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Abstract: Crude glycerol (C3H8O3) is a major by-product of biodiesel production from vegetable
oils and animal fats. The increased biodiesel production in the last two decades has forced glycerol
production up and prices down. However, crude glycerol from biodiesel production is not of
adequate purity for industrial uses, including food, cosmetics and pharmaceuticals. The purification
process of crude glycerol to reach the quality standards required by industry is expensive and
dificult. Novel uses for crude glycerol can reduce the price of biodiesel and make it an economical
alternative to diesel. Moreover, novel uses may improve environmental impact, since crude glycerol
disposal is expensive and dificult. Glycerol is a versatile molecule with many potential applications in
fermentation processes and synthetic chemistry. It serves as a glucose substitute in microbial growth
media and as a precursor in the synthesis of a number of commercial intermediates or fine chemicals.
Chlorinated derivatives of glycerol are an important class of such chemicals. The main focus of
this review is the conversion of glycerol to chlorinated derivatives, such as epichlorohydrin and
chlorohydrins, and their further use in the synthesis of additional downstream products. Downstream
products include non-cyclic compounds with allyl, nitrile, azide and other functional groups, as well
as oxazolidinones and triazoles, which are cyclic compounds derived from ephichlorohydrin and
chlorohydrins. The polymers and ionic liquids, which use glycerol as an initial building block,
are highlighted, as well.
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1. Introduction

Society currently faces the twin challenge of resource depletion and waste accumulation.
This challenge leads to a rapid increase in the costs of raw materials and waste disposal, which
is subject to restrictive and burdensome legislation. Thus, environmental pollution and waste
accumulation are key factors in valorising biomass in the transition to a low-carbon economy society
and the decarbonization of carbon-intensive sectors. An essential component of this valorization is the
“zero-waste” concept [1–3].

Efficient use of biomass as a source of fine chemicals will play an important role in sustainable
development and mitigating global warming [4,5].
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Biomass can also be used to obtain biofuels such as bioethanol, biomethane and biodiesel [6–9].
Replacing fossil fuels with renewable resources will lead to the reduction of waste accumulation by
revaluating industrial by-products and reducing resource depletion [10,11]. Moreover, rising crude
oil prices have stimulated interest in developing alternative renewable biofuels in the recent past.
More recently, however, oil prices have collapsed; it is unclear what the impact of this might be on the
continuing use of biofuels, particularly if oil prices remain low indefinitely.

Biodiesel can be produced from many renewable sources. These include vegetable oils and animal
fats. The process usually involves transesterification of acylglycerides into fatty acid methyl esters
(FAME), with glycerol (C3H8O3) as the major by-product. On a molar basis, one mole of glycerol is
produced for every three moles of FAME. Hence, 10% of the initial acylglycerides are roughly converted
to glycerol. Crude glycerol resulting from the biodiesel industry becomes, itself, a source of biomass.
Glycerol is a versatile molecule with many potential applications [12–18]. In fact, novel uses of glycerol
may be instrumental in making biodiesel a competitive alternative fuel to petroleum-based fuels.

Pure glycerol is physiologically innocuous, and it is currently used in a large variety of applications,
primarily in the cosmetic, food and pharmaceutical industries. However, the use of glycerol in these
industries is limited by strict physical, chemical and biological requirements. Requirements that crude
glycerol resulting from biodiesel production does not meet [19]. In 2011, it was estimated that two
million tons (or just 40%) of a total of 5.1 million tons of glycerol were used [19]. However, the volume
of glycerol has been steadily increasing because global biodiesel production has been growing in recent
years. It is estimated that the biodiesel production could reach 41 Mm3 in 2022 [19], considering the
9.3% year increase in world glycerol production between 2008 and 2012. Thus, the glycerol market is
becoming a bottleneck on biodiesel production [19,20].

Glycerol can be used as both an energy source and a platform chemical. Direct pyrolysis [21], direct
combustion and hydrogen production are usual processes where crude glycerol can be used as energy
source [22]. However, glycerol high viscosity hinders flow spraying, pumping and flame stability.
Uncontrolled burning produces acrolein (2-propenal), an unsaturated aldehyde with severe detrimental
effects on the human health [19]. Moreover, hydrogen preparation from crude glycerol involves high
production costs [23–26]. The transformation of glycerol into fine chemicals can be performed by
chemical and biological processes. However, most of these glycerol derivatives are currently produced
by expensive processes, and therefore their utilization on an industrial scale is still limited [27]. Glycerol
can be converted into more complex intermediates and products through a number of different chemical
reactions. Figure 1 shows the most reactions in which glycerol can be involved as a building block [28].
Despite the large number of theoretical possibilities, in practice, there are two possible areas to use
up the large amount of glycerol produced by the biodiesel industry: as feedstock for commodity
chemicals [29–34], or for producing oxygenated additives for fuels [27,35–38]. As an example, glycerol
can be thermochemically converted to propylene glycol [29–31] and acrolein; the latter can be oxidized
to acrylic acid [39–41]. Glycerol can be esterified to acylglycerides and glycerol carbonates [42]. It can
also be used to prepare chlorinated derivatives. Synthetic pathways to chlorhydrines have been
described, many of them leading to a mixture of isomers [32,34,43–45]. These products exhibit some
degree of toxicity [46–49]. As an alternative, the authors’ research group has described the synthesis of
chlorohydrin esters by using crude glycerol and different fatty acids. These esters are less volatile than
the corresponding chlorohydrins, which, in principle, reduce their toxicity as chemical reagents [50].
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Anaerobiospirillum succiniciproducens [52] and citric acid, using the yeast Yarrowia lipolytica. The 

efficiency of this yeast in converting crude glycerol to citric acid is similar to that from glucose [53]. 
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The main objective of this review is to highlight the use of crude glycerol as starting material for 

chlorinated intermediates and end products. In particular, we discuss the state-of-the-art in several 

processes for the synthesis of these compounds, with emphasis on the improvements made in the 

last two decades. Firstly, the manuscript describes the synthetic methods for chlorinated derivatives 

of glycerol. The further transformation of chlorinated derivatives in additional downstream 

products is also described. The more recent contributions of the authors’ research group in the 

application of chlorinated derivatives of glycerol are also presented. Finally, some future 

perspectives of these compounds and the evolution of the biodiesel and other related industries are 

discussed.  

2. From Glycerol to Synthetic Intermediates 

2.1. Synthesis of Chlorohydrins by Glycerol Hydrochlorination 

An application of glycerol that has attracted significant attention is the production of 

chlorohydrins [32,34,43,44,51,56–58]. Figure 2 shows the synthesized chlorohydrins, using this 

approach. 

Figure 1. Reactions in which glycerol is used as a building block to make more-complex molecules [51].

Glycerol is also involved in biological transformations. Crude glycerol is a suitable feedstock
in microbial fermentation. It has been used for the production of succinic acid, using the bacterium
Anaerobiospirillum succiniciproducens [52] and citric acid, using the yeast Yarrowia lipolytica. The efficiency
of this yeast in converting crude glycerol to citric acid is similar to that from glucose [53]. Crude
glycerol has also been used as carbon source to obtain vitamin K2 [54] and erythritol [55].

The main objective of this review is to highlight the use of crude glycerol as starting material for
chlorinated intermediates and end products. In particular, we discuss the state-of-the-art in several
processes for the synthesis of these compounds, with emphasis on the improvements made in the last
two decades. Firstly, the manuscript describes the synthetic methods for chlorinated derivatives of
glycerol. The further transformation of chlorinated derivatives in additional downstream products
is also described. The more recent contributions of the authors’ research group in the application
of chlorinated derivatives of glycerol are also presented. Finally, some future perspectives of these
compounds and the evolution of the biodiesel and other related industries are discussed.

2. From Glycerol to Synthetic Intermediates

2.1. Synthesis of Chlorohydrins by Glycerol Hydrochlorination

An application of glycerol that has attracted significant attention is the production of
chlorohydrins [32,34,43,44,51,56–58]. Figure 2 shows the synthesized chlorohydrins, using this approach.
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Table 1 shows the current approaches to synthesize dichlorohydrins (DCH) by the
hydrochlorination of glycerol [12,32,34,43,44,51,59–61]. Moreover, some approaches have been
described where crude glycerol was used because the purification of glycerol involves high costs and
is not economically feasible for small- and medium-size plants [62,63]. Crude glycerol chlorination
should represent an economic advantage over the traditional propylene-based process, as the cost of
this glycerol is minimal [64,65].
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Table 1. Effect of several conditions on the synthesis of DCH.

Reagents Catalyst P (atm)/T (◦C) Procedure Reaction Period 1,3-DCH (Yield %) Comments Ref.

