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Abstract

Purpose: To compare semi-quantitative (SQ) and pharmacokinetic (PK) parameters for analysis of dynamic contrast
enhanced MR data (DCE-MRI) and investigate error-propagation in SQ parameters.

Methods: Clinical data was collected from five patients with type 2-neurofibromatosis (NF2) receiving anti-angiogenic
therapy for rapidly growing vestibular schwannoma (VS). There were 7 VS and 5 meningiomas. Patients were scanned prior
to therapy and at days 3 and 90 of treatment. Data was collected using a dual injection technique to permit direct
comparison of SQ and PK parameters. Monte Carlo modeling was performed to assess potential measurement errors in SQ
parameters in persistent, washout, and weakly enhancing tissues. The simulation predictions for five semi-quantitative
parameters were tested using the clinical DCE-MRI data.

Results: In VS, SQ parameters and Ktrans showed close correlation and demonstrated similar therapy induced reductions. In
meningioma, only the denoised Signal Enhancement Ratio (Rse1/se2(DN)) showed a significant therapy induced reduction
(p,0.05). Simulation demonstrated: 1) Precision of SQ metrics normalized to the pre-contrast-baseline values (MSErel and
gMSErel) is improved by use of an averaged value from multiple baseline scans; 2) signal enhancement ratio Rmse1/mse2

shows considerable susceptibility to noise; 3) removal of outlier values to produce a new parameter, Rmse1/mse2(DN), improves
precision and sensitivity to therapy induced changes. Direct comparison of in-vivo analysis with Monte Carlo simulation
supported the simulation predicted error distributions of semi-quantitative metrics.

Conclusion: PK and SQ parameters showed similar sensitivity to anti-angiogenic therapy induced changes in VS. Modeling
studies confirmed the benefits of averaging baseline signal from multiple images for normalized SQ metrics and
demonstrated poor noise tolerance in the widely used signal enhancement ratio, which is corrected by removal of outlier
values.
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Introduction

Analysis of dynamic contrast enhanced MRI (DCE-MRI) data

is commonly performed by applying pharmacokinetic (PK) models

to changes in contrast agent concentration derived from observed

changes in signal intensity (SI). A simpler approach is to perform

direct analysis of changes in SI using one or more of a range of

established semi-quantitative (SQ) descriptors.

Almost all early DCE-MRI studies employed simple SQ metrics

derived by mathematical analysis of observed SI-time course data

(SI-TC). With the growth of PK approaches the field has become

dichotomized with consensus groups recommending PK analysis

[1,2,3,4] whilst, at the same time clinical radiologists are far more

likely to use SQ metrics which have become essential clinical tools

across a range of oncological applications [5,6,7,8,9,10,11,

12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27]. This wide-

spread adoption of SQ metrics reflects the simplicity of the

approach, the ability to use straightforward, often slow, dynamic

acquisition sequences with good spatial resolution and coverage,

the wide availability of clinical analysis software and, most

importantly, clear clinical evidence that the techniques are

beneficial.

Despite widespread clinical adoption SQ parameters are

commonly avoided for clinical trial applications in the belief that

they are less biologically specific and more prone to variability

than parameters derived from PK modeling, [2,4] although, no

detailed study of the behavior of SQ parameters or direct

comparison of SQ and PK parameters has been presented. Many

studies have however shown significant problems associated with

PK derived parameters arising from the need for high temporal
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resolution sampling, accurate arterial input function definition and

problems associated with curve fitting based analysis approaches

which are limiting widespread implementation of DCE-MRI,

particularly into multi-center studies [4,28,29,30].

The signal enhancement ratio (Rmse1/mse2) is particularly

attractive SQ metric which is little affected by variation in tissue

T10 values and has been shown to correlate closely with the

redistribution rate constant (kep), a commonly analyzed PK

parameter [31]. This behavior identifies Rmse1/mse2 as a potential

simple and attractive surrogate of PK analyses, which has led to

widespread adoption, particularly in breast cancer studies

[9,10,11,12,13,32,33,34,35,36].

Anxieties around the use of SQ parameters for quantitative

studies have little or no substantive evidence base [37]. Multicen-

ter clinical applications are common and the development of

‘‘normalized’’ SQ metrics represents an attempt to minimize

variation across multi-center/multivendor acquisitions. Wider use

of SQ parameters for clinical trials and multicenter studies would

simplify data analysis and potentially improve implementation of

DCE-MRI. However, before this could occur it is essential that we

have a greater understanding of their ability to identify therapy

induced changes, the comparative performance of SQ and PK

derived biomarkers and their variability in the setting of

multicenter studies.

Direct comparison of SQ and PK parameters is complicated by

the differing acquisition approaches employed. SQ parameters are

typically used in low temporal resolution data allowing the use of

high spatial resolution and large volume coverage. In contrast, PK

parameters depend on high temporal resolution to allow accurate

fitting of the analytical model, which produces compromises in

both spatial resolution and coverage. We have recently described a

dual injection technique, ICR-DICE (Improved Contrast and

spatial Resolution using Dual Injection Conrast Enhanced MRI)

[38]. This uses two separate contrast enhanced dynamic acqui-

sitions to provide a high temporal resolution dataset, ideal for

identification of an arterial input function for PK mapping, and a

high spatial resolution dataset for measurement of tissue residue

functions allowing direct, pixel by pixel comparison of SQ and PK

metrics in the same dataset.

