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Abstract: Nuclear receptors (NRs) are closely associated with various major diseases such 
as cancer, diabetes, inflammatory disease, and osteoporosis. Therefore, NRs have become a 
frequent target for drug development. During the process of developing drugs against these 
diseases by targeting NRs, we are often facing a problem: Given a NR and chemical 
compound, can we identify whether they are really in interaction with each other in a cell? 
To address this problem, a predictor called “iNR-Drug” was developed. In the predictor, 
the drug compound concerned was formulated by a 256-D (dimensional) vector derived 
from its molecular fingerprint, and the NR by a 500-D vector formed by incorporating its 
sequential evolution information and physicochemical features into the general form of 
pseudo amino acid composition, and the prediction engine was operated by the SVM 
(support vector machine) algorithm. Compared with the existing prediction methods in  
this area, iNR-Drug not only can yield a higher success rate, but is also featured by a  
user-friendly web-server established at http://www.jci-bioinfo.cn/iNR-Drug/, which is 
particularly useful for most experimental scientists to obtain their desired data in a timely 
manner. It is anticipated that the iNR-Drug server may become a useful high throughput 
tool for both basic research and drug development, and that the current approach may be 
easily extended to study the interactions of drug with other targets as well. 
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1. Introduction 

With the ability to directly bind to DNA (Figure 1) and regulate the expression of adjacent genes, 
nuclear receptors (NRs) are a class of ligand-inducible transcription factors. They regulate various 
biological processes, such as homeostasis, differentiation, embryonic development, and organ 
physiology [1–3]. The NR superfamily has been classified into seven families: NR0 (knirps or DAX 
like) [4,5]; NR1 (thyroid hormone like), NR2 (HNF4-like), NR3 (estrogen like), NR4 (nerve growth 
factor IB-like), NR5 (fushi tarazu-F1 like), and NR6 (germ cell nuclear factor like). Since they are 
involved in almost all aspects of human physiology and are implicated in many major diseases such as 
cancer, diabetes and osteoporosis, nuclear receptors have become major drug targets [6,7], along with 
G protein-coupled receptors (GPCRs) [8–17], ion channels [18–20], and kinase proteins [21–24]. 

Figure 1. An illustration to show a nuclear receptor binding to DNA. 

 

Identification of drug-target interactions is one of the most important steps for the new medicine 
development [25,26]. The method usually adopted in this step is molecular docking simulation [27–43]. 
However, to make molecular docking study feasible, a reliable 3D (three dimensional) structure of the 
target protein is the prerequisite condition. Although X-ray crystallography is a powerful tool in 
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determining protein 3D structures, it is time-consuming and expensive. Particularly, not all proteins 
can be successfully crystallized. For example, membrane proteins are very difficult to crystallize and 
most of them will not dissolve in normal solvents. Therefore, so far very few membrane protein 3D 
structures have been determined. Although NMR (Nuclear Magnetic Resonance) is indeed a very 
powerful tool in determining the 3D structures of membrane proteins as indicated by a series of recent 
publications (see, e.g., [44–51] and a review article [20]), it is also time-consuming and costly. To 
acquire the 3D structural information in a timely manner, one has to resort to various structural 
bioinformatics tools (see, e.g., [37]), particularly the homologous modeling approach as utilized for a 
series of protein receptors urgently needed during the process of drug development [19,52–57]. 
Unfortunately, the number of dependable templates for developing high quality 3D structures by 
means of homology modeling is very limited [37]. 

To overcome the aforementioned problems, it would be of help to develop a computational method 
for predicting the interactions of drugs with nuclear receptors in cellular networking based on the 
sequences information of the latter. The results thus obtained can be used to pre-exclude the 
compounds identified not in interaction with the nuclear receptors, so as to timely stop wasting time 
and money on those unpromising compounds [58]. 