HCl(g)
+wet glycerol

(9%)
Acetic acid (5%) 7.5/110 Batch (glycerol)

Continuous (HCl) 4
93% DCH

(46:1)
(1,3-DCH:2,3-DCH)

HCl pressure has a great effect on
glycerol consumption rate and

product distribution.
[44]

HCl(g)
+glycerol

Acetic acid
(0–50%) 0.25–1/105 Semibatch 3 N.P.

Non-catalytic hydrochlorination is a
major inconvenient at
high temperatures...

[43]

HCl(g)
+glycerol Propionic acid 8% 1/100 Batch(glycerol)

Continuous (HCl) 3 41%
No correlation between the acidity

strength of the catalyst and the
reaction activity was demonstrated.

[32]

HCl (g)
+glycerol

Hexanoic acid
(5%) 7.5/110 Semibacth 3 N.P. [61]

HCl(g)
+glycerol

Carboxylic acid
studied N.P. Batch(glycerol)

Continuous (HCl) N.P. N.P.

Correlation between catalyst pKa
value and its selectivity toward

mono- (pKa < 3) or dichlorinated
(pKa > 4) compounds was found.

[34]

N.P., not provided; DCH, dichlorohydrins; MCH, monochlorohydrins.
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The most prevalent synthetic procedures for glycerol chlorination [66,67] are based on the reaction
of glycerol with an aqueous solution of hydrochloric acid [34,56,68–73]. The synthetic process has been
scaled up to an industrial scale [74,75]. However, this process has a number of disadvantages, such as
the loss of the catalyst at high reaction temperatures (due to its low boiling point) and the production of
water, which causes an increase in the reaction time and makes it difficult to separate the end products.

This reaction can be carried using glycerol and gaseous HCl. The resulting mixture of isomers
has been investigated in great detail [76–78]. The reaction is carried out isothermically, allowing the
control of side reactions [44].

In the first step, monochlorohydrins (mainly 1-monochlorohydrine, 1-MCH, and small amounts
of 2-monochlorohydrine, 2-MCH) are obtained by the nucleophilic substitution of OH by Cl. Moreover,
1-MCH is favored by a kinetic control of the process [79]. In a subsequent hydrochlorination reaction,
monochlorohydrins are converted to dichlorohydrins (mainly 1,3-dichlorohydrins, 1,3-DCH, and small
amounts of 1,2-dichlorohydrins, 1,2-DCH) (Figure 2). This mixture reach on 1,3-DCH is very interesting
in the preparation of epichlorohydrin, as is discussed below.

These reactions are catalyzed by short carboxylic acids, usually acetic acid. Depending on the HCl
concentration, the reaction can lead to the MCH isomers or to the DCH isomers. The ratio between
MCH and DCH depends on the reaction conditions. Santacesaria et al. have already reviewed that
process and have summarized the studies in terms of catalysts, reaction process, mechanism and
kinetics, and reactors and processes used [51].

2.2. Synthesis of Epichlorohydrin

Epichlorohydrin (ECH) is a chemical used in the production of synthetic elastomers, sizing
agents for the papermaking industry, epoxyresins and plasticizers [34,44,51,80]. Some pheromones,
anisomycin, propranolol analogues andβ-blockers also have ECH as an intermediate [81,82]. Moreover,
enantiopure ECH is an important intermediate for the production of optically active pharmaceuticals,
such as atorvastatin and L-carnitine, and the preparation of ferroelectric liquid crystals [83].

Industrial methods to synthesize ECH include the use of a mixture of 1,2-DCH (70%) and 1,3-DCH
(30%) (Figure 3). This is a disadvantage of the process, since 1,2-DCH is much less reactive than
1,3-DCH [32–34,51]. This mixture is currently obtained by propylene chlorination. The alkali treatment
of this mixture yielded ECH [44]. ECH can also be obtained by the allyl acetate method. Allyl
acetate is hydrolyzed to allyl alcohol, which is chlorinated [44,45]. Both methods are based on the
oil industry, since the starting materials are obtained from refinery processes [78]. An additional
disadvantage of the process is that the raw materials, such as propylene and chlorine, are flammable
and toxic, respectively [61]. These factors have prompted the search for alternative procedures based
on sustainable methods and renewable raw materials to synthesize ECH [44].
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Several chemical and biological approaches [84–86] have been suggested as alternatives to prepare
ECH [86] from chlorohydrins.

2.2.1. Enzymatically Catalyzed Synthesis of ECH

The intramolecular nucleophile displacement of vicinal halohydrins to the corresponding epoxides
can be catalyzed by halohydrin dehalogenases (HHDHs, HheC and EC 4.5.1.X) from microbial
origin [87–89]. However, a number of studies reported that the biotransformation of 1,3-DCH into ECH
by recombinant Escherichia coli expressing halohydrin dehalogenase is limited by product inhibition,
one of the reasons for the low ECH productivity [90]. Zou et al. proposed a resin-based ISPR
biocatalytic process to avoid this inhibition [90]. The method consists in the addition of HZD-9
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macroporous resin. HZD-9 improved the overall productivity of the process yielding 88% of ECH
(Table 2, entry 2.2) [90]. This high yield demonstrated that this method was an effective way to
eliminate product inhibition. Alternatively, halohydrin dehalogenases insensitive to product inhibition
have been described [85,91,92]. Thus, S-ECH was produced in good enantiomeric excess (92.3% ee)
and 92% yield, using a HheC mutant (Table 2, entry 2.4) [91]. Improved ee (99%) and similar yield
(92%) were achieved by using halohydrin dehalogenases (HHDHs) coupled to epoxide hydrolases
(EH) (Table 2, entry 2.5) [91]. The production of ECH was also described by using a novel HHDHTm,
from Tistrella mobilis ZJB1405 (cloned and over-expressed in E. coli), with a 75% yield, but with low
enantioselectivity compared to other reported HHDHs (Table 2, entry 2.1) [92]. In addition, HheC
in presence of NO2 allowed the synthesis of R-ECH with high ee (99%) but low yield (41%) (Table 2,
entry 2.3) [85]. An alternative method for preparing chiral ECH is the kinetic resolution of its racemate
by epoxide hydrolases (EH), which catalyze the opening of the epoxide ring to the corresponding diol in
the presence of water [93,94]. It should be noted that HHDH produces mainly S-ECH and recombinant
EH produces R-ECH. As an example, Kim et al. performed the resolution of R,S-ECH by using
recombinant EH, yielding enantiopure (100% ee) R-ECH (Table 2, entry 2.6) [95]. Lee et al. prepared
R-ECH with almost similar yield (28.5%) and ee (99%) [96]. Jin et al. improved the yield (42.7%) (Table 2,
entry 2.8) but reported substrate and product inhibition when the substrate concentration was higher
than 320 mM [84]. It should be highlighted that 50% is the highest yield that can be achieved when
performing kinetic resolution of a racemate.

Table 2. ECH synthesis using biotechnological approaches.

Entry Enzyme Type Enzyme from/Mutant Isomer ee (%) Yield (%) Comments Ref.

2.1 HHDH Tistrella mobilis ZJB1405
(E. coli) S-ECH N.P. 75 Alkaline pH,

45 ◦C [92]

2.2 HHDH E.coli BL21(DE3) ECH N.P. 88.3 HZD-9 resin at
10% (w/v) [90]

2.3 HHDH Agrobacterium radiobacter R-ECH 99 41 NO2, pH5,
37 ◦C, 18 min [85]

2.4 HHDH P175S/W249P S-ECH 92.3 93.2. pH = 10 [91]

2.5 HHDH + EH N.P. S-ECH 99 91.2 Enzyme
combination [91]

2.6 EH
Pichia pastoris harboring
the Rhodotorula glutinis

EH
R-ECH 100 26.4 [95]

2.7 EH N.P. R-ECH 99 28.5 [96]

2.8 EH A. radiobacter R-ECH ≥99 42.7
Subtract and

product
inhibition

[84]

N.P., not provided.

2.2.2. Chemical Synthesis of ECH

The chemical synthesis of ECH from dichlorohydrins has been studied extensively. Typically,
1,3-DCH and 1,2-DCH can be transformed into ECH by dehydrochlorination in the presence of alkali
hydroxides. Alkaline hydroxides increase the nucleophilicity of OH, which produces the epoxide by
substituting one of the chlorines. This reaction is very fast and requires special attention due to the
easy occurrence of side reactions.

Various studies (Table 3) have been devoted to the reaction conditions. The composition
of the reactive mixtures was studied [97], concluding that 1,2-DCH is much less reactive
than 1,3-DCH, although primary alkyl alcohols are more acidic than secondary alkyl alcohols.
The influence of the reactor on the reaction kinetics [98,99] and of the cation on the 1,3-DCH
dehydrochlorination [59,61,97,100] was also studied.