This study uses a combination of Monte Carlo modeling and

clinical ICR-DICE data from patients with type 2 Neurofibroma-

tosis and was designed to address five basic issues:

1. What is the predicted effect of variations in signal intensity

curve shape and signal to noise ratio on errors in the estimates

of SQ parameters?

2. Do observations from the clinical DCE-MRI data support

Monte-Carlo predictions?

3. Does the behavior of the signal enhancement ratio (Rmse1/mse2)

provide a satisfactory surrogate metric for formal PK based

analyses?

Figure 1. Shows examples of the three typical kinetic enhancement curves used for modelling. curve I (persistent type), curve II (washout
type), and curve III (weak enhancement). (a–c) demonstrate the [Gd] curves fitted with the modified Tofts model using the ICR-DICE method. The
fitted kinetic parameter values are given above each curve. The small panel at the up-right corner of (c) shows the SI curves from the corresponding
region in the high-temporal resolution (Dt = 1 s) pre-bolus data set of the ICR-DICE acquisition. (d–f) demonstrate the SI curves converted from the
fitted [Gd] curves. A 1-minute temporal resolution was used to extract data from the theoretical SI curves (showed as asterisk points), which are used
as the ‘true’ SI enhancing curves in the following Monte Carlo simulations.
doi:10.1371/journal.pone.0090300.g001
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4. What is the optimal number of samples to define pre-

enhancement signal intensity on estimates of SQ parameters?

5. How do SQ and PK derived metrics compare in the detection

of anti-angiogenic therapy induced changes in a single centre

setting?

Methods

Choice of Semi-Quantitative Parameters
Candidate SQ parameters were categorized into 5 groups, each

characterized by a similar mechanism of error propagation during

parameter calculation. An additional novel parameter, designed to

improve computational stability, was subsequently added. The

final 6 SQ parameters were:

1. Absolute MRI signal enhancement (MSE) [39], (e.g., MSE1min = -

SI1min,post2SIpre), where SI1min,post is signal intensity at one

minute post contrast agent (CA) injection and SIpre is SI pre-

injection. One commonly used example of this category is the

maximum intensity change per time interval ratio (MITR)

[40].

2. Relative signal enhancement (MSErel) [14,22,41] which uses a

baseline value for normalization in order to reduce the

dependence on biological and imaging system variables, e.g.,

MSErel, 1min = (SI1min post2SIpre)/SIpre, where MSErel, 1min is

MSErel at one minute post CA injection.

3. The sum of MSE over a fixed post-injection duration, (gMSE). which

can also be defined as the area under the enhancement curve

(AUC) [1].

4. The sum of MSErel over a fixed post-injection duration, (gMSErel),

which can also be defined as baseline-normalized AUC [1].

5. Signal enhancement ratio, (Rmse1/mse2) commonly defined as the

ratio of early to late contrast enhancement ratio [32], e.g.,

Rmse1/mse2 = (SI1min post2SIpre)/(SI5min post2SIpre); Alternative-

ly, defined as the ratio of late to early contrast enhancement,

e.g., Rmse2/mse1 = (SI5min post2SIpre)/(SI1min post2SIpre), which

was also coined the name of SER (Signal Enhancement Ratio).

6. Denoised Signal enhancement ratio (Rmse1/mse2(DN) Comparison of

values in mse1, mse2, and Rmse1/mse2 maps demonstrated that

3–4% of voxels have spurious values resulting from noise-

induced near-zero values in mse2 maps whereas mse1?0. To

remove these outliers, thresholds of 0,Rmse1/mse2,1.45 were

used to exclude voxels outside the 95th percentile and Rmse1/

mse2 calculated as described above. Note that a median filter

could be used to filter outliers, but may also affect high

frequency components of the SER maps [42].

Monte-Carlo Modeling of Measurement Errors
Generation of typical signal intensity-time course

curves. Three patterns of signal intensity time course curves

(SI-TC) were chosen for Monte-Carlo analysis [19]: 1) persistent

enhancement, 2) contrast washout, and 3) weak contrast

enhancement. These represent the three principle variants that

have biological value in published studies of SQ parameters.

Examples of each type were identified in high-spatial resolution

DCE-MRI data of a vestibular schwannoma (VS) in one patient

(vide infra). These exemplar signal-time course curves were used to

generate a tissue model by:

1. Converting SI-TC to contrast concentration time course curves

(CC-TC).

2. Fitting with the modified Tofts model [43,44].

Figure 2. Shows fitting results for Experimental and modelled signal enhancement data SI(t). Experimental data are shown with symbols
of ‘‘+’’. Modeled data are shown as a solid line. The good fits (left column) are characterized by a lower (near zero) ‘Mean Ar2–30’ and a higher fraction
of modeling information (FMI) [47], where Ar is the autocorrelation of the residual, and the ‘Mean Ar2–30’ was the mean Ar over the time lags 2 to 30.
The poor fits with considerable modeling error (right column) are characterized by a higher ‘Mean Ar2–30’ and a lower FMI.
doi:10.1371/journal.pone.0090300.g002
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3. Generating synthetic SI-time curves from the derived fitting

parameters using measured baseline SI and pre-contrast T1

relaxation time (T10), and a literature value of the longitudinal

relaxivity of the contrast medium (4.39 mM21 sec21) [45]

(Figs 1a–c).

