than
that of NAT (p < 0.05 for SMA and p < 0.001 for
decorin; Figure 3A). When normalized to SMA content, decorin
expression both at protein and mRNA level was decreased in
the tumor samples compared to their paired NAT. At protein
level, the difference was statistically significant (p < 0.001;
Figure 3A). As decorin expression was normalized to SMA
level, differences were not caused by changes in the number of
myofibroblast cells.

Based on their intensity score, HCC samples were divided into
decorin negative, low and high expressing categories. Using this
evaluation, 52% of HCCs were decorin negative, 33% showed
low, and 15% high decorin expression (Figure 3B). Negativity
and low expression were more characteristic for HCCs without
cirrhosis (Figure 3B).

Tumor Cells Inhibit Decorin Production of
LX2 Stellate Cells in vitro
To test whether tumor cells are capable of directly influence
the decorin production of myofibroblasts, LX2 human stellate
cells were exposed to conditioned media of different hepatoma
cell lines (Hep3B, HLE, HepG2, and HuH7). Significantly less
decorin was detected in the media of LX2 cells, when HLE,
HepG2, and HuH7 conditioned media was applied (p < 0.05;
Figures 4A,B). In case of Hep3B cells, the observed effect did
not reach statistical significance. These changes appeared at
transcriptional level, as decorin mRNA level was significantly
reduced in LX2 cells exposed to HepG2, HuH7 conditioned
media (p < 0.05) (Figure 4C). Decorin mRNA level was also
reduced, when Hep3B and HLE conditioned media was applied,
but these changes were not statistically significant. These results
correlate well with our observations on human HCC tissue
samples indicating that the presence of tumor cells reduces
the expression of decorin highlighting its tumor suppressor
effect in HCC.
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FIGURE 2 | Representative images of decorin and SMA immunostaining of normal liver (A,B), cirrhotic HCC (C–F), and non-cirrhotic HCC (G–J). From each HCC

sample, one core from the tumor and one from NAT tissue was selected. Decreased decorin expression was detected in tumor stroma, compared to NAT both at

protein and mRNA levels, which may reflect on the aggressiveness of the HCC. NAT, non-tumorous adjacent tissue; SMA, smooth muscle actin. Scale bar 200µm.

n = 27.
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FIGURE 3 | Representative images of the normalized decorin and SMA expression. We normalized decorin expression to SMA content in order to avoid distortion of

results by the different number of decorin producing myofibroblasts (A). Note the low decorin expression in tumor despite of the large number of SMA-positive MFs

(A). Based on immunoscores, HCCs were categorized as negative, low, and high decorin expressing tumors (B). Most HCCs lack or under-express of decorin (B).

NAT, non-tumorous adjacent tissue; SMA, smooth muscle actin. n = 27. All data are demonstrated as mean of normalized ± SD. ***p < 0.001; *p < 0.05.

FIGURE 4 | Decorin production of LX2 stellate cells upon exposure to hepatoma (Hep3B, HLE, HepG2, and HuH7) cell medium. Dot blot analysis of decorin content

in LX2 cell media (A) and its quantification (B). Determination of decorin mRNA levels (C). CM, conditioned medium. Data are presented as mean of normalized ± SD.

*p < 0.05.

Conformation of Successful Decorin Gene
Delivery and Expression in Experimental
Liver Cancer
Our previous studies showed that the lack of decorin favors
primary hepatocarcinogenesis resulting in higher tumor

incidence (14, 42). Based on these findings, we designed a
new set of experiments to understand the implication of
overexpressed decorin in our TA-induced hepatocarcinogenesis
model. For this experiment, human decorin cDNA was
cloned into a pLIVE vector, where the expression is driven
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FIGURE 5 | Localization of human recombinant decorin in pLIVE-DCN-transfected liver sections. Fluorescent immunostaining of overexpressed decorin (red) after

hydrodynamic gene delivery. Nuclei were counterstained with DAPI (blue). (A) Scale bar = 500µm, (B) 100µm, and (C,D) 50µm.

by a mouse AFP enhancer and albumin promoter. In
addition, we applied a control vector coding serum alkaline
phosphatase. When injecting together with the human
decorin-coding (pLIVE-DCN) or with the empty vector
(pLIVE-0), the SEAP detected from blood provides indirect
information about the activity of the pLIVE-DCN or pLIVE-
0 vectors. Vectors were injected using hydrodynamic gene
delivery method.