Lari et al. carried out dehydrochlorination of DCH in the gas phase, in the presence of mixed
heterogeneous oxide prepared from hydrotalcite of Al and Mg, which allowed yields of ECH up to
60% [60]. However, this is the lowest yield compared to other chemical processes (Table 3). Alternatively,
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solid catalysts were prepared by the equivalent-volume impregnation method, using γ-Al2O3 as
a carrier, whereas nitrates and chlorides of the three alkaline earth metals (Mg, Ca and Ba) were
employed as precursors. Under optimized conditions, a 90% yield was achieved by using 10BaO/γ-Al2O3

at 270 ◦C [101]. Chemical reactions can provide ECH with yields up to 99%, a value slightly higher than
the best yield obtained using HHDH+HE [91]. The use of this biotechnological approach allows the
synthesis of the S-ECH enantiomer with a 99% ee. In addition, the biotechnological approaches avoid
the presence of by-products, such as chloroacetone, glycidol, diglycidyl ether and polyglycerols, that are
very usual when ECH is synthesized by using the chemical approaches. Moreover, the use of alkaline
hydroxides leads to a large amount of salt wastes, thus compromising the sustainability of the technology.
Nevertheless, chemical approaches allow working in higher reagent concentration than biotechnological
approaches, a usual drawback of the biotechnological approaches from an industrial point of view.

Table 3. ECH synthesis using basic catalysts.

Reagent Catalyst Reactor System Temperature (◦C) Yield % Ref.

1,3-DCH NaOH Continuous
millireactor 30–70 50–99 [59]

1,3-DCH:1,2-DCH(98:2) Ca(OH)2:CaCO3:H2O
(96:4:1, w/w%)

Pre-reactor/reactor
Stripping column 51/64 85–90 [98,102]

1,3-DCH: 1,2-DCH NaOH Microreactor 50–80 92 [97]

1,3-DCH Ba, Ca and
Ba/γ-Al2O32

Fixed-bed reactor 150–300 10–90 [101]

1,3-DCH:1,2-DCH
Aqueous (5–10 wt%)

Heterogeneous
hydrotalcite

Continuous-flow
fixed-bed 200 60 [60]

N.P., not provided.

2.3. Sinthesis of Dichloropropyl Esters from Glycerol

The one-pot synthesis of chlorinated derivatives by using crude glycerol or other polyols
as starting materials and chlorotrimethylsilane (CTMS) was described by the authors’ research
group (Figure 4) [103]. These chlorinated derivatives showed no effect over fungi and bacteria in
preliminary studies, (unpublished results), indicating that these compounds are less toxic than the parent
chlorohydrins. Consequently, they could be used instead of 1,3-DCH in some equivalent reactions.
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were employed as precursors. Under optimized conditions, a 90% yield was achieved by using 

10BaO/γ-Al2O3 at 270 °C [101]. Chemical reactions can provide ECH with yields up to 99%, a value 

slightly higher than the best yield obtained using HHDH+HE [91]. The use of this biotechnological 

approach allows the synthesis of the S-ECH enantiomer with a 99% ee. In addition, the 

biotechnological approaches avoid the presence of by-products, such as chloroacetone, glycidol, 

diglycidyl ether and polyglycerols, that are very usual when ECH is synthesized by using the 

chemical approaches. Moreover, the use of alkaline hydroxides leads to a large amount of salt 

wastes, thus compromising the sustainability of the technology. Nevertheless, chemical approaches 

allow working in higher reagent concentration than biotechnological approaches, a usual drawback 

of the biotechnological approaches from an industrial point of view. 

Table 3. ECH synthesis using basic catalysts. 

Reagent Catalyst Reactor System 
Temperature 

(°C) 
Yield % Ref. 

1,3-DCH NaOH 
Continuous 

millireactor 
30–70 50–99 [59] 

1,3-DCH:1,2-

DCH(98:2) 

Ca(OH)2:CaCO3:H2O 

(96:4:1, w/w%) 

Pre-reactor/reactor 

Stripping column 
51/64 85–90 

[98,1

02] 

1,3-DCH: 

1,2-DCH 
NaOH Microreactor 50–80 92 [97] 

1,3-DCH   Ba, Ca and Ba/γ-Al2O32 Fixed-bed reactor  150–300 10–90 [101] 

1,3-DCH:1,2-

DCH 

Aqueous (5–

10 wt%) 

Heterogeneous 

hydrotalcite 

Continuous-flow 

fixed-bed 
200 60 [60] 

N.P., not provided. 

2.3. Sinthesis of Dichloropropyl Esters from Glycerol 

The one-pot synthesis of chlorinated derivatives by using crude glycerol or other polyols as 

starting materials and chlorotrimethylsilane (CTMS) was described by the authors’ research group 

(Figure 4) [103]. These chlorinated derivatives showed no effect over fungi and bacteria in 

preliminary studies, (unpublished results), indicating that these compounds are less toxic than the 

parent chlorohydrins. Consequently, they could be used instead of 1,3-DCH in some equivalent 

reactions. 
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Figure 4. Synthesis of chlorohydrin ester, using carboxyl derivatives, glycerol and CTMS as reagents. Figure 4. Synthesis of chlorohydrin ester, using carboxyl derivatives, glycerol and CTMS as reagents.

The alkyl chain structure of the carboxylic acid had a clear influence on the regioselectivity of the
reaction. Long chains increased the regioselectivity toward the α-chloroalkyl and 1,3 dichloroprop-2-yl
radicals, whereas short chains and electron withdrawing substituents on the α carbon reduced
regioselectivity [104]. An increase in the degree of substitution of functional groups with α-electron
donors led to an increase in the regioselectivity of the reaction [79]. Regioselectivity decreased with
increasing temperature, which indicated a kinetic control of the process [105].

The synthesis of chlorohydrin esters from glycerol using an ionic liquid as a solvent and hydrated
aluminum chloride as a source of chlorine was also described [106]. This approach allowed the use
of hydrated aluminum chloride as a chlorine source, avoiding the use of CTMS, a more expensive
reagent. Alkyl and aryl acids were used to synthesize chlorohydrin esters, although yields largely
depended on the carboxylic acid used. Nevertheless, the corresponding 1,3-dichloro-2-propyl ester
was always the main regioisomer (Figure 5).
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3. From Building Blocks to End Products

3.1. Synthesis of Non-Cyclic Compounds

3.1.1. Synthesis of Allyl Esters

The synthesis of allyl fatty esters by using various fatty materials (soy oil, frying oils, palm oil,
waste animal fats, etc.) and crude glycerol was described by the authors’ research group (Figure 6).
Allyl esters were prepared through a two-step reaction, using both conventional and microwave
heating [79]. The first step consisted of the synthesis of chlorohydrin esters, as described above.
The second step was a Finkelstein-rearrangement–elimination reaction induced by NaI. The reactions
were carried out by using butanone [107] or BuOH [79], two solvents that allowed the substitution
of a chlorine atom by one iodine atom. Subsequently, the necessary acyl rearrangement and halide
elimination took place. The reaction was performed by using conventional or microwave heating.
Conventional heating yielded better conversion rates (about 90%, except for olive oil and cocoa industry
wastes). Although microwave heating showed a lower conversion rate, and a dark colour was observed
in crude products (suggesting degradation), the second step was completed in only 25 min, whereas
conventional heating required 48 h [50].
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Figure 6. Synthesis of allyl fatty esters, using various fatty materials. Step 1: Conventional heating at
115 ◦C/48 h and microwave (MW) were 225 ◦C, 300 W, 17 atm for 3h. Step 2: Conventional heating was
115 ◦C/48 h, and MW was 150 ◦C for 25 min.

Several compounds containing an allyl group are biologically active as insecticides, acaricides
and insect repellents [108–110]. Allyl fatty acids esters have been suggested as wood preservatives
against termites [111].

In addition, an ovicidal effect against Cydia pomonella (L.) was described for allyl carboxylates [112].
Another application of allyl ester mixtures of higher fatty acids is in polymer synthesis. Highly effective
and generally useful copolymers have been prepared from allyl esters [113].

3.1.2. Synthesis of Nitrile Derivatives

Using halohydrin dehalogenase (HheC) from Agrobacterium radiobacter, 1,3-DCH or R,S-ECH was
used to prepare S-4-chloro-3-hydroxybutanenitrile (S-CHBN) (Figure 7). The synthesis of S-CHBN
from R,S-ECH yielded a modest enantiomeric excess, whereas the use of 1,3-DCH as substrate led to
S-CHBN, with 97.3% ee after pH optimization. S-CHBN was also prepared from 1,3-DCH, with an 86%
yield and a 97.5% ee in 1 h, using W249F a HheC mutant constructed by site-directed mutagenesis [114].

The enantiomer R-CHBN was synthesized from 1,3-DCH by using recombinant HheB from
Corynebacterium sp. N-1074. The final yield was 65%, and the product had an ee of 95.2% [115].
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Figure 7. Continuous synthesis of (S)-4-chloro-3-hydroxybutanenitrile (S-CHBN) from 1,3-DCH and
NaCN catalyzed by halohydrin dehalogenase (HheC).