Actually, based on the functional groups and biological features, a powerful method was developed 
recently [59] for this purpose. However, further development in this regard is definitely needed due to 
the following reasons. (a) He et al. [59] did not provide a publicly accessible web-server for their 
method, and hence its practical application value is quite limited, particularly for the broad 
experimental scientists; (b) The prediction quality can be further enhanced by incorporating some key 
features into the formulation of NR-drug (nuclear receptor and drug) samples via the general form of 
pseudo amino acid composition [60]. 

The present study was initiated with an attempt to develop a new method for predicting the 
interaction of drugs with nuclear receptors by addressing the two points. 

As demonstrated by a series of recent publications [10,18,61–70] and summarized in a comprehensive 
review [60], to establish a really effective statistical predictor for a biomedical system, we need to 
consider the following steps: (a) select or construct a valid benchmark dataset to train and test the 
predictor; (b) represent the statistical samples with an effective formulation that can truly reflect their 
intrinsic correlation with the object to be predicted; (c) introduce or develop a powerful algorithm or 
engine to operate the prediction; (d) properly perform cross-validation tests to objectively evaluate the 
anticipated accuracy of the predictor; (e) establish a user-friendly web-server for the predictor that is 
accessible to the public. Below, let us elaborate how to deal with these steps. 

2. Results and Discussion 

2.1. Benchmark Dataset 

The data used in the current study were collected from KEGG (Kyoto Encyclopedia of Genes and 
Genomes) [71] at http://www.kegg.jp/kegg/. KEGG is a database resource for understanding high-level 
functions and utilities of the biological system, such as the cell, the organism and the ecosystem, from 
molecular-level information, especially large-scale molecular datasets generated by genome sequencing 
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and other high-throughput experimental technologies. Here, the benchmark dataset  can be 
formulated as 

   (1) 

where  is the positive subset that consists of the interactive drug-NR pairs only, while  the 
negative subset that contains of the non-interactive drug-NR pairs only, and the symbol  represents 
the union in the set theory. The so-called “interactive” pair here means the pair whose two counterparts 
are interacting with each other in the drug-target networks as defined in the KEGG database [71]; 
while the “non-interactive” pair means that its two counterparts are not interacting with each other in 
the drug-target networks. The positive dataset  contains 86 drug-NR pairs, which were taken from 
He et al. [59]. The negative dataset  contains 172 non-interactive drug-NR pairs, which were 
derived according to the following procedures: (a) separating each of the pairs in  into single drug 
and NR; (b) re-coupling each of the single drugs with each of the single NRs into pairs in a way that 
none of them occurred in ; (c) randomly picking the pairs thus formed until reaching the number 
two times as many as the pairs in . The 86 interactive drug-NR pairs and 172 non-interactive drug-NR 
pairs are given in Supplementary Information S1, from which we can see that the 86 + 172 = 258 pairs in 
the current benchmark dataset  are actually formed by 25 different NRs and 53 different compounds. 

2.2. Sample Representation 

Since each of the samples in the current network system contains a drug (compound) and a NR 
(protein), the following procedures were taken to represent the drug-NR pair sample. 

2.2.1. Use 2D Molecular Fingerprints to Represent Drugs 

First, for the drug part in the current benchmark dataset, we can use a 256-D vector to formulate it 
as given by 

D = d1 d2 di d256
é
ë

ù
û

T

        (2) 

where  D represents the vector for a drug compound, and di  its   i-th    (i =1,2, ,256) component that 

can be derived by following the “2D molecular fingerprint procedure” as elaborated in [10]. The  
53 molecular fingerprint vectors thus obtained for the 53 drugs in  are, respectively, given in 
Supplementary Information S2. 