4. Sampling the synthetic time course data with a 1-minute

temporal resolution for use as ‘‘ground truth’’ signal intensity-

time course curves (SI-TC) in subsequent Monte Carlo

analyses (Figs 1 d–f).

Monte Carlo simulation for error analysis. MSE1min,

MSErel,1min, gMSE, gMSErel and Rmse1/mse2, were calculated for

each of the reconstructed SI-time curves to produce ‘true’ values

(where mse1 = MSE1min, mse2 = MSE5min and the sum of MSE

and MSErel were performed over a 5 minute duration). Rician

white noise with noise levels ( = standard deviation/mean baseline

signal) of 5%, 10%, and 15% was subsequently added to the

simulated SI-TC and SQ parameters calculated to produce

‘measured’ values. A total of 106 repetitions were performed for

each given condition (i.e., a specific SI-TC type), and a given noise

level. Percent deviations (PD) of the ‘measured’ from ‘true’ values

were calculated. Frequency distributions of the percentage

deviations were displayed as histograms and distribution charac-

teristics including measures of distribution position (the mean and

the median), dispersion (the range, percentiles, and SD), skewness,

and kurtosis were calculated. Rank statistics (the range, the 5th and

95th percentiles, and the median) of the PD distributions were

displayed using box-and-whisker plots.

Monte Carlo simulation for optimal number of pre-

contrast time points. The use of a mean value of multiple pre-

contrast time points as SIpre for calculation of SQ parameters will

reduce the effects of noise and improve reliability [46]. To

determine the optimal number of the pre-contrast time points, the

above Monte Carlo simulation was repeated but with varying

number of pre-contrast time points based on 15% noise level (a

typical noise level in our data). 104 repetitions were performed for

each given condition (i.e., a specific SI-TC type), and a given

number of pre-contrast time points.

Clinical Studies
Ethical statement. The clinical study received approval

from the NHS Health Research Authority National Research

Ethics Service, North West Committee, Greater Manchester

Central, Rec Reference 13/NW/0131 and all patients gave

written informed consent for inclusion in the study. All imaging

data is archived within the CRUK-EPSRC cancer imaging centre

in Cambridge and Manchester archival database and is available

to external investigators in anonymized form.

Clinical data acquisition. DCE-MRI data were collected in

five patients with type 2 neurofibromatosis (NF2), with a total of 12

tumors (7 vestibular schwannoma (VS) and 5 meningiomas).

Patients were treated with the anti-vascular endothelial growth

factor antibody bevacizumab (5 mg/kg fortnightly, Avastin, Hoff-

man La-Roche, CH) and were imaged on 3 occasions: pre-

treatment (day 0), 3 days (day 3), and 3 months (day 90) following

treatment.

DCE-MRI data were collected as described previously [38]

using a dual injection technique with an initial high-temporal

resolution (1 s), low-spatial resolution acquisition for measurement

of the arterial input function followed by a low-temporal, high-

spatial resolution (voxel size = 16162 mm) acquisition for

measurement of the tissue residue function. Contrast agent (CA;

gadoterate meglumine; Dotarem, Geurbet S.A.) was administered

by power injector as an intravenous bolus at a rate of 3 ml/s,

followed by a chaser of 20 mls of 0.9% saline administered at the

same rate. A low dose of CA (0.017 mmol/kg) was used for the

first, high temporal resolution acquisition. For the second, high

spatial resolution acquisition a standard dose (0.1 mmol/kg) was

administered synchronized with 7th frame of the dynamic

acquision yielding six pre-contrast time points in each SI(t) curve.

Table 1. Descriptive statistics for PD distributions calculated from 106 Monte Carlo repetitions for each of the five SQ parameters
under varying noise and pharmacokinetic conditions.