Chiral C4 compounds are synthetic units useful for the production of various pharmaceuticals
and chiral polymers [116]. As an example, S-CHBN is used as a precursor of atorvastatin,
a cholesterol-lowering drug [114].

3.1.3. Synthesis of Azide Derivatives

Synthesis of Diazides

To prepare the corresponding diazide derivatives, 1,3-Dichloroprop-2-yl esters were used
(Figure 8) [117,118]. The substitution process was carried out by using a conventional methodology to
prepare azides [119]. The reaction of 1,3-dichloroprop-2-yl ester with NaN3 (Figure 8, See Supplementary
Materials Section 1.1.2) yielded 1,3-diazidoprop2-yl esters (70–86% yield), which can be used as crude
material for further reactions.
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Figure 8. Synthesis of azides from glycerol and carboxylic acids.

Synthesis of Mononoamide Derivatives

The synthesis of nine monoamides from crude glycerol and carboxylic acids (C8-C18) was
described by the authors’ research group [120]. Diazides were synthesized through the pathway shown
in Figure 8. Diazides were reduced by catalytic hydrogenation, under mild conditions, using Pd/C.
The reduction resulted in an O- to N-acyl migration to yield a monoamide (Figure 9).
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Figure 9. Synthesis of monoamides by hydrogenation of the corresponding diazides.

The use of monoamides as phase change materials (PCM) in thermal energy storage was
investigated. The enthalpy of the monoamides ranged from 25.8 to 149.7 kJ/kg. The highest values
of latent heat were of the same order as those of commercial PCMs with low latent heat values, such
as paraffin wax (146–210 kJ/kg) [121]. These compounds, which can form at least 4 hydrogen bonds,
a powerful assembly tool in terms of PCM activity, were used to demonstrate the effect of hydrogen
bonds and alkyl chain on their thermal properties [120].

3.1.4. Sulfonamides

Lupasçu et al. described the synthesis of water-soluble rutin-sulfonamide derivatives with high
yields (83–94%). The reaction was carried out by using 1,3-DCH as the linker of rutin and several
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sulfonamides, resulting in some water-soluble sulfonamide derivatives (Figure 10). The derivatives
with pyridine (sulfapyridine) and chloropyridazine (sulfachloropyridazine) showed an equal or even
higher antibacterial activity than co-trimoxazole, an antibiotic used to treat a variety of bacterial
infections. Co-trimoxazole consists of one part of trimethoprim to five parts of sulfamethoxazole [122].
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The synthesis of dinucleating ligands was carried out by using 1,3-DCH [123,124]. The synthesis 
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holds two carboxyl groups and two pyridine arms. While Patra et al. synthesized the ligand by 

reacting glycine with 1,3-DCH in the first step and obtaining the ligand with a 75% yield after a 

second reaction step with 1-chloromethylpyridine, Haldar et al. used β-alanine instead of glycine as 

a reagent, achieving the corresponding ligand, with a 73% yield. 
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Cooper (II) complexes were also obtained via the synthesis of a bipyrazolic ligand, bearing two 

carboxyl groups (Figure 12). The first step was similar to the previous one, 1,3-DCH reacted with 

two molecules of the corresponding pyrazole derivative. The final Cu(II) complex showed good 

catalytic properties in the oxidation of catechol [126]. 
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3.1.5. Synthesis of Polynuclear Metals

The synthesis of dinucleating ligands was carried out by using 1,3-DCH [123,124]. The synthesis
was a two-step reaction (Figure 11) [124,125]. The symmetrical dinucleating ligand (H3hpnbpd) holds
two carboxyl groups and two pyridine arms. While Patra et al. synthesized the ligand by reacting
glycine with 1,3-DCH in the first step and obtaining the ligand with a 75% yield after a second
reaction step with 1-chloromethylpyridine, Haldar et al. used β-alanine instead of glycine as a reagent,
achieving the corresponding ligand, with a 73% yield.
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Cooper (II) complexes were also obtained via the synthesis of a bipyrazolic ligand, bearing two
carboxyl groups (Figure 12). The first step was similar to the previous one, 1,3-DCH reacted with two
molecules of the corresponding pyrazole derivative. The final Cu(II) complex showed good catalytic
properties in the oxidation of catechol [126].  Molecules 2020, 25, x FOR PEER REVIEW 12 of 39 
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Polynuclear metals have many potential applications, e.g., therapeutic agents (e.g., photocleavage
of DNA), photovoltaic components, photocatalysts, magnetic materials and tuneable chemical
sensors [127–130].



Molecules 2020, 25, 2511 12 of 38

3.1.6. Glycoconjugate Synthesis

In the synthesis of 1,2-cis-alkyl glycosides, 1,3-DCH was used. Figure 13 shows the synthesis
of 1,3-dichoroprop-2-yl-2,3,4,6-tetra-O-acetyl-α-d-galactopyranoside. The first step consisted of the
substitution of the thiophenoxy group of the hemithioacetal of β-d-galactopyranoside by 1,3-DHC.
This substitution allowed the synthesis of the corresponding α-d-galactopyranoside alkyl isomer.
Finally, the peracetylation of the free alcohol led to the final product, with an 84.9% yield [131].
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In a similar approach, Salman et al. described the attempt to synthesize diamide-linked
bi-antennary surfactants with close structural similarity to natural glycol-glycerolipids [132].
The starting peracetylated disaccharide reacted with 1,3-DCH, in the presence of a Lewis acid
(BF3), to yield the corresponding alkyl sugar. The substitution of both chlorine atoms by the azide
group led to the corresponding diazide. However, the Staudinger-based coupling of fatty acid chlorides
did not provide the expected diamide, obtaining the cyclic coupling products instead (Figure 14).
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Carbohydrates and glycoconjugates are essential components of the cell membrane.
They participate in many functions [133]. Therefore, the chemical synthesis of these glycoconjugates
(proteoglycans, glycolipids and glycoproteins) is important for the study of their biological functions.
As an exemple, glycol-glycerol lipid amide analogues exhibit very high Krafft temperatures [132].
Anomerically pure alkyl glycosides are used as building blocks to achieve stereoselective synthesis
of these structures. Some of them (mostly propargyl and allyl glycosides) [134,135] are also essential
components for the construction of microarrays [136,137] and glycodendrimers [138].

3.1.7. Funcionalization of Aza-Heterocyclic Compounds

Chlorohydrins and ECH were used to prepare derivatives of pyridine [139–141], phtalazines [142–144],
oxazolidinone [122,145,146], triazinones [147], thioglycoside [148] and aziridines [149]. N-Heterocycles
have wide applicability as antibiotics [150–152]. The evaluation of novel agents for antimicrobial activity
is a very important field of study due to the emergence of bacterial resistance to classical antibiotics.

Pyridine Derivatives

The synthesis of O-alkyl nicotinonitriles by the reaction of 1,3-DCH or ECH with pyridin- 2(1H)-one
in presence of K2CO3 is shown in Figure 15a,b. A similar reaction is described in Figure 15c. The 1,3-DCH
or ECH reacted with pyridin-2(1H)-one in the presence of NaH, affording the corresponding N-linked
products. K2CO3 favored the O-alkylation of the lactam, while NaH favored the N-alkylation.
The derivative synthesized from ECH by Moustafa et al. showed moderate antibacterial activity
compared to the standard drug, while the dichloropropanol derivative showed no activity against
the tested microorganisms [140]. The compounds synthesized by Saad et al. showed antibacterial
effects but no activity against the target fungal strains [140]. However, the compounds synthesized by
Shamroukh et al. showed remarkable cytotoxicity activity against MCF-7 and HepG2 cell lines [141].
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Synthesis of Aziridine Derivatives

Lebel et al. described the synthesis of a N-tosyloxycarbamate using 1,3-DCH and tosyl chloride.
The use of a chiral bis(oxazoline) copper complex with the N-tosyloxycarbamate yielded the asymetric
aziridines with a enantiomeric R/S ratio of 4:1 (Figure 16) [149].
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Aziridines are the smallest nitrogen-containing heterocycles. Although aziridine moiety is 

present in few natural products [153], they display important biological activities [154,155]. 

Aziridines have been introduced into various structures, to create novel chemotherapeutic agents 
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Synthesis of Pthalazine Derivatives 

The reaction of 1,3-DCH and ECH with arylphthalazinone yielded phthalazin derivatives [142–

144,147]. Figure 18a shows the N-alkyl products resulting from the nucleophilic attack of the 

nitrogen in the phthalazinone on 1,3-DCH (33% to 36% yield) or ECH (51% to 54% yield). This attack 

was promoted by the presence of K2CO3. The loss of aromaticity, when an aryl radical was 

substituted by a benzyl radical, allowed the regiospecific nucleophilic attack of the oxygen instead of 

the nitrogen on 1,3-DCH and ECH (Figure 18b) [144]. The reaction of ECH occurred via ring 

opening–ring closing of the oxirane nucleus (54% yield), while the reaction with 1,3-DCH, was 
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Aziridines are the smallest nitrogen-containing heterocycles. Although aziridine moiety is present
in few natural products [153], they display important biological activities [154,155]. Aziridines have
been introduced into various structures, to create novel chemotherapeutic agents [156,157].