2.2.2. Use Pseudo Amino Acid Composition to Represent the Nuclear Receptors 

The protein sequences of the 25 different NRs in  are listed in Supplementary Information S3. 
Suppose the sequence of a nuclear receptor protein P with L residues is generally expressed by 

P = R1R2R3R4R5R6R7R8 RL
 (3) 

where 1R  represents the 1st residue of the protein sequence P , 2R the 2nd residue, and so forth. Now 

the problem is how to effectively represent the sequence of Equation (3) with a non-sequential or 
discrete model [72]. This is because all the existing operation engines, such as covariance discriminant 
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(CD) [17,65,73–79], neural network [80–82], support vector machine (SVM) [62–64,83], random 
forest [84,85], conditional random field [66], nearest neighbor (NN) [86,87]; K-nearest neighbor 
(KNN) [88–90], OET-KNN [91–94], and Fuzzy K-nearest neighbor [10,12,18,69,95], can only handle 
vector but not sequence samples. However, a vector defined in a discrete model may completely lose 
all the sequence-order information and hence limit the quality of prediction. Facing such a dilemma, 
can we find an approach to partially incorporate the sequence-order effects? 

Actually, one of the most challenging problems in computational biology is how to formulate a 
biological sequence with a discrete model or a vector, yet still keep considerable sequence order 
information. To avoid completely losing the sequence-order information for proteins, the pseudo 
amino acid composition [96,97] or Chou’s PseAAC [98] was proposed. Ever since the concept of PseAAC 
was proposed in 2001 [96], it has penetrated into almost all the areas of computational proteomics, such  
as predicting anticancer peptides [99], predicting protein subcellular location [100–106], predicting 
membrane protein types [107,108], predicting protein submitochondria locations [109–112], predicting 
GABA(A) receptor proteins [113], predicting enzyme subfamily classes [114], predicting antibacterial 
peptides [115], predicting supersecondary structure [116], predicting bacterial virulent proteins [117], 
predicting protein structural class [118], predicting the cofactors of oxidoreductases [119], predicting 
metalloproteinase family [120], identifying cysteine S-nitrosylation sites in proteins [66], identifying 
bacterial secreted proteins [121], identifying antibacterial peptides [115], identifying allergenic 
proteins [122], identifying protein quaternary structural attributes [123,124], identifying risk type of 
human papillomaviruses [125], identifying cyclin proteins [126], identifying GPCRs and their  
types [15,16], discriminating outer membrane proteins [127], classifying amino acids [128], detecting 
remote homologous proteins [129], among many others (see a long list of papers cited in the References 
section of [60]). Moreover, the concept of PseAAC was further extended to represent the feature vectors 
of nucleotides [65], as well as other biological samples (see, e.g., [130–132]). Because it has been widely 
and increasingly used, recently two powerful soft-wares, called “PseAAC-Builder” [133] and  
“propy” [134], were established for generating various special Chou’s pseudo-amino acid compositions, 
in addition to the web-server “PseAAC” [135] built in 2008. 

According to a comprehensive review [60], the general form of PseAAC for a protein sequence P is 
formulated by 

 1 2 = u   

TP  (4) 

where the subscript   is an integer, and its value as well as the components  ( 1,2, , )u u    will 

depend on how to extract the desired information from the amino acid sequence of P  (cf. Equation (3)). 
Below, let us describe how to extract useful information to define the components of PseAAC for the 
NR samples concerned. 

First, many earlier studies (see, e.g., [136–141]) have indicated that the amino acid composition 
(AAC) of a protein plays an important role in determining its attributes. The AAC contains  
20 components with each representing the occurrence frequency of one of the 20 native amino acids in 
the protein concerned. Thus, such 20 AAC components were used here to define the first 20 elements 
in Equation (4); i.e., 

(1)      ( 1,2,  ,  20)i if i    (5) 
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where fi

(1) is the normalized occurrence frequency of the i-th type native amino acid in the nuclear 

receptor concerned. Since AAC did not contain any sequence order information, the following steps 
were taken to make up this shortcoming. 