The artificial decorin expression and localization was
visualized by fluorescent immunostaining (Figure 5A). Human
decorin was successfully transfected and expressed in the livers.
Control livers transfected with the empty vector (pLIVE-0) were
completely negative for immunostaining of human decorin.
Driven by albumin promoter, the human recombinant decorin
produced by the transfected vector was mainly detected in
hepatocytes around the central veins (Figures 5A,B) and located
in the endoplasmic reticulum andGolgi complex (Figures 5C,D).

As previously described, mice were injected with a plasmid
encoding SEAP reporter gene. In most of the animals, the SEAP
expression was high, measured from half-time TA treated mice
blood samples (Figure 6). Very low SEAP level was detected in
three of control (pLIVE-0), and four of decorin treated (pLIVE-
DCN) animals.

Human recombinant decorin level was measured from the
sera of mice by ELISA. The results correlated well with that of
SEAP assay indicating that decorin delivery was successful and
the proteoglycan production is active (Figure 7).

Decorin Gene Transfer Effectively
Diminishes Liver Carcinogenesis in Mice
Depending on the transfection efficiency measured by SEAP
assay, decorin transfected group was subdivided into decorin
negative (Figures 8A,B), low (Figures 8C,D), and high

(Figures 8E,F) decorin expressing categories. Similarly to
our previous studies (42) TA-induced fibrosis and subsequently
hepatic cirrhosis led to hepatocellular cancer. Large tumorous
nodules with abundant cytoplasm and strong eosinophilic
staining surrounded by a connective tissue capsule were
detected in control livers (Figures 8A,B). Upon TA-induced
hepatocarcinogenesis, decorin transfection resulted in attenuated
tumor formation in both low and high decorin expressing groups
(Figure 8G). The highest tumor count was observed in mice
with no decorin production (Figures 8A,B,G). Decorin delivery
decreased the number of tumors by 72 and 78% in low and high
decorin expressing groups respectively (Figure 8G) compared
to decorin negative livers. Lower liver mass/body mass ratios
of decorin treated animals corroborates the beneficial effect of
the excessive proteoglycan. Based on these results, we assume
that decorin gene delivery has the potential to inhibit the
development of HCC indicating that soluble decorin may act as
a tumor suppressor.

Major Signaling Pathways Mediated by
Overexpressed Decorin in HCC
As several publications reflected that soluble decorin acts as a
pan-RTK inhibitor targeting a multitude of RTKs, their activity
in our experimental hepatocarcinogenesis model was tested.
Among others, we detected decreased level of phospho-EGFR in
pLIVE-DCN samples by 32% in TA treated groups relative to
that of pLIVE-0 (p < 0.001, Figures 9A,B). IGF-IR activity did
not alter upon TA exposure in pLIVE-0 animals (Figures 9A,C).
However, we found a 2-fold increase in tyrosine phosphorylation
of IGF-1R in DCN overexpressing TA-driven tumors (p < 0.001,
Figures 9A,C).

As Akt is a known downstream effector of IGF-1R, we tested
whether the levels of phospho-Akt (S473) and phospho-Akt
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FIGURE 6 | Measurement of secreted alkaline phosphatase activity from sera, after the injection with pLIVE-DCN and pLIVE-0 vectors. Serum was collected at half

time of the TA treatment. SEAP chemiluminescent analysis (A) and its quantification (B). The serum SEAP activity is indicated on the y-axis and the mice are indicated

on the x-axis. n = 30. All data are demonstrated as mean of normalized ± SD.