In organic chemistry, aziridines are valuable building blocks. As an example, their reaction
with many nucleophiles can result in ring-opening reactions [158–161]. They can also be used as key
intermediates in diversity-oriented synthesis of alkaloids [162]. Aziridines have been used in the
asymmetric total syntheses of renieramycins M and G and jorumycin, marine bioactive compounds
from a blue sponge and a molusc, respectively [163]. Aziridines are masked 1,3-dipoles that react with
alkenes, alkynes, nitriles and carbonyl compounds to produce various [3+2] cycloadducts [164].

Synthesis of 1,2,4-Triazinones Derivatives

The synthesis of S-alkyl 4-amino-3-mercapto-6-(2-(2-thienyl)vinyl) -1,2,4-triazin -5(4H)-one
derivatives, using 1,3-DCH or ECH, is shown in Figure 17. Potassium carbonate in DMF was
again used as a base, to improve the nucleophilicity of the S atom, preserving the epoxy group in the
final product. These compounds showed moderate anticancer activity [147].
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Synthesis of Pthalazine Derivatives

The reaction of 1,3-DCH and ECH with arylphthalazinone yielded phthalazin
derivatives [142–144,147]. Figure 18a shows the N-alkyl products resulting from the nucleophilic
attack of the nitrogen in the phthalazinone on 1,3-DCH (33% to 36% yield) or ECH (51% to 54%
yield). This attack was promoted by the presence of K2CO3. The loss of aromaticity, when an aryl
radical was substituted by a benzyl radical, allowed the regiospecific nucleophilic attack of the oxygen
instead of the nitrogen on 1,3-DCH and ECH (Figure 18b) [144]. The reaction of ECH occurred via
ring opening–ring closing of the oxirane nucleus (54% yield), while the reaction with 1,3-DCH, was
described as a SN2 reaction to yield O-(3-chloro-2-hydroxypropyl) phthalazine (36% yield). Finally, Se-
and S-alkyl phthalazines were also synthesized, with yields in the range of 71–72% and 62–75% for the
1,3-DCH and ECH, respectively (Figure 18c). All compounds showed moderate-to-high antimicrobial
activity in comparison with standard drugs [142,143].
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3.1.8. Synthesis of Polymers

De Espinosa et al. described a plant-oil-based diene containing hydroxyl groups ten years ago.
The diene was prepared by the esterification ofω–alkenyl carboxylic acids (Figure 19) with 1,3-DCH.
A phase-transfer catalyst was used due to the high difference of polarity between both reagents.
The dimer was polymerized via ADMET polymerization, using a Hoveyda–Grubbs 2nd generation
catalyst. It was also copolymerized with an α,ω-diene bearing a DOPO pendant group, also using a
Grubbs 2nd generation catalyst (Figure 20). The resulting phosphorus-containing polyesters showed
molecular weights up to 7000 Da [165]. The crystallinity of these polyesters decreased as the amount
of DOPO-based comonomer (M2) increased. Totally amorphous polymers were obtained for the
highest M2 content. Some of these plant-oil-based polymers showed glass transition temperatures
ranging from 35 to 52 ◦C, good thermal stability and relatively good flame retardancy, despite their
high aliphatic (fatty acid) content.
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Figure 20. Synthesis of phosphorus-containing polyesters via ADMET copolymerization in presence of
Grubbs 2nd generation catalyst (C2).

Moreover, 1,3-DCH was also used to prepare polymers with specific properties [166]. These
polymers are used in many areas, because good flame retardancy for polymeric materials is of great
concern to both consumers and manufacturers [167].

3.2. Cyclic Compounds

3.2.1. Synthesis of Oxo-Heterocycles

To synthesize oxetane and carbonate compounds, 1,3-DCH and ECH were used, respectively.
In addition, 1,3-DCH was used to synthesize a 1,3-dichloroprop-2-yl ether by the catalyzed Rh2(OAc)4-

substitution of an imino group (Figure 21). The subsequent abstraction of the β-proton of the diester
by NaH led to the corresponding chloromethyloxetane with a 77% yield [168].
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Figure 21. Synthesis of oxetane rings described by Davis et al. [169].

Oxetane is a motif found in natural products and biologically active compounds. Oxetanes
are widely used as intermediates in chemical synthesis, such as featuring ring expansion and
opening [170–177], rearrangement processes [178,179] or in polymer synthesis [180–188]. They are used
in drug discovery [189–195], as they are considered stable adjuncts to adapt solubility, lipophilicity and
other physicochemical properties toward drug-like molecules [90,189,190,196,197]. As an example,
oxetans show, as a result of their low lipophilicity, a higher metabolic robustness than larger oxygen
heterocycles [198,199].

Bobbink et al. described the synthesis of a cyclic carbonate by the cycloaddition of CO2 to ECH
(Figure 22). The reaction catalyzed by an imidazolium salt led to the selective addition of CO2 to
the epoxide with a 99% yield—a very high yield, considering the thermodynamic stability of CO2.
This approach is of particular interest in CO2 gas recovery, since cyclic carbonates may be used in
polymer synthesis [200].
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Figure 22. Synthesis of cyclic carbonates, using vinyl-functionalized di-imidazolium salts polymers as
the catalyst.

3.2.2. Synthesis of Aza-Heterocycles

Moreover, 1,3-DCH and ECH were also used to prepare oxazolidinones and triazoles.

Synthesis of Oxazolidinones

The synthesis of oxazolidinones was described by using 1,3-DCH [145,146], or 1,3-dichloropropan-
2-yl esters [118]. Figure 23 shows the synthesis of oxozalidinones, starting from 1,3-dichloropropan-2-yl
esters described by the authors’ research group [118].
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Figure 23. Synthesis of oxazolidinones from dicholoralcohol esters.

The first step was the preparation of the diazide as previously described (Section 3.1.3; Figure 8).
The hydrogenation of the azide derivatives led to the corresponding monoamide by a O- to N-acyl
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migration (Figure 23) [120]. The monoamide reacted with urea or CO2, under the conditions shown in
Figure 23, (see Supplementary Materials Section 1.2.2) to achieve the corresponding oxazolidinone.
The final yield, determined by 1H RMN, for the urea reaction ranged from 14% to 59%. When the
reaction was carried out with CO2 at a high pressure and temperature, the corresponding urethane
was obtained with a 7% to 9% yield. Unfortunately, these urethanes showed low stability when
purified [118].

Both 1,3-DCH and chlorosulphonyl isocyanate were the starting materials to obtain a carbamate
which was used afterward to synthesize sulfonamides bearing oxazolidinone rings [145,146].
The resulting carbamate reacted with oxazolidinones yielding N-oxazolinone sulfonamide. Finally,
the addition of a base (K2CO3) allowed the reaction of the NH in the sulfonamide with one of the
carbons bonded to a chlorine atom, yielding the corresponding N,N-bis-oxazolidinones-sulfones.
The compound with an isobutyl radical was synthesized with a 90% yield, while the benzyl substituted
compound was synthesized with only a 9% yield (Figure 24, R). Alternatively, the reaction between
the carbamate and amines led to substituted sulfamides. Finally, the carboxylsulfamides in presence
of potassium carbonate in acetonitrile led to 5-chloromethyl-2-oxazolidinone sulphonamides with a
chiral center at the 5-position (90% to 98% yield) (Figure 24, R1) [145,146]. The antibacterial activity of
these compounds was evaluated. Most of the compounds showed moderate-to-good antibacterial
activity [145].
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Figure 24. Synthesis of sulphamoyloxazolidinones from 1,3-DCH. 
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Synthesis of Triazole Derivatives

Triazoles are important molecules for chemical synthesis and also as bioactive molecules.
Figure 25 shows the synthesis of an S-acyclonucleoside by alkylation of 5-(2-methylthio)phenyl-
1,2,4-triazole-3-thiol with 1,3-DCH or ECH. The 1,2,4-triazole thioglycoside was obtained by using
potassium carbonate in DMF. Potassium carbonate was again used as a base to improve the
nucleophilicity of the S atom preserving the epoxy group in the final product [148].

 Molecules 2020, 25, x FOR PEER REVIEW 20 of 39 

 

Synthesis of Triazole Derivatives 

Triazoles are important molecules for chemical synthesis and also as bioactive molecules. 