To avoid completely losing the local or short-range sequence order information, we considered the 
approach of dipeptide composition. It contained 20 × 20 = 400 components [142]. Such 400 components 
were used to define the next 400 elements in Equation (4); i.e., 

(2)
20      ( 1,2,  ,400)j jf j     (6) 

where (2)
jf is the normalized occurrence frequency of the j-th  dipeptides in the nuclear  

receptor concerned. 
To incorporate the global or long-range sequence order information, let us consider the following 

approach. According to molecular evolution, all biological sequences have developed starting out from 
a very limited number of ancestral samples. Driven by various evolutionary forces such as mutation, 
recombination, gene conversion, genetic drift, and selection, they have undergone many changes 
including changes of single residues, insertions and deletions of several residues [143], gene doubling, 
and gene fusion. With the accumulation of these changes over a long period of time, many original 
similarities between initial and resultant amino acid sequences are gradually faded out, but the 
corresponding proteins may still share many common attributes [37], such as having basically the 
same biological function and residing at a same subcellular location [144,145]. To extract the 
sequential evolution information and use it to define the components of Equation (4), the PSSM 
(Position Specific Scoring Matrix) was used as described below. 

According to Schaffer [146], the sequence evolution information of a nuclear receptor protein P  
with L amino acid residues can be expressed by a 20L  matrix, as given by 

PPSSM
(0) =

E1®1
0 E1®2

0 E1®20
0

E2®1
0 E2®2

0 E2®20
0

EL®1
0 EL®2

0 EL®20
0

é

ë

ê
ê
ê
ê
ê

ù

û

ú
ú
ú
ú
ú

 (7) 

where Ei® j

0  represents the original score of the i-th amino acid residue (i = 1, 2,…, L) in the nuclear 

receptor sequence changed to amino acid type j (j = 1, 2,…, 20) in the process of evolution. Here, the 
numerical codes 1, 2,…, 20 are used to respectively represent A, C, D, E, F, G, H, I, K, L, M, N, P, Q, R, 
S, T, V, W, the 20 single-letter codes for the 20 native amino acids. The L × 20 scores in Equation (7) 
were generated by using PSI-BLAST [147] to search the UniProtKB/Swiss-Prot database  
(The Universal Protein Resource (UniProt); http://www.uniprot.org/) through three iterations with 
0.001 as the E-value cutoff for multiple sequence alignment against the sequence of the nuclear 
receptor concerned. In order to make every element in Equation (7) be scaled from their original score 
ranges into the region of [0, 1], we performed a conversion through the standard sigmoid function to 
make it become 
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PPSSM
(0) =

E1®1
1 E1®2

1 E1®20
1

E2®1
1 E2®2

1 E2®20
1

EL®1
1 EL®2

1 EL®20
1

é

ë

ê
ê
ê
ê
ê

ù

û

ú
ú
ú
ú
ú

 (8) 

where 

0
1 1      (1 ,   1 20)

1 e i j
i j E

E i L j


 
    


 (9) 

Now we extract the useful information from Equation (8) to define the next 20 components of 
Equation (4) via the following equation 

400      ( 1,2,  ,  20)j j j     (10) 

where 

1
1

1 ( 1,2,  ,  20)L
j k jk

E j
L 

    (11) 

Moreover, we used the grey system model approach as elaborated in [68] to further define the next 
60 components of Equation (4); i.e., 

440      ( 1,  2,  ,  60)j j j     (12) 

where  
(1)

3 2 1 1
(1)

3 1 1 2
(1)

3 3

     ( 1,2,  ,  20)
  

j
j j

j
j j

j
j j

w f a
w f a j
w f b











 


 
 

 (13) 

In the above equation, w1, w2 , and w3  are weight factors, which were all set to 1 in the current 
study; f j

(1) has the same meaning as in Equation (5); a1
j , a2

j , and b j  are given by 

 
1

1

2      ( 1,2,  ,  20)

j

j
j j j j

j

a
a j
b



 
 

  
 
 