PD Mean SD Skewness Kurtosis

Curve type noise(%) 5 10 15 5 10 15 5 10 15 5 10 15

Type I:
Persistent

MSE 20.1 20.3 20.7 10.7 21.3 31.9 0.0 0.0 0.0 0.0 0.0 0.0

SMSE 20.1 20.2 20.5 5.3 10.6 15.9 0.0 0.0 0.0 0.0 0.0 0.0

MSErel 0.4 1.8 4.0 14.7 30.0 46.6 0.3 0.5 0.9 0.1 0.7 2.2

SMSErel 0.3 1.3 3.0 10.3 21.0 32.8 0.3 0.6 1.1 0.2 0.8 3.0

Rmse1/mse2 0.1 0.3 0.7 9.4 19.2 30.1 0.1 0.1 0.2 0.1 0.3 1.1

Type II: WashoutMSE 20.1 20.2 20.5 6.4 12.8 19.1 0.0 0.0 0.0 0.0 0.0 0.0

SMSE 20.1 20.3 20.6 7.7 15.3 22.8 0.0 0.0 0.0 0.0 0.0 0.0

MSErel 0.3 1.2 2.8 10.6 21.6 33.7 0.3 0.6 1.0 0.1 0.7 2.4

SMSErel 0.4 1.7 3.9 12.6 25.7 40.2 0.3 0.6 1.1 0.2 0.8 2.9

Rmse1/mse2 1.1 5.2 6.8 10.9 69.6 8E3 0.7 2622 2801 1.0 5E5 7E5

Type III: Weak MSE 20.1 20.4 21.0 26.7 53.4 79.8 0.0 0.0 0.0 0.0 0.0 0.0

SMSE 20.1 20.3 21.0 21.1 42.2 63.1 0.0 0.0 0.0 0.0 0.0 0.0

MSErel 1.0 4.0 9.0 30.6 62.3 96.6 0.2 0.5 0.9 0.1 0.6 1.9

SMSErel 1.1 4.2 9.4 26.1 53.4 83.5 0.3 0.6 1.1 0.2 0.8 2.6

Rmse1/mse2 6.0 134 192 253 1E5 2E5 2465 945 954 3E5 9E5 9E5

doi:10.1371/journal.pone.0090300.t001
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Validation of Monte Carlo Error Predictions
Single pixel DCE-MRI data from pre-treatment scans of all

tumors (7 VS and 5 meningiomas) was pooled in order to test the

predictions of the Monte-Carlo modeling process. Surrogate ‘‘true

values’’ of SQ parameters were developed using the assumption

that: where CC-TC data shows good agreement with the modified Toft’s

model, the resulting fitted function represents the true underlying CC-TC free of

noise effects. For this purpose the residual autocorrelation function

and fraction of modeling information (FMI) [47] is a proper

quality control for defining the denoised SI curves.

We therefore use the following approach:

a. Data for all tumor voxels (n = 117,527) was fitted using a

modified Toft’s model and estimated values of Ktrans,ve and vp

were derived.

b. Voxels where the total error is dominated by modeling error

effects were excluded by examining the FMI (Voxels with

FMI#0.995 were excluded).

c. The majority of tumor voxels under this study had a noise

level of 0.08 to 0.17, corresponding to the simulated data of

0.10–0.15 noise levels. Voxels with noise level outside the

range of 0.08–0.17 were therefore excluded.

d. Voxels with SI(t) curves resembling the typical persistent

enhancement (0.03,Ktrans,0.09 min21, 0.55,ve,0.90, and

0 .001, v p ,0 .07 ) and typ ica l washout pa t te rns

(0.3,Ktrans,1.0 min21, 0.20,ve,0.45, and vp,0.15) were

identified. The Ranges for values of Ktrans, ve and vp for the

persistent and washout curves were setup with the consider-

ation of obtaining enough in vivo curves for the validation

while keeping the typical persistent or washout type.

e. Theoretical SI-TC were generated for the selected voxels

using the measured PK parameters and T10 values of the

corresponding voxels.

f. SQ parameters were calculated from the theoretical SI-TC to

serve as ‘‘true values’’.

Figure 3. Box-and-whisker plots showing the PD distributions of the five empirical parameters. The range between 5th–95th percentiles
is shown by the box. Extreme values are shown by whiskers. Median is shown by a dot within the box. The PD distributions calculated from 1000000
Monte Carlo repetitions. ENR for each simulated condition are annotated. Formula for calculation of ENR can be found in Table 1.
doi:10.1371/journal.pone.0090300.g003
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Figure 2 shows examples of curves used in the PD distribution

analysis (left column) and of those excluded (right column) based

on the temporal autocorrelation analysis.

These voxel selection criteria, outlined above, were used to

select a subgroup of voxels whose enhancement curves corre-

sponded very closely to the three principal subtypes identified in

the Monte Carlo simulation. In addition, although most of the

voxels in the tumors could be fitted with a scaled fitting error (SFE)

around 15% or lower, only around one third of the typical

persistent or typical washout curves could be fitted with a fraction

of modeling information (FMI) equal to, or higher than, 0.997 and

these voxels were used in the validation. This resulted in the

exclusion of the majority of voxels that were represented by mixed

curve types leaving 8291 voxels with persistent and 448 with

washout type curves. This selection process is necessitated to

support direct comparison with the three main curve types selected

for the Monte Carlo simulation. We therefore divided the 106

Monte Carlo simulated persistent type curves into 100 groups

(each has 10,000 samples), and the 106 simulated washout type

curves into 2000 groups (each has 500 samples). PD distributions

were calculated for each of the subgroups. A range of values for

each of the descriptive statistics of the PD distribution were

produced and used for comparison to the in vivo data.

Comparing therapy-induced changes in PK and SQ

parameters. DCE-MRI datasets from pre-treatment, 3 days

and 3 months post treatment were analysed for each patient.

Tumors were automatically segmented using high-spatial resolu-

tion 3D Bayesian probability maps [48]. 3D Parametric maps of

the five SQ parameters and of Ktrans, vp, ve, and rate constant kep

(;Ktrans/ve), calculated using the modified Tofts model [43,44],

were generated from each data set. Calculations of SQ parameters

used a pre-contrast measurement consisting of an average of 5 pre-

contrast baseline measurements.

Pre- and post-treatment differences in SQ parameters were

tested using two samples Wilcoxon rank-sum test for VS and

meningiomas respectively. Spearman’s rank order correlation was

used to analyze the relationship between ktrans and each of four SQ

parameters (MSE, MSErel, gMSE, gMSErel) across two tumor

groups, i.e. VS and meningioma for each visit.