(T308) would be altered in our experimental animal model. In
control lysates, hardly any phospho-Akt (S473) was detected
(Figures 9A,D), but phospho-Akt (T308) was ∼2.3-fold higher
in pLIVE-0 mice than in pLIVE-DCN samples (p < 0.01,
Figures 9A,D,E). Upon TA exposure, their amount raised, and
no difference was observed in pAkt (S473) level between the
transfected groups (Figures 9A,D). In contrast, pAkt (T308)
exhibited ∼1.5-fold increase in pLIVE-DCN mice compared to
the pLIVE-0 group (Figures 9A,D).

In our experimental hepatocarcinogenesis model changes in
p53 levels were identified by a phospho-array study. Three
phosphorylated p53, namely phospho-p53(S392), phospho-
p53(S46), and phospho-p53(S15) exhibited significantly higher
levels in response to the overexpressed of decorin (Figure 10).
Notably, after TA exposure, we found ∼2-fold, ∼1.6-fold, and
∼1.7-fold increase in phospho-p53(S392), phospho-p53(S46),
and phospho-p53(S15) in decorin transfected mice compared to
that of null-vector, respectively (p < 0.05 and 0.01, Figure 10).

DISCUSSION

Hepatocarcinogenesis is a multi-step process characterized by
progressive cellular and molecular changes of hepatocytes and
leads to the emergence of HCC (45). Studies of the last

FIGURE 7 | Decorin expression in control (pLIVE-0) and decorin treated

(pLIVE-DCN) groups. The decorin expression is indicated on the y-axis (pg/ml)

and the mice are indicated on the x-axis (n = 20). Data are indicated as mean

of normalized ± SD.

decade revealed that the tumor microenvironment is an active
participant of the tumor development and adds another factor
that should be considered in the study of its pathology. The main
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FIGURE 8 | Representative histological images of hematoxylin and eosin-stained normal (A,B), low (C,D), and high (E,F) decorin expressing liver tissues induced by

TA treatment. Tu, tumor; pointed lines indicate tumor border. Asterisks show the same vein in different magnifications. (A,C,E) Scale bar = 200µm, (B,D,F) 100µm.

Bar charts represent the ratios of tumor-bearing mice in experimental groups of normal, low, and high decorin expressing groups with TA treatment (G). n = 15. All

data are indicated as mean of normalized ± SD.

non-cellular component of these events is the ECM build up by
various macromolecules (proteins, glycoproteins, proteoglycans,
and glycosaminoglycans) with different biochemical properties
and biological functions (46).

Decorin, a SLRP expressed by fibroblast andmyofibroblasts, is
an integrated member of ECM (47). Multitude reports on human
cancers provided evidences about the tumor suppressor potential
of this proteoglycan. Its action is related to the inhibition of
RTKs (20, 48, 49). Regarding liver tumors, there is hardly any

data on the role of decorin in the literature (14, 15, 42, 50–
54). To fill up this hiatus we hypothesized that decorin may act
as a tumor suppressor in HCC. To challenge our presumption
a four-step model system was designed: (1) we examined the
mRNA expression of decorin in HCC using in silico approaches;
(2) FFPE TMA samples of HCC with or without cirrhosis
were applied to measure decorin content at protein level; (3)
cell culture experiments were to test whether tumor cells can
inhibit decorin production of myofibroblasts; and (4) animal
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FIGURE 9 | Representative images of Western blot membranes (A). Bar charts show the relative levels of pEGFR (B), pIGFR (C), and Akt phosphorylation at Ser473

(D) and Thr308 (E) in lysates of wild-type (pLIVE-0) and decorin overexpressed (pLIVE-DCN) livers after TA exposure and without treatment (CTL, control). β-actin was

used as loading control. All data are presented as mean of normalized ± SD. **p < 0.01; ***p < 0.001.

FIGURE 10 | (A) Changes in phospho-p53/S392/, phospho-p53/S46/, and phospho-p53/S15/ in TA-induced liver cancer. (B) Representative image of the

phospho-kinase array dots of different phospho-p53 forms in livers of wild-type (pLIVE-0) and decorin overexpressing (pLIVE-DCN) animals after TA exposure. Column

represents the results of densitometry of array dots showing relative levels. All data are demonstrated as mean of normalized ± SD. *p < 0.05; **p < 0.01.

experiments were designed to clarify the potential of decorin to
inhibit the development of HCC evoked by TA.