Figure 25 shows the synthesis of an S-acyclonucleoside by alkylation of 

5-(2-methylthio)phenyl-1,2,4-triazole-3-thiol with 1,3-DCH or ECH. The 1,2,4-triazole thioglycoside 

was obtained by using potassium carbonate in DMF. Potassium carbonate was again used as a base 

to improve the nucleophilicity of the S atom preserving the epoxy group in the final product [148]. 

N

N
N

NH2
S

S

CH3

O

N

N
N

NH2
S

S

CH3

Cl

OH

Cl
O

OH

Cl Cl

K2CO3/DMF/reflux, 7h

K2CO3/DMF/reflux, 1h

N

N
N

NH2
SH

S

CH3 80%

60%

 

Figure 25. Synthesis of triazole-thioglycoside from ECH and DCH. 

Triazole acyclic nucleosides synthesized from ECH have moderate-to-high antifungal and 

antibacterial activities compared to standard drugs [148]. Another application of triazoles is the 

preparation of microliter plates. Microliter plates were coated with hydrocarbon chains bearing a 

sugar moiety. This sugar motif was attached to the alkane by a 1,3-dipolar cycloaddition. These 

coated plates were used to develop new microfabrication methods for application in the screening of 

bioactive carbohydrates and enzymatic activities [201]. Based on this idea, the synthesis of novel 

compounds with alkyl chains bearing two sugar moieties per chain in their head was designed. The 

synthesis was carried out by using diazide derivatives and alkinyl glycosides, which were prepared 

by using the Fischer glycosilation reaction [23]. The corresponding triazole derivatives were 

synthesized by the 1,4-regioselectivity copper(I)-catalyzed azide-alkyne cycloaddition reaction 

(CuAAC). This approach allowed the synthesis of 1,4-disubstituted 1,2,3-triazoles as unique 

regioisomers [202]. Yields ranged from 40% to 57%, after column purification (see Supplementary 

Materials Section 2.2.2).  

Microliter plates bearing the synthesized compounds were prepared. The interactions between 

the alkane sugars and C-lectin glycoproteins were measured by using surface plasmon resonance 

spectroscopy (SPR) in a high-throughput multichannel mode with a GLC chip. However, no 

response was achieved on SPR sensograms, even at the higher concentration (100 μM solution). 

Polymers bearing one sugar moiety per chain act as competitors for gp120, an epitope of AIDS, 

to interact with DC-SIGN [203]. Considering this, the authors’ research group planned the synthesis 

of polymeric structures similar to those already described [203] but with two sugar moieties per 

chain and using glycerol as a starting material. Figure 26 shows the synthetic strategy used to 

prepare the corresponding monomer. Then, 1,3-DCH was prepared from crude glycerol, using 

chlorotrimethylsilane and acetic acid as the catalyst [105]. The reaction of 1,3-DCH with propargyl 

alcohol in basic media afforded 1,3-bis(prop-2-yn-1-yloxy)propan-2-ol. The basic media increased 

the nucleophilicity of the hydroxyl in propargyl alcohol, which is more acidic than the secondary 

alcohol of 1,3-DCH. The esterification of 1,3-dialkynyloxy-2-propanol with acryloyl chloride yielded 

1,3-bis(prop-2-yn-1-yloxyl)propan-2-yl prop-2-enoate (see Suplementary Materials 2.2.5) [118].  

Figure 25. Synthesis of triazole-thioglycoside from ECH and DCH.

Triazole acyclic nucleosides synthesized from ECH have moderate-to-high antifungal and
antibacterial activities compared to standard drugs [148]. Another application of triazoles is the
preparation of microliter plates. Microliter plates were coated with hydrocarbon chains bearing a
sugar moiety. This sugar motif was attached to the alkane by a 1,3-dipolar cycloaddition. These coated
plates were used to develop new microfabrication methods for application in the screening of bioactive
carbohydrates and enzymatic activities [201]. Based on this idea, the synthesis of novel compounds
with alkyl chains bearing two sugar moieties per chain in their head was designed. The synthesis was
carried out by using diazide derivatives and alkinyl glycosides, which were prepared by using the
Fischer glycosilation reaction [23]. The corresponding triazole derivatives were synthesized by the
1,4-regioselectivity copper(I)-catalyzed azide-alkyne cycloaddition reaction (CuAAC). This approach
allowed the synthesis of 1,4-disubstituted 1,2,3-triazoles as unique regioisomers [202]. Yields ranged
from 40% to 57%, after column purification (see Supplementary Materials Section 2.2.2).

Microliter plates bearing the synthesized compounds were prepared. The interactions between
the alkane sugars and C-lectin glycoproteins were measured by using surface plasmon resonance
spectroscopy (SPR) in a high-throughput multichannel mode with a GLC chip. However, no response
was achieved on SPR sensograms, even at the higher concentration (100 µM solution).

Polymers bearing one sugar moiety per chain act as competitors for gp120, an epitope of AIDS,
to interact with DC-SIGN [203]. Considering this, the authors’ research group planned the synthesis
of polymeric structures similar to those already described [203] but with two sugar moieties per
chain and using glycerol as a starting material. Figure 26 shows the synthetic strategy used to
prepare the corresponding monomer. Then, 1,3-DCH was prepared from crude glycerol, using
chlorotrimethylsilane and acetic acid as the catalyst [105]. The reaction of 1,3-DCH with propargyl
alcohol in basic media afforded 1,3-bis(prop-2-yn-1-yloxy)propan-2-ol. The basic media increased
the nucleophilicity of the hydroxyl in propargyl alcohol, which is more acidic than the secondary
alcohol of 1,3-DCH. The esterification of 1,3-dialkynyloxy-2-propanol with acryloyl chloride yielded
1,3-bis(prop-2-yn-1-yloxyl)propan-2-yl prop-2-enoate (see Supplementary Materials 2.2.5) [118].
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Figure 27. Proposed structure for the dead polymer synthesized through SET-LRP polymerization. 

A similar starting approach was described by Legros et al. for the synthesis of novel 

β-cyclodextrin dimers. Glycerol-type linking arms were synthesized from 1,3-DCH or ECH, using 

NaOH as a basic catalyst. Propargyl alcohol and butynol were used as nucleophilic reagents. A 

phase transfer catalysis (Bu4NBr) was also used in the reaction between ECH and butynol (Figure 28) 
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Figure 26. Synthesis of bis-triazol monomers from glycerol.

Finally, the reaction of 1,3-bis(prop-2-yn-1-yloxyl)propan-2-yl prop-2-enoate with a sugar azide
led to the desired monomer through a CuAAC reaction. This last step was performed in H2O:THF
(1:1), with a 10% hydroquinone as a polymerization inhibitor.

The polymerization of the glycomonomer D-mannose was intended, using Cu(0)/Cu(II)/Me6TREN
as a catalyst with EBiB as initiator (Figure 27). Although the expected polymer with the terminal
bromine was not detected through using the MALDI-ToF technique, dead polymer chains (with terminal
hydrogen) and two-to-five added chains were obtained. The exchange of the bromine by the proton
was mainly caused by disproportionation and chain transfer side reaction, which led to the loss of the
terminal bromine (see Supplementary Materials Section 2.2.6) [118].
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A similar starting approach was described by Legros et al. for the synthesis of novel 

β-cyclodextrin dimers. Glycerol-type linking arms were synthesized from 1,3-DCH or ECH, using 

NaOH as a basic catalyst. Propargyl alcohol and butynol were used as nucleophilic reagents. A 

phase transfer catalysis (Bu4NBr) was also used in the reaction between ECH and butynol (Figure 28) 

[118]. 

Figure 27. Proposed structure for the dead polymer synthesized through SET-LRP polymerization.

A similar starting approach was described by Legros et al. for the synthesis of novelβ-cyclodextrin
dimers. Glycerol-type linking arms were synthesized from 1,3-DCH or ECH, using NaOH as a basic
catalyst. Propargyl alcohol and butynol were used as nucleophilic reagents. A phase transfer catalysis
(Bu4NBr) was also used in the reaction between ECH and butynol (Figure 28) [118].
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Figure 29. Synthesis of β-CD dimers with a functionalized glycerol linker.  

Due to their unique cup-like structures, CDs are known to form inclusion complexes in 

aqueous solution. CDs have a wide range of applications that include the areas of drug delivery 

[210,211], analytical chemistry [212], artificial enzymes [213], photochemical sensors [214], food 

technology [215], catalysis [216] and nanostructured functional materials [217]. In comparison with 

CD monomers, bridged bis(β-CD) derivatives allow two hydrophobic cavities to be in close vicinity, 

thus improving the desired properties. Moreover, the presence of functional linkers between the 

two CDs can supply a well-organized pseudo-cavity that may afford supplementary binding 

properties [218,219]. 