Since a close correlation between Rmse1/mse2 and kep has been

reported by previous workers [12,31], we used Spearman’s rank

order correlation to analyze the relationship between Rse1/se2 and

kep across the two tumor groups for each visit and also performed a

pixel-by-pixel comparison of the pre- and post-treatment values of

Rmse1/mse2 and kep using scatter plots and linear regression

analyses.

Results

Monte Carlo Simulation
1. What is the predicted effect of variations in signal

intensity curve shape and signal to noise ratio on errors in

the estimates of SQ parameters?. Measures for distribution

characteristics of PD values from the 106 Monte Carlo repetitions

are shown in Table 1 and Figure 3. Table 2 compares the

descriptive statistics of PD distributions from Monte Carlo

simulations and in vivo data. The in vivo values for all descriptive

statistics, in general, lie within the range (minimum and

maximum) given by the Monte Carlo simulated PD distributions.

2. Do observations from the clinical DCE-MRI data

support Monte-Carlo predictions?. Simulation and in vivo

data demonstrate close agreement and show the following:

Table 2. Comparison of the SQ parameter PD distributions calculated from Monte Carlo simulations and the in vivo data.

PD Distribution in Min 5th Perc. Median 95th Perc. Max

Persistent MSE Simul.a [2145, 2104] [255, 252] [22, 1] [50,53] [105, 147]

In vivo 2126 254 21 55 155

SMSE Simul.a [279, 254] [228, 226] [21, 0] [25,26] [51, 80

In vivo 248 220 3 27 71

MSErel Simul.a [2133, 2103] [262, 259] [23, 21] [84, 92] [257, 988]

In vivo 2121 259 21 81 529

SMSErel Simul.a [288, 268] [243, 240] [23, 21] [60,65] [192, 802]

In vivo 258 232 3 55 429

Rmse1/mse2 Simul.a [2572, 2105] [249, 245] [21, 1] [49,52] [139, 327]

In vivo 2136 250 23 50 209

Washout MSE Simul.b [287, 242] [239, 225] [24, 3] [25,37] [39, 88]

In vivo 267 232 5 46 82

SMSE Simul.b [2113, 251] [247, 230] [25, 4] [29,45] [46, 115]

In vivo 259 235 2 47 118

MSErel Simul.b [292, 253] [250, 235] [27, 4] [49, 86] [90, 758]

In vivo 272 238 7 71 199

SMSErel Simul.b [2108, 264] [260, 242] [29, 5] [59, 102] [111, 970]

In vivo 265 243 3 86 283

Rmse1/mse2 Simul.b [27E6, 244] [242, 231] [26, 5] [70, 186] [210, 1E6]

In vivo 21577 245 11 148 1862

aSimul.(Simulated) showed by the range of minimum and maximum from 100 Monte Carlo repetitions.
bshowed by the range of minimum and maximum from 2000 Monte Carlo repetitions.
doi:10.1371/journal.pone.0090300.t002
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Figure 4. Demonstrating direct comparisons between Rmse1/mse2 and kep in response to treatment in a single patient. (a) Longitudinal
spatially co-registered maps of Rmse1/mse2 (top) and kep (bottom) before (left) and 3 days after bevacizumab treatment (right) from a central slice of
the tumors. (b) Pixel-by-pixel scatter plots of the parametric values (3 days post-treatment against the pre-treatment) produced from the right
vestibular schwannoma and the meningioma on the same slice as in (a). The values of Rmse1/mse2 were calculated with an average of the five pre-
contrast baseline measurements as SIpre, MSE1 = MSE1min and MSE2 = MSE5min. Mean kep of VS was 0.3060.10 on day 0 and 0.1960.08 on day 3. Mean
kep of meningioma was 0.3860.09 on day 0 and 0.3660.09 on day 3. Mean Rmse1/mse2 of VS was 0.8260.22 on day 0 and 0.6860.19 on day 3. Mean
Rmse1/mse2 of meningioma was 0.946.27 on day 0 and 0.9460.18 on day 3.
doi:10.1371/journal.pone.0090300.g004
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1. Parameters ‘‘normalized’’ using pre-contrast signal intensities

show poorer precision than non-normalized metrics. SD values

of PD distributions of normalized metrics were 37%294%

greater than their non-normalized counterparts at noise level of

5% and 46%2106% greater at noise level of 15%. In vivo data

showed that the 90% confidence ranges (range 5th to 95th

percentiles) of the PD for normalized metrics were 22%285%

greater than their non-normalized counterparts and

82%2309% greater in the extreme range (range between the

minimum and maximum values) (Table 2) (23).

2. gMSE and gMSErel show greater precision for persistent and

lower precision for washout type curves when compared to

MSE1min and MSE1min, rel. SD values of PD distributions of

gMSE and gMSErel were 50% and 30% less than for

MSE1min and MSE1min, rel for persistent but 19%220%

greater than their non-sum counterparts for washout type

curves (Table 1). In vivo data confirmed these predictions

showing that the SD of PD for gMSE and gMSErel were 57%

and 38% less than MSE1min and MSE1min, rel for persistent but

5% and 18% greater for washout type curves in the 90%

confidence ranges of the PD (Table 2).

3. Both simulation and in vivo data showed that: (1) PDs in MSE

and gMSE are normally distributed (K-S test, p.0.05); (2) PD

distributions normalized MSE and gMSE show a right skew

although the K-S test was not significant, 3) the PD distribution

in Rmse1/mse2 is not normal with fat tails in the PD distributions

[49] (K-S test (p,0.001).