T TB B B U  (14) 

where 

 1 1 1
2 1 2

2
1 1 1
3 3

1

1
1 1 1

1

0.5 1

0.5 1

0.5 1

j j j

j i j j
i

j

L

L j i j L j
i

E E E

E E E

E E E

  
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



  



   
 
  
    

  
 
 

  
    

  





B  (15) 
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and 
1 1
2 1
1 1
3 2

1 1
1

j j

j j
j

L j L j

E E
E E

E E

 

 

  

 
 

 
 
 

  

U  (16) 

Combining Equations (5), (6), (10) and (12), we found that the total number of the components 
obtained via the current approach for the PseAAC of Equation (4) is 

20 400 20 60 500      (17) 

and each of the 500 components is given by 
(1)

(2)

if 1 20
if 21 420
if 421 440
if 441 500

u

u
u

u

u

f u
f u

u
u





  


 
 

 
  

 (18) 

2.2.3. Formulate the Pair of Drugs with Nuclear Receptor 

Since the elements in Equations (2) and (4) are well defined, we can now formulate the drug-NR 
pair by combining the two equations as given by 

 1 2 256 1 2 500d d d    G = D P  (19) 

where G represents the drug-NR pair, Å  the orthogonal sum, and the 256 + 500 = 756 components are 
defined by Equations (2) and (18). 

For the sake of convenience, let us use xi  (i =1,  2,  ,  756)  to represent the 756 components in 

Equation (19); i.e., 

 1 2 756ix x x x
TG  (20) 

To optimize the prediction quality with a time-saving approach, similar to the treatment [148–150], 
let us convert Equation (20) to 

 1 2 756iy y y y
TG  (21) 

where 

SD( )
i i

i

x x
y

x


  (22) 

where the symbol  means taking the average of the quantity therein, and SD means the 

corresponding standard derivation. 
  



Int. J. Mol. Sci. 2014, 15 4923 
 

 

2.2.4. Operation Engine or Algorithm 

In this study, the SVM (support vector machine) was used as the operation engine. SVM has been 
widely used in the realm of bioinformatics (see, e.g., [62–64,151–154]). The basic idea of SVM is to 
transform the data into a high dimensional feature space, and then determine the optimal separating 
hyperplane using a kernel function. For a brief formulation of SVM and how it works, see the  
papers [155,156]; for more details about SVM, see a monograph [157]. 

In this study, the LIBSVM package [158] was used as an implementation of SVM, which can be 
downloaded from http://www.csie.ntu.edu.tw/~cjlin/libsvm/, the popular radial basis function (RBF) 
was taken as the kernel function. For the current SVM classifier, there were two uncertain parameters: 
penalty parameter C and kernel parameter . The method of how to determine the two parameters will 
be given later. 

The predictor obtained via the aforementioned procedure is called iNR-Drug, where “i” means 
identify, and “NR-Drug” means the interaction between nuclear receptor and drug compound. To 
provide an intuitive overall picture, a flowchart is provided in Figure 2 to show the process of how the 
predictor works in identifying the interactions between nuclear receptors and drug compounds. 

Figure 2. A flowchart to show the operation process of the iNR-Drug predictor. 
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3. Experimental Section 

3.1. Metrics for Measuring Prediction Quality 

To provide a more intuitive and easier-to-understand method to measure the prediction quality, the 
following set of metrics based on the formulation used by Chou [159–161] in predicting signal 
peptides was adopted. According to Chou’s formulation, the sensitivity, specificity, overall accuracy, 
and Matthew’s correlation coefficient can be respectively expressed as [62,65–67] 

Sn 1                                           

Sp 1                                          

Acc 1                                

1
M CC

1 1

N
N
N
N
N N
N N

N N
N N

N N N N
N













 

 

 

 

 

 

  

  



 

 


 



 
  

 
  
  

  N



















  
  

 