3.2.3. Synthesis of Ionic Compounds Based on Quaternary Bis-Ammonium Salts 

In the study, 1,3-DCH was used to synthesize gemini imidazolium salts, with an hydroxyl in 

the spacer group and lateral chains of different length (Figure 30a) [220]. A similar reaction with 

amines instead of imidazole was described by Song et al., who synthesized bis-quaternary 

ammonium salt (BQAS) with a hydroxyl in the spacer group [221]. This salt was synthesized by the 

reaction of 1,3-DCH with N,N dimethyldodecylamine [221], achieving a 90% yield. BQAS exhibited 

broad-spectrum bactericidal activity [221]. Another BQAS was synthesized by using monoamides of 

α,ω-diamines (Figure 30b). All of these syntheses are based on the nucleophylic attack of a tertiary 

amine to the carbons of 1,3-DCH supporting the chlorine atoms. The presence of a hydroxyl in the 

spacer group confers tuneable properties to these compounds [222,223]. 

Imidazolium derivatives showed higher thermal stability than conventional quaternary 

ammonium gemini surfactants and two-phase transitions before decomposition [220]. Amide-based 

gemini cationic surfactants presented superior surface/interfacial activities and easy biodegradables, 

suggesting them as potential products in industrial fields, such as surfactant flooding [224].  

Figure 28. Synthesis of glycerol-type linking arms based on alkenyl motifs using DCH and ECH.

These glycerol-type linkers were used to synthesize β-CD dimers by a CuAAC reaction
(Figure 29) [204–207]. One of these CD dimers showed unusual conformations in aqueous solutions.
These conformations depended on the length of the linking arm between the two cyclodextrins [208,209].
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Due to their unique cup-like structures, CDs are known to form inclusion complexes in 

aqueous solution. CDs have a wide range of applications that include the areas of drug delivery 

[210,211], analytical chemistry [212], artificial enzymes [213], photochemical sensors [214], food 

technology [215], catalysis [216] and nanostructured functional materials [217]. In comparison with 

CD monomers, bridged bis(β-CD) derivatives allow two hydrophobic cavities to be in close vicinity, 
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Figure 29. Synthesis of β-CD dimers with a functionalized glycerol linker.

Due to their unique cup-like structures, CDs are known to form inclusion complexes in aqueous
solution. CDs have a wide range of applications that include the areas of drug delivery [210,211],
analytical chemistry [212], artificial enzymes [213], photochemical sensors [214], food technology [215],
catalysis [216] and nanostructured functional materials [217]. In comparison with CD monomers,
bridged bis(β-CD) derivatives allow two hydrophobic cavities to be in close vicinity, thus improving
the desired properties. Moreover, the presence of functional linkers between the two CDs can supply a
well-organized pseudo-cavity that may afford supplementary binding properties [218,219].

3.2.3. Synthesis of Ionic Compounds Based on Quaternary Bis-Ammonium Salts

In the study, 1,3-DCH was used to synthesize gemini imidazolium salts, with an hydroxyl in the
spacer group and lateral chains of different length (Figure 30a) [220]. A similar reaction with amines
instead of imidazole was described by Song et al., who synthesized bis-quaternary ammonium salt
(BQAS) with a hydroxyl in the spacer group [221]. This salt was synthesized by the reaction of 1,3-DCH
with N,N dimethyldodecylamine [221], achieving a 90% yield. BQAS exhibited broad-spectrum
bactericidal activity [221]. Another BQAS was synthesized by using monoamides of α,ω-diamines
(Figure 30b). All of these syntheses are based on the nucleophylic attack of a tertiary amine to the
carbons of 1,3-DCH supporting the chlorine atoms. The presence of a hydroxyl in the spacer group
confers tuneable properties to these compounds [222,223].

Imidazolium derivatives showed higher thermal stability than conventional quaternary
ammonium gemini surfactants and two-phase transitions before decomposition [220]. Amide-based
gemini cationic surfactants presented superior surface/interfacial activities and easy biodegradables,
suggesting them as potential products in industrial fields, such as surfactant flooding [224].
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Figure 30. (a) Synthesis of gemini imidazolium salts using 1,3 -DCH. (b) Synthesis of 

lineal amide-based gemini cationic surfactants using 1,3-DCH.  

Gemini compounds have high surface activity and low critical micelle concentration (CMC). 

These properties enhance their water-solubility and confer a better viscosity than single-chain 

surfactants at equal molar mass concentration [116,225–231]. Consequently, their efficiency is 

improved [232], allowing them to be used in smaller quantities compared to conventional 

surfactants [232]. These properties enable their industrial use in various fields, such as antiseptics, 

printing and dyeing, corrosion inhibition, improved oil recovery and synthesis of inorganic 

materials [224,233–236]. They can also be used in electro-decoating, stabilization of adhesive 

polymers, anti-friction agents, mining, paper-making, cosmetics and, more recently, in drug design 

and delivery [237,238]. Most of them also show strong antibacterial and antifungal activities, 

becoming safety weapons [230,235,239–241]. Their mechanism of action is based on the amphiphilic 

nature of the gemini group, which allows them to interact with the cell membrane of the 

microorganisms, causing them to lose their permeability [242]. 

Gemini compounds are also used as ionic liquids (DDIL). Ionic liquids (ILs) are characterized 
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environmentally friendly nature, easy recoverability and recyclability [243]. They are of recognized 
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into mechanical energy [247]. It is well-known that the physical and chemical properties of an IL can 

be tailored by varying the structure of constituent cations and anions [248,249]. Dicationic ionic 

liquids (DDIL) contain two head groups, linked by a rigid or flexible spacer [250]. This type of IL 

demonstrates unique characteristics not found in monocationic ILs and other traditional solvents 

[251]. Moreover, the change in the length of the spacer and the incorporation of functional groups 

such as thiol, ether, hydroxyl and amino groups in the cations allows tailoring the physical 

properties of DDIL for specific applications [252]. The DDIL PEG based [253] have also been used as 

a powerful catalysts for various synthetic transformations [254,255]. 

Moreover, ionic liquids (IL) have recently been proposed for thermal storage applications [237]. 

ILs have thermophysical and chemical properties that may be suitable to be used as heat transfer 

fluid (HTF) in power plants, using parabolic trough solar collectors, as stated by Van Valkenburg et 

al. [238]. The authors’ research group described the use of crude glycerol, N-butylimidazole and 

carboxylic acids [256,257] to synthesize diimidazol-1-ium esters, DDILs, with high capacity for 

energy storage (Figure 31). A counter ion swap was also achieved with KPF6, as shown in Figure 31. 

Figure 30. (a) Synthesis of gemini imidazolium salts using 1,3-DCH. (b) Synthesis of lineal amide-based
gemini cationic surfactants using 1,3-DCH.

Gemini compounds have high surface activity and low critical micelle concentration (CMC). These
properties enhance their water-solubility and confer a better viscosity than single-chain surfactants
at equal molar mass concentration [116,225–231]. Consequently, their efficiency is improved [232],
allowing them to be used in smaller quantities compared to conventional surfactants [232]. These
properties enable their industrial use in various fields, such as antiseptics, printing and dyeing,
corrosion inhibition, improved oil recovery and synthesis of inorganic materials [224,233–236]. They can
also be used in electro-decoating, stabilization of adhesive polymers, anti-friction agents, mining,
paper-making, cosmetics and, more recently, in drug design and delivery [237,238]. Most of them also
show strong antibacterial and antifungal activities, becoming safety weapons [230,235,239–241]. Their
mechanism of action is based on the amphiphilic nature of the gemini group, which allows them to
interact with the cell membrane of the microorganisms, causing them to lose their permeability [242].

Gemini compounds are also used as ionic liquids (DDIL). Ionic liquids (ILs) are characterized by
unique properties, such as non-volatility, low flammability, tuneable hydrophobicity, environmentally
friendly nature, easy recoverability and recyclability [243]. They are of recognized interest for a
wide range of applications, such as for solvents, in chemical and enzymatic catalysis [244–246],
in carbon dioxide capture and separation, in hydrogen generation, in converting thermal energy
into electrical energy, for electrochemical energy storage and for converting electrical energy into
mechanical energy [247]. It is well-known that the physical and chemical properties of an IL can be
tailored by varying the structure of constituent cations and anions [248,249]. Dicationic ionic liquids
(DDIL) contain two head groups, linked by a rigid or flexible spacer [250]. This type of IL demonstrates
unique characteristics not found in monocationic ILs and other traditional solvents [251]. Moreover,
the change in the length of the spacer and the incorporation of functional groups such as thiol, ether,
hydroxyl and amino groups in the cations allows tailoring the physical properties of DDIL for specific
applications [252]. The DDIL PEG based [253] have also been used as a powerful catalysts for various
synthetic transformations [254,255].