In previous studies, only absolute decorin expression has
been measured in a variety of tumors. Here, we normalized
decorin expression to SMA content in order to compensate
for the variation of fibroblast content, α-SMA is a well-known
marker for activated myofibroblasts (55), which are the key
producer of decorin. We performed gene expression profiling
of liver specimens with or without cancer using a Dataset E-
MTAB-950 [containing 34 normal, 112 tumors, and 5 pairs of
tumor–non-tumorous adjacent tissue (NAT)] fromArrayExpress

database. Decorin expression was significantly downregulated in
most HCCs compared to their NATs and to the normal liver.
In addition, mRNA expression analysis revealed that normalized
DCN content seems to follow the staging of HCC. Indeed,
transcriptional analysis of tumor progression at the mRNA level
revealed high decorin expression during the early stages of
tumorigenesis in B-cell chronic lymphoid leukemia (CLL), in
contrast to its suppression in advanced stages (56). Similarly,
while benign hemangiomas displayed relatively high decorin
mRNA levels, the transcription of decorin was completely
blocked in malignant vascular sarcomas (57). Therefore, it
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seems that malignant behavior and tumor progression may be
correlated with the loss of endogenous decorin expression. Our
study indicates that reduced expression of decorin is associated
with decorin gene downregulation and is irrespective of the
number of myofibroblasts.

Next, TMA was assembled from HCC FFPE samples
to determine their decorin content. Microarray slides were
immunostained for decorin and α-SMA, and decorin level was
normalized to SMA content, as seen in in silico approaches.
In general, HCC tumor tissues have reduced or completely
blocked decorin expression compared to their paired peritumoral
liver areas. In contrast to the in silico results, neither the
relative amount of decorin mRNA, nor its protein level was
downregulated in tumor samples compared to normal tissue. Our
different control samples may be responsible for this result. In
our TMA assembly, we used hemangiomas as a control group,
while there is no information about the control of in silico
database. They could be healthy livers, or other non-tumorous
tissue, which may affect the expression of decorin.

An important issue is that decorin mainly exists in collagen-
bound form. However, only its soluble variant can bind and
inhibit tyrosine kinases receptors, such as EGFR, Met, IGF-1R,
VEGFR, and PDGFR (14, 37, 39, 40, 47, 58). Interestingly, there is
no significant difference betweenHCCswith or without cirrhosis,
decorin expression is reduced or completely blocked in both
types of tumors compared to NAT. In our sample set 52% of
HCCs were decorin negative, 33% showed low, and 15% high
decorin expression. Negativity and low expression were more
characteristic for HCCs without cirrhosis. These results suggest
that the lack of the proteoglycan provides a survival advantage
for the tumor tissue. The mechanism of this downregulation
needs further studies to elucidate. In tumor tissues, the decreased
expression of decorin may related to methylated DCN gene.
Qian et al. (59) have identified the methylated +58CpG in
DCN 5′-UTR associated with reduced expression of DCN
mRNA in non-small cell lung cancer. According to the Human
Protein Atlas database, decorin level is significantly reduced in
various tumor types compared to their non-tumorous tissue
pair (60). They found that decorin is strongly expressed in
the peritumoral stroma, and the proteoglycan level is markedly
diminished or disappeared in the tumor stroma (60). Decreased
decorin expression was observed in urothelial carcinoma, skin
squamous and basal cell carcinoma, mammary lobular and
ductal carcinoma, cervix adenocarcinoma, serous or mucinous
cystadenocarcinoma and ovarium endometrioid carcinoma,
colon, kidney, pancreas, prostate, rectum and the stomach, and
embryonal carcinoma and seminoma of the testis (60). It was also
shown that decorin gene is under-expressed by at least 50% in
lung adenocarcinomas and squamous cell carcinomas compared
to normal tissue (61). To test whether tumor cells are capable
of directly influencing the decorin production of myofibroblasts,
LX2 human stellate cells were exposed to hepatoma conditioned
media. Significantly, less decorin was detected in the media of
LX2 cells when HLE, HepG2, or Huh7 conditioned media was
applied (Figure 4). These results corroborate our observations in
humanHCC tissue samples. Similar results were obtained by Van
Bockstal et al. (62), where decorin expression of cancer associated