3. Does the behavior of the signal enhancement ratio

(Rmse1/mse2) provide a satisfactory surrogate metric for

formal PK based analyses?. Previous studies have recom-

mended the use of Rmse1/mse2 because it shows correlation with kep

[12,31]. In the current study Rmse1/mse2 was significantly

correlated with kep on day 0 (p = 0.026) and day 90 (p = 0.004),

although this relationship was not observed on day 3 (p.0.05).

Figure 4a shows longitudinal coregistered Rmse1/mse2 and kep maps

on day 0 and day 3. Scatter plots of kep pixel values from day 0 and

day 3 show correlation (Fig. 4b: R2
VS = 0.38; R2

meningioma = 0.57)

with a clear change in the slope of the regression line reflecting

treatment induced change in VS (kep, post = 0.48, kep, pre+0.05) but

no change in meningioma (kep, post = 0.94, kep, pre+0.00). Despite

the expected correlations between the two parameters the

scatterplot for Rmse1/mse2 shows weak correlations (Fig. 4:

R2
VS = 0.19; R2

meningioma = 0.23) with reduced separation between

VS and meningioma.

In modeling studies Rmse1/mse2 showed the greatest variability in

response to noise and PK conditions. Rmse1/mse2 was much more

robust for persistent than for washout type curves. Simulations

showed that SD values of the PD distributions for washout were

16%, 263% and 2E4% greater than those of persistent type curves

for noise levels of 5%, 10%, and 15% respectively (Table 1, Fig 3).

In vivo data confirmed this behavior showing SD values for

washout 93% greater than for persistent type curves in the 90%

confidence ranges of the PD, and 897% greater in the extreme

range (Table 2).

Comparison of values in mse1, mse2, and Rmse1/mse2 maps

demonstrated that 324% of voxels have spurious values resulting

from noise-induced near-zero denominator (se2) values in the

ration calculation. To remove these outliers, a thresholds of

0,Rmse1/mse2,1.45 was used to exclude voxels outside the 95th

percentile. The denoised Rmse1/mse2 (Rmse1/mse2 (DN)) demonstrates

treatment–induced changes in VS similar to those seen with other

SQ metrics. Post-treatment Rmse1/mse2 (DN) of VS 3 and 90 days

after therapy were significantly smaller than pre-treatment

(p = 0.017; p = 0.026), whilst post-treatment Rmse1/mse2 (DN) of

meningiomas at day 3 showed no change (p.0.05). Post treatment

Rmse1/mse2(DN) at day 90 of meningiomas were significant smaller

than pre-treatment (P = 0.008). Spearman’s rank correlations

showed Rmse1/mse2 (DN) showed close positive correlation with kep

for all three visits.

4. What is the optimal number of samples to define pre-

enhancement signal intensity on estimates of SQ

parameters?. The Monte-Carlo simulation showed that, with

a 15% noise level (a typical noise level in our data), two pre-

contrast time frames improved the precision of SQ parameter

estimation with a resulting reduction in the standard deviation of

Figure 5. Axial view of central slices of 3D longitudinally co-registered kinetic and semi-quantitative parametric maps obtained in
26-year-old woman, who has had a progressive VS (arrow heads) and an occipital located meningioma (arrow) undergoing
treatment with bevacizumab. Note that a ring-like structure on the margin of the meningioma can only be seen on the vp maps (arrow), but not
on any of semi-quantitative maps.
doi:10.1371/journal.pone.0090300.g005
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PDs of 13%, 24%, 25%, and 31% for MSE, MSErel, gMSE, and

gMSErel respectively for persistent type curves; 13%, 26%, 25%,

and 31% for washout type curves. The improvement started from

2 and came to a plateau at time frame 6. The PD distributions of

normalized metrics were more affected with reduction of positive

skewness and kurtosis. The precision of Rmse1/mse2 was least

affected by increasing number of pre-contrast time points for

persistent type curves, but most affected for washout type curves.

5. How do SQ and PK derived metrics compare in the

detection of anti-angiogenic therapy induced changes in a

single centre setting?. Parametric maps of both PK and SQ

parameters were of high quality (Fig 5). Table 3, and Figure 6

show mean values of PK and SQ parameters in pre and post-

treatment tumors. There were no significant changes of longitu-

dinal relaxation rates R1 (;1/T1) in VS or meningiomas after

treatment. In VS; Ktrans, vp, MSE, MSErel, SMSE and SMSErel

and Rmse1/mse2(DN) measured on day 3 and day 90 were

significantly lower than at day 0. From the SQ parameters, only

Rmse1/mse2 showed no significant changes in response to therapy.

From the PK parameters ve showed no significant treatment

related change. In meningiomas; Rmse1/mse2(DN) measured 90 days

after treatment was significantly lower than at day 0. Other than

this there was no significant post-therapy change of PK (i.e. Ktrans,

vp. ve) or SQ (i.e. MSE, MSErel, SMSE, SMSErel, Rmse1/mse2)

parameters in meningiomas.

Table 4 lists correlation coefficients and its significance level

where the relationships between Ktrans and SQ parameters, i.e.