Moreover, ionic liquids (IL) have recently been proposed for thermal storage applications [237].
ILs have thermophysical and chemical properties that may be suitable to be used as heat transfer fluid
(HTF) in power plants, using parabolic trough solar collectors, as stated by Van Valkenburg et al. [238].
The authors’ research group described the use of crude glycerol, N-butylimidazole and carboxylic
acids [256,257] to synthesize diimidazol-1-ium esters, DDILs, with high capacity for energy storage
(Figure 31). A counter ion swap was also achieved with KPF6, as shown in Figure 31.
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Figure 31. Synthesis of ionic compounds from chlorohydrin esters.  

The final yields were highly dependent on the carboxylic acid used. The set of bis-imidazolium 

ester chlorides showed interesting energy-storage properties, as indicated above. However, the 

substitution of chloride ions by hexafluorophosphate ions yielded a set of compounds with lower 

PCM capability [256]. 

4. Future Perspectives 

It is clear from the above studies that finding cost-effective alternatives to the use of crude 

glycerol is an active field of research. The synthesis of DCH and dichloropropyl esters is possible 

from crude glycerol, which implies that ECH and other derivatives can also be synthesized from 

crude glycerol. Moreover, the synthesis of ECH is faster from 1,3-DCH, the main chlorohydrin 

isomer synthesized from glycerol, than from 1,2-DCH, the main isomer resulting from propene 

chlorination. Nevertheless, although three companies (Dow Chemicals, Solvay 

EPICEROLTechnology and CONSER SpA ECH-EF = Eco Friendly) have developed their own 
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The final yields were highly dependent on the carboxylic acid used. The set of bis-imidazolium ester
chlorides showed interesting energy-storage properties, as indicated above. However, the substitution
of chloride ions by hexafluorophosphate ions yielded a set of compounds with lower PCM
capability [256].

4. Future Perspectives

It is clear from the above studies that finding cost-effective alternatives to the use of crude
glycerol is an active field of research. The synthesis of DCH and dichloropropyl esters is possible
from crude glycerol, which implies that ECH and other derivatives can also be synthesized from
crude glycerol. Moreover, the synthesis of ECH is faster from 1,3-DCH, the main chlorohydrin isomer
synthesized from glycerol, than from 1,2-DCH, the main isomer resulting from propene chlorination.
Nevertheless, although three companies (Dow Chemicals, Solvay EPICEROLTechnology and CONSER
SpA ECH-EF = Eco Friendly) have developed their own process for producing dichlorohydrins from
glycerol and HCl, further work is necessary to identify the most-reliable catalytic mechanism and the
best catalyst [51]. Dichloropropyl esters may be a less toxic substitute of 1,3-DCH for some synthesis.
However, the current processes to prepare these esters with high yield need expensive reagents (CTMS)
or solvents (IL). Further work is necessary to identify cost-effective synthesis for these esters. Crude
glycerol can also be used as a carbon source in fermentative processes, although intensive research is
still necessary to improve the use of crude glycerol in most of the fermentative processes currently used.

Products synthesized from chlorinated glycerol derivatives have applications in areas such as
agriculture, chemistry, healthcare and materials (Table 4). Electrophilic and nucleophilic reagents,
as well as some compounds with catalytic and photocatalytic properties, have also been prepared from
these chlorinated compounds. Antimicrobial and anticancerinogenic compounds are the main targets
for the compounds prepared to be used in medicine, although antiviral, antihypertensive, diuretic and
hypoglycemic properties are also present in some of the synthesized compounds. Finally, polymers
with different properties, surfactants, ionic solvents and phase-change materials are the main targets in
the field of materials.

Despite recognized advances in this field, only a few of the synthesized compounds are already
commercial products, while many others are still at the research stage. Further work is therefore
needed to synthesize novel compounds with improved properties and to demonstrate the actual
application of those compounds still at the research stages. The authors’ research group has also
recently demonstrated that crude glycerol can be used to prepare novel deep eutectic solvents (DES),
similar to those based on choline chloride. Chloline chloride is substituted by a quaternary ammonium
salt synthesized from 1-MCH [258]. This also opens up new opportunities for adding value to
crude glycerol.
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Table 4. Summary of the properties of the different products obtained from glycerol based
on chloroderivatives.

Field of
Application Property Current Status Chemical Compounds Starting Materials Section

Agricul-ture Pesticide Research Allyl esters Chorohydrin esters 3.1.1

Antimicrobial Commercial
product 1,2,4-Triazinones DCH/ECH 3.1.7

Chemis-try Reagent Commercial
product DCH Glycerol 2.1

Reagent Commercial
product ECH/(S)-CHBN DCH 2.2/3.1.2

Reagent Research Chlorohydrin esters Glycerol 2.3
Reagent Research Diazides/Monoamides Chorohydrin esters 3.1.3

Reagent Research Alkyl
glycosides/Azidirines/Oxetanes DCH 3.1.6/3.1.7/3.1.8

Reagent Commercial
product Cyclic carbonates ECH 3.1.8

Reagent Research Oxazolidinones DCH/Chorohydrin
esters 3.2.2

Analytic sensors Research Polynuclear metals /Alkyl
glycosides DCH 3.1.5/3.1.6

Analytic sensors Research Triazoles DCH/ECH 3.2.2
Catalyst Research Polynuclear metals DCH 3.1.5

Health Anti-microbial Commercial
product Sulfonamides DCH 3.1.4

Anti-microbial Research Pyridine derivatives DCH/ECH 3.1.7

Anti-microbial Research
Azidirines/Phthalazines/
Oxazolidinones/gemini

imidazolium salts
DCH 3.1.7/3.2.2/3.2.3

Anticancer Research Azidirines DCH 3.1.7
Anticancer Research Pyridine derivatives DCH/ECH 3.1.7

Antiviral Sulfonamides/Polynuclear
metals DCH 3.1.4/3.1.5

Anti-hyper-tensive Sulfonamides DCH 3.1.4
Diuretic Sulfonamides DCH 3.1.4

Hypo-glycemic Sulfonamides DCH 3.1.4
Materials Polymers Research Allyl esters Chorohydrin esters 3.1.1

Polymers Research Polyesters DCH 3.1.8
Flame retar-dants Research Polyesters DCH 3.1.8

Surfactants Research Gemini imidazolium and
ammonium salts DCH 3.2.3

Ionic Solvents Research Gemini imidazolium and
ammonium salts DCH 3.2.3

PCM Research
Monoamides/gemini

imidazolium and
ammonium salts

Chorohydrin
esters/DCH 3.1.3/3.2.3

Magnetic materials Research Polynuclear metals DCH 3.1.5
Photo-voltaic
component Research Polynuclear metals DCH 3.1.5

These studies should also consider alternative approaches under study to prepare biofuels from
vegetable oils and fats, avoiding glycerol generation. Gliperol, DMC-Biod or Ecodiesel, likewise,
another renewable diesel fuel, known as “green diesel”, are produced by treatment of vegetable oils
(cracking, pyrolysis, hydrodeoxygenation and hydrotreating). Other strategies aim to reduce the
high viscosity of vegetable oils by mixing them with low-viscosity solvents, in the right proportions,
to obtain suitable fuels. In this way, the costs associated with the transformation of vegetable oils
and fats can be reduced. Efforts are also devoted to the purification of crude glycerol, although the
current processes are still considered too expensive for the actual industrial application, at least for
small biodiesel producers [259]. Nevertheless, crude glycerol is also a by-product of the biolubricants
industries, one of the top 20 innovative bio-based products described in a recent EU study [260].
Consequently, the production of crude glycerol seems to be a reality for a long time forward.

5. Conclusions

Although pure glycerol is currently used in a wide variety of applications, primarily in he cosmetic,
food and pharmaceutical industries, the purity of glycerol resulting from the biodiesel industry is far
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from meeting the purity needed for these applications. This glycerol, also currently known as glycerine
(the former name of glycerol), can directly be used as an energy source and as a starting material
in chemical synthesis. This latter approach seems more profitable than simply burning glycerol as
waste. It has already been demonstrated that chlorohydrins and chlorohydrin esters can be prepared
from crude glycerol. Luckily, glycerol is a polyol with many potential applications. Hence, it is easy
to substitute some of its hydroxyl groups to obtain chlorohydrins. Chlorine atoms can afterward be
substituted by other nucleophiles, resulting in ECH. This intermolecular substitution is favored from
1,3-DCH, the main regioisomer obtained from glycerol. Intramolecular substitutions lead to a large
number of intermediate and end products from single molecules to large polymers with applications
in agriculture, chemistry, medicine and materials. Among them, the preparation of gemini ionic
compounds seems to be one of the more promising areas, considering their properties. Novel DES can
be also prepared starting from chlorohydrins. In fact, the more options there are for the applications
of glycerol, the more likely it is that biodiesel and biolubricants will become real alternatives for fuel
and lubricants in the future. Consequently, interest in developing novel value-added uses for glycerol
is increasing.

Supplementary Materials: The following are available online, Oxazolidinones, materials and methods pages
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