fibroblasts was significantly reduced when conditioned media of
breast cancer cell lines were applied. In their experiments, TGFβ1
was identified as themain inducer of decorin repression in cancer
associated fibroblasts. Indeed, TGFβ1 is a known transcriptional
inhibitor of DCN gene (63), and the hepatoma cell lines applied
produce considerable amounts of the cytokine (53). Thus, it
is conceivable that the production of TGFβ1 by tumor cells
is responsible for decorin downregulation in the neighboring
fibroblasts. The fact that the presence of tumor cells reduces the
expression of decorin highlights its tumor suppressor effect in
HCC and further studies are needed to unravel the exact silencing
mechanism of this SLRP.

Our previous studies showed that the lack of decorin favors
primary hepatocarcinogenesis, which results in higher tumor
incidence (42), however it was a further question whether the
addition of the proteoglycan is able to counteract primary
hepatocarcinogenesis evoked by TA. Thus, we planned a new set
of investigations, where targeted delivery of decorin to the liver
has been carried out. The excessive proteoglycan was expressed
by hepatocytes, mainly around central veins (Figure 5). Upon
thioacetamide exposure the highest tumor number was observed
in animals with no excessive decorin production (Figure 8).
Our findings are in line with a vast number of earlier studies,
where delivery of decorin via an adenovirus vector into the
tumor cells inhibited the growth of lung, colon, and squamous
cell carcinomas by attenuating EGFR phosphorylation (64). In
addition, decorin transfer inhibited Met and Wnt/β-catenin
signaling pathways and thus prevented the formation of bone
metastasis of prostate cancer cells (65). Virus-delivered decorin
attenuated breast cancer growth and prevented its metastasis
formation in various organs (66–68). Ma et al. (69) found that
decorin gene therapy prolonged survival and inhibited tumor
growth in an in vivo glioma model. The rate of inhibition
directly correlated with the expression levels of decorin and
with the timing of DCN gene transfer. Decorin gene therapy
was successfully applied in models of prostate and pancreatic
cancers as well (70, 71). Our results together with these studies
confirm that elevated decorin expression in vivo is able to
protect against tumorigenesis, as well as other way around, its
downregulation in tumorous stroma stimulates tumor invasion.
The protective role of decorin in experimental situations raises
the possibility that this proteoglycan can be utilize in the battle
against human cancer.

As an unexpected result, in contrast with other tyrosine
kinases receptors we observed striking activation of IGF-1R
followed by Akt phosphorylation upon TA exposure in pLIVE-
DCN groups. In parallel, elevated phospho-p53 levels were
observed especially of that phosphorylated at serine 46 residue
a marker of cell death response (72). This finding is in agreement
with the publication shown that decorin can activate this receptor
inducing Akt phosphorylation in renal fibroblasts and normal
endothelial cells (38). Similarly, in our earlier experiments we
found that addition of human recombinant decorin to the Hep3B
hepatoma cell line provoked activation of IGF-1R and insulin
receptors and massive Akt activation (53). An earlier study
reported that IGF-1R exerts a supportive function in apoptosis
mediated by p53 (73). In addition, adenovirus-delivered decorin
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expression was proved to provoke cell death via activation of
p53 (74). Thus, it is conceivable that excessive decorin curbs
tumorigenesis via induction of IGF-1R that in turn induces
apoptosis via p53.

In conclusion, our results suggest that decorin plays a
protective role in liver cancer. Theoretically, utilization of
decorin as a physiological tyrosine kinase receptor inhibitor,
targeting multiple receptors, is possible and the idea is well-
established.
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