MSE, MSErel, SMSE and SMSErel, were tested using Spearman’s

rank order test. Mean values of MSE, MSErel, SMSE and

SMSErel in VS and Meningiomas were all significantly correlated

to mean values of Ktrans on day 0, day 3 and day 90

(p = 0.00220.042) with the exception of SMSErel measured on

day 90, which showed only a trend of relationship towards Ktrans

(p = 0.076).

Discussion

DCE-MRI has become one of the most widely used techniques

for the characterization of tissue microvasculature with particu-

larly wide uptake in oncology [3,4,50,51]. Despite this there

remain significant problems with application and dissemination of

the technique, largely resulting from variability between imaging

platforms. In clinical trials this has led to a dominance of PK based

analysis techniques since it is reasoned, probably correctly, that the

use of calculated contrast concentration in place of SI data reduces

a major aspect of variation [3,4]. However the use of PK metrics

introduces additional problems including the need to define an

accurate arterial input function (causing competing demands for

temporal and spatial resolution), difficulties with measurement of

pre- and post- treatment T1 values required for calculation of

contrast concentration, the choice of appropriate pharmacokinetic

models and the need for curve fitting analyses. The PK approach

is therefore complex and, until recently, has been largely limited to

individual centre studies [52]. As a consequence there is wide

variation in acquisition and analysis approaches [51]. It is

surprising that, 20 years after the introduction of DCE-MRI

there is no standardization of acquisition sequences or analytical

software for clinical or research use despite extensive investment in

time and resources by academic groups, government and the

pharmaceutical industry [1,3,4,37,53,54,55].

Previous investigators showed the diagnostic importance of the

shape of time–signal intensity curves [56] in differentiating benign

and malignant enhancing lesions in breast [19,57,58], hepatic

Lesion [59], and lesions of bone [60], brain [27], colorectal [61]

and prostate [62]. Some studies analyzed correlation of CA

enhancement patterns on MR images with histopathological

findings and tumor angiogenesis [63,64], and with PET

imaging[65]. This study analyzed error propagation of SQ

parameters in three types of SI-time courses, selected on the basis

Table 3. Comparison of mean values of DCE parameters in pre- and post-treatment VS and Meningiomas.

bCompare Drug-Induced Changes of Mean in Two Tumors Wilcoxon Rank-sum
Test

Tumor type aDCE- MRI Para-meters. Day 0 Day 3 Day 90

VS MSE 86.7620.2 63.6±14.0* 54.4±19.7*

MSErel 1.0460.19 0.77±0.17* 0.65±0.23**

SMSE 62.6614.5 43.7±10.4* 36.0±14.0*

SMSErel 0.7560.14 0.54±0.13* 0.43±0.16**

Rmse1/mse2 1.1861.18 0.6860.01 0.6460.06

Rmse1/mse2(DN) 0.7360.10 0.62±0.05* 0.62±0.04*

R1 0.8860.03 0.8860.05 0.8660.08

Ktrans 0.1260.01 0.09±0.01** 0.09±0.03*

vp 0.0560.02 0.03±0.01* 0.03±0.01*

ve 0.5460.07 0.5960.13 0.5960.07

kep 0.2260.04 0.16±0.03** 0.15±0.04**

Meningi-omas Rmse1/mse2 1.0060.08 4.91638.2 0.85±0.04**

Rmse1/mse2(DN) 0.9860.06 0.9360.09 0.84±0.03**

aMSE, SMSE are in arbitrary unit, MSErel, SMSErel and Rmse1/mse2, kep are ratios. Ktrans is in minute21.
bComparison of differences in DCE-MRI parameters between pre- and post-treatment in each group of tumors, i.e. VS (N = 7) and meningiomas (N = 5) for each pair of
visits (Day 0 and day 3, day 0 and day 90).
*p,0.05,
**p,0.01.
doi:10.1371/journal.pone.0090300.t003
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of these published findings, to investigate these curve shapes’

preference for robust calculation of SQ parameters.

SQ parameters ‘‘normalized’’ using pre-contrast signal intensi-

ties are thought to be necessary to reduce the dependency on both

biological and imaging variables such as coil filling factor,

transmitter and receiver gain etc., which vary from scan to scan

and/or patient to patient [18]. As expected, the normalized

metrics (MSErel and gMSErel) were found to be more susceptible

to noise than their non-normalized counterparts (MSE and

gMSE) and we have confirmed suggestions by previous workers

that the use of multiple pre-contrast time points to obtain a mean

value of SIpre, significantly improves estimation errors [46]. We

have also shown that this benefit is significant when only 2 pre-

contrast data points are collected and plateaus at 6. In the therapy

setting gMSE, MSE, gMSErel, and MSErel, correlated with and

showed similar behavior to Ktrans, [66,67]. The predicted and

observed error distributions in SQ parameters described here

could be considered a disadvantage to their use in clinical trials.

Table 4. Spearman’s rank order correlation between Ktrans and SQ parameters, i.e. MSE, MSErel, SMSE and SMSErel.