 
(23) 

where N  is the total number of the interactive NR-drug pairs investigated while N 

  the number of 
the interactive NR-drug pairs incorrectly predicted as the non-interactive NR-drug pairs; N 

 the total 
number of the non-interactive NR-drug pairs investigated while N 

  the number of the non-interactive 

NR-drug pairs incorrectly predicted as the interactive NR-drug pairs. 
According to Equation (23) we can easily see the following. When 0N 

   meaning none of the 

interactive NR-drug pairs was mispredicted to be a non-interactive NR-drug pair, we have the 
sensitivity Sn =1; while N N 

   meaning that all the interactive NR-drug pairs were mispredicted to 
be the non-interactive NR-drug pairs, we have the sensitivity Sn = 0 . Likewise, when 0N 

   
meaning none of the non-interactive NR-drug pairs was mispredicted, we have the specificity Sp =1; 
while N N 

   meaning all the non-interactive NR-drug pairs were incorrectly predicted as interactive 
NR-drug pairs, we have the specificity Sp = 0 . When 0N N 

    meaning that none of the 

interactive NR-drug pairs in the dataset and none of the non-interactive NR-drug pairs in  was 
incorrectly predicted, we have the overall accuracy Acc =1; while N N 

  and N N 

   meaning 

that all the interactive NR-drug pairs in the dataset and all the non-interactive NR-drug pairs in  
were mispredicted, we have the overall accuracy Acc = 0 . The Matthews correlation coefficient MCC 
is usually used for measuring the quality of binary (two-class) classifications. When 0N N 

    

meaning that none of the interactive NR-drug pairs in the dataset and none of the non-interactive 
NR-drug pairs in  was mispredicted, we have MCC =1 ; when / 2N N 

   and / 2N N 

   we 
have MCC = 0  meaning no better than random prediction; when N N 

  and N N 

  we have 

MCC = 0  meaning total disagreement between prediction and observation. As we can see from the 
above discussion, it is much more intuitive and easier to understand when using Equation (23) to 
examine a predictor for its four metrics, particularly for its Mathew’s correlation coefficient. It is 
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instructive to point out that the metrics as defined in Equation (23) are valid for single label systems; 
for multi-label systems, a set of more complicated metrics should be used as given in [162]. 

3.2. Jackknife Test Approach 

How to properly test a predictor for its anticipated success rates is very important for its 
development as well as its potential application value. Generally speaking, the following three  
cross-validation methods are often used to examine the quality of a predictor and its effectiveness  
in practical application: independent dataset test, subsampling or K-fold (such as five-fold, seven-fold, 
or 10-fold) crossover test and jackknife test [163]. However, as elaborated by a penetrating analysis  
in [164], considerable arbitrariness exists in the independent dataset test. Also, as demonstrated  
in [165], the subsampling (or K-fold crossover validation) test cannot avoid arbitrariness either.  
Only the jackknife test is the least arbitrary that can always yield a unique result for a given  
benchmark dataset [73,74,156,166–168]. Therefore, the jackknife test has been widely recognized  
and increasingly utilized by investigators to examine the quality of various predictors (see,  
e.g., [14,15,68,99,106,107,124,169,170]). Accordingly, in this study the jackknife test was also 
adopted to evaluate the accuracy of the current predictor. 

As mentioned above, the SVM operation engine contains two uncertain parameters C and  . To find 
their optimal values, a 2-D grid search was conducted by the jackknife test on the benchmark dataset . 
The results thus obtained are shown in Figure 3, from which it can be seen that the iNR-Drug predictor 
reaches its optimal status when C = 23  and 92  . The corresponding rates for the four metrics  
(cf. Equation (23)) are given in Table 1, where for facilitating comparison, the overall accuracy Acc 
reported by He et al. [59] on the same benchmark dataset is also given although no results were 
reported by them for Sn, Sp and MCC. It can be observed from the table that the overall accuracy 
obtained by iNR-Drug is remarkably higher that of He et al. [59], and that the rates achieved by  
iNR-Drug for the other three metrics are also quite higher. These facts indicate that the current 
predictor not only can yield higher overall prediction accuracy but also is quite stable with low false 
prediction rates. 