MSE MSErel gMSE gMSErel

Est.* p-val Est. p-val Est. p-val Est. p-val

Pre-treatment 0.776 0.010 0.734 0.015 0.699 0.020 0.650 0.031

Day 3 0.839 0.015 0.885 0.003 0.692 0.022 0.727 0.016

Day 90 0.937 0.002 0.818 0.007 0.609 0.044 0.538 0.076

*Est.: Estimate.
doi:10.1371/journal.pone.0090300.t004

Figure 6. Plots of the changes in each of the SQ and PK parameters for VS during treatment. Error bars represent 95% confidence limits.
Significant change compared to pre-treatment (paired comparisons) is indicated by stars, * = p,0.05, ** = p,0.01.
doi:10.1371/journal.pone.0090300.g006
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However, similar Monte-Carlo modeling analyses of PK analytical

approaches have demonstrated not only noise related errors, equal

to or greater than those described here, but also systematic bias

resulting in very poor precision in Ktrans at low values, particularly

the presence of low SNR [29].

The signal enhancement ratio (Rmse1/mse2) is little affected by

variation in tissue T10 values and has been shown to correlate

closely with the redistribution rate constant (kep), a commonly

analyzed PK parameter [31]. This makes Rmse1/mse2 a potentially

attractive and very widely used metric, particularly in breast

cancer studies [9,10,11,12,13,32,33,34,35,36]. However, in the

majority of these studies Rmse1/mse2 was measured on an averaged

SI curve from a region of interest producing high SNR [12]. We

have shown that single pixel mapping is associated with poor SNR

and considerable heterogeneity in data quality. We demonstrated

that Rmse1/mse22 has poor tolerance of low SNR, which is

particularly severe when it is calculated from washout type curves.

The outliers identified from both simulation and in vivo Rmse1/mse2

lead to high kurtosis and skewness in the PD distribution function.

It is clear that these outliers should be carefully treated prior to

statistical analysis. It is encouraging that, as shown in this study,

the method using 95th percentile as a threshold for the removal of

outliers has demonstrated efficacy in restoring the power of Rmse1/

mse2, in detecting the therapy-induced changes and resulted in the

demonstration of therapy induced changes in meningiomas which

were not detected by other SQ or PK parameters. Use of an

Rmse1/mse2 histogram based volume analysis is an alternative

approach that is also less affected by outliers [11].

One of the major stated benefits of the PK analytical approach

is the physiological specificity of the metrics. When DCE-MRI

studies of antiangiogenic therapies became common, Ktrans was

widely used as an indicator of changes in endothelial permeability.

In fact it represents a compound metric affected by both blood

flow and the product of the surface area and permeability of the

capillary endothelial membrane. Nonetheless, the use of Ktrans as a

biomarker effectively removes confounding effects due to varia-

tions in vp and ve. The statistical power of any given metric to

detect significant change is dependent both on the change in

mean/median value and, more importantly on the shape and

width of the data distribution. In this study, the group coefficients

of variation for SQ metrics in VS ranged from 18–24%. However,

the CoV for Ktrans was considerably less both at day 0 and at 3

days of treatment (COV 8.3 and 11% respectively). This was

associated with very high COV for vp (40 and 33% respectively).

This narrow distribution resulted in improved statistical power for

Ktrans compared to SQ metrics such that a 25% reduction in Ktrans

at day 90 produced similar significance values to 37%, 37%, 42%

and 43% decreases in MSE, MSErel, gMSE and gMSErel

respectively. The reasons for this difference in COV is not clear,

however it seems likely that the systematic removal of the

contributions of intravascular contrast (vp) removed a significant

source of variation from the estimated mean tumor values.

Interestingly, the denoised signal enhancement ratio (Rmse1/

mse2(DN)) also demonstrated low COV (13.7%, 8.0% and 6.4% at

days 0,3 and 90) and showed treatment induced changes of similar

significance to Ktrans despite a reduction of only 15.1% in mean

values. In meningiomas pre-treatment Ktrans had the largest COV

of any metric other than vp (40% and 60% respectively). Rmse1/

mse2 (DN) showed the lowest COV (6.1%, 9.6%, and 3.6% at days

0, 3 and 90) and was the only metric to demonstrate significant

therapy induced changes with a reduction in mean values of 14%

compared for example to non-significant reduction in mean Kep of

13%. The Rmse1/mse2(DN) parameter is also designed to remove

confounding numerical effects from estimates of the mean value.

These results demonstrate the importance of variation in the mean

estimated values of each parameter across the tumor population

and favour the use of parameters where variation is minimized by

choice of the appropriate metric, whether SQ or PK. Unfortu-

nately the difference in behavior between meningiomas and VS

shows that the potential variation in individual metrics may be

tumor specific and cannot be predicted during trial design. These

observations also support the suggestions of previous workers that

analysis of DCE-MRI data should ideally be performed on a pixel

by pixel basis [2,3] and that the effects of spatial heterogeneity

should be specifically included into the analytical approach [68].

In conclusion, this study begins to challenge the commonly

expressed criticisms of SQ metrics for pixel-by-pixel parametric

mapping and clinical trials. The SQ parameters in this study show

relatively high tolerance to poor SNR compared to previous

studies of PK metrics and demonstrated equivalent therapy

induced changes. This paper is deliberately controversial and the

majority of reviews and consensus workshop reports on DCE-MRI

favor PK over SQ metrics for the reasons discussed above.

However we believe that the results presented here demonstrates

some clear advantages of SQ metrics and supports a re-evaluation

of the utility of these metrics, which must include comparative

studies of baseline reproducibility and multi-vendor/multicenter

implementations.
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