Figure 3. A 3-D graph showing how to optimize the two parameters   and C in SVM via 
the jackknife success rates.  
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Table 1. The jackknife success rates obtained iNR-Drug in identifying the interactive  
NR-drug pairs and non-interactive NR-drug pairs for the benchmark dataset   
(cf. Supplementary Information S1). 

Metrics used for measuring prediction 
quality (cf. Equation (23)) 

iNR-Drug a Method by He et al. b 

Sn 
68 79.07%
86

  N/A 

Sp 
162 94.19%
172

  N/A 

Acc 
230 89.15%
258

  85.66% 

MCC 75.19% N/A 
a The parameters used: 32C   and 92   for the SVM operation engine; b See [59]. 

3.3. Independent Dataset Test 

As mentioned above (Section 3.2), the jackknife test is the most objective method for examining the 
quality of a predictor. However, as a demonstration to show how to practically use the current 
predictor, we took 41 NR-drug pairs from the study by Yamanishi et al. [171] that had been confirmed 
by experiments as interactive pairs. For such an independent dataset, 34 were correctly identified by 
iNR-Drug as interactive pairs, i.e., Sn = 34 / 41= 82.92% , which is quite consistent with the rate of 
79.07% achieved by the predictor on the benchmark dataset  via the jackknife test as reported  
in Table 1. 

4. Conclusions 

It is anticipated that the iNR-Drug predictor developed in this paper may become a useful high 
throughput tool for both basic research and drug development, and that the current approach may be 
easily extended to study the interactions of drug with other targets as well. Since user-friendly and 
publicly accessible web-servers represent the future direction for developing practically more useful 
predictors [98,172], a publicly accessible web-server for iNR-Drug was established. 

For the convenience of the vast majority of biologists and pharmaceutical scientists, here let us 
provide a step-by-step guide to show how the users can easily get the desired result by using iNR-Drug 
web-server without the need to follow the complicated mathematical equations presented in this paper 
for the process of developing the predictor and its integrity. 

Step 1. Open the web server at the site http://www.jci-bioinfo.cn/iNR-Drug/ and you will see the 
top page of the predictor on your computer screen, as shown in Figure 4. Click on the Read Me button 
to see a brief introduction about iNR-Drug predictor and the caveat when using it. 

Step 2. Either type or copy/paste the query NR-drug pairs into the input box at the center of  
Figure 4. Each query pair consists of two parts: one is for the nuclear receptor sequence, and the other 
for the drug. The NR sequence should be in FASTA format, while the drug in the KEGG code 
beginning with the symbol #. Examples for the query pairs input and the corresponding output can be 
seen by clicking on the Example button right above the input box. 
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Figure 4. A semi-screenshot to show the top page of the iNR-Drug web-server. Its website 
address is at http://www.jci-bioinfo.cn/iNR-Drug. 

 

Step 3. Click on the Submit button to see the predicted result. For example, if you use the three 
query pairs in the Example window as the input, after clicking the Submit button, you will see on your 
screen that the “hsa:2099” NR and the “D00066” drug are an interactive pair, and that the “hsa:2908” 
NR and the “D00088” drug are also an interactive pair, but that the “hsa:5468” NR and the “D00279” 
drug are not an interactive pair. All these results are fully consistent with the experimental 
observations. It takes about 3 minutes before each of these results is shown on the screen; of course, 
the more query pairs there is, the more time that is usually needed. 

Step 4. Click on the Citation button to find the relevant paper that documents the detailed 
development and algorithm of iNR-Durg. 

Step 5. Click on the Data button to download the benchmark dataset used to train and test the  
iNR-Durg predictor. 

Step 6. The program code is also available by clicking the button download on the lower panel  
of Figure 4. 
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