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Abstract

We describe an algorithm, multi-species cMonkey, for the simultaneous biclustering of heterogeneous multiple-
species data collections and apply the algorithm to a group of bacteria containing Bacillus subtilis, Bacillus anthracis,
and Listeria monocytogenes. The algorithm reveals evolutionary insights into the surprisingly high degree of conser-
vation of regulatory modules across these three species and allows data and insights from well-studied organisms
to complement the analysis of related but less well studied organisms.

Background
The rapidly increasing volume of genome scale data has
enabled global regulatory network inference and gen-
ome-wide prediction of gene function within single
organisms. In this work, we exploit another advantage
of the growing quantity of genomics data: by comparing
genome-wide datasets for closely related organisms, we
can add a critical evolutionary component to systems
biology data analysis. Whereas several well-developed
tools exist for identifying orthologous genes on the basis
of sequence similarity, the identification of conserved
co-regulated gene groups (modules) is a relatively recent
problem requiring development of new methods. Here,
we present an algorithm that performs integrative
biclustering for multiple-species datasets in order to
identify conserved modules and the conditions under
which these modules are active. The advantages of this
method are that conserved modules are more likely to
be biologically significant than co-regulated gene groups
lacking detectable conservation, and the identification of
these conserved modules can provide a basis for investi-
gating the evolution of gene regulatory networks.
Clustering has long been a popular tool in analyzing

systems biology data types (for example, the clustering
of microarray data to generate putative co-regulated
gene groups). Most genomics studies employ clustering

methods that require genes to participate in mutually
exclusive clusters, such as hierarchical agglomerative
clustering [1], k-means clustering [2] and singular value
decomposition derived methods [3-5]. Because most
genes are unlikely to be co-regulated under every possi-
ble condition (for instance, bacterial genes can have
more than one transcription start site and, in that case,
each site will be regulated by a different set of transcrip-
tion factors depending on the cell’s state), defining
mutually exclusive gene clusters cannot capture the
complexity of transcriptional regulatory networks.
Clearly, sophisticated integrative methods are needed to
arrive at the identification of more mechanistically
meaningful condition-dependent conserved modules.
Biclustering refers to the simultaneous clustering of

both genes and conditions [6,7]. Early work [8] intro-
duced the idea of biclustering as ‘direct clustering’ [9],
node deletion problems on graphs [10], and biclustering
[11]. More recently, biclustering has been used in sev-
eral studies to address the biologically relevant condition
dependence of co-expression patterns [6,12-19]. Addi-
tional genome-wide data (such as association networks
and transcription factor binding sites) greatly improves
the performance of these approaches [19-22]. Examples
include the most recent version of SAMBA, which
incorporates experimentally validated protein-protein
and protein-DNA associations into a Bayesian frame-
work [19], and cMonkey [20], an algorithm we recently
introduced.
cMonkey integrates expression and sequence data,

metabolic and signaling pathways [23], protein-protein
interactions, and comparative genomics networks
[24-26] to estimate condition dependent co-regulated

* Correspondence: pe19@nyu.edu; bonneau@nyu.edu
† Contributed equally
1Computer Science Department, Warren Weaver Hall (Room 305), 251
Mercer Street, New York, NY 10012, USA
3Center for Genomics and Systems Biology, Department of Biology, New
York University, Silver Building (Room 1009), 100 Washington Square East,
New York, NY 10003, USA
Full list of author information is available at the end of the article

Waltman et al. Genome Biology 2010, 11:R96
http://genomebiology.com/2010/11/9/R96

© 2010 Waltman et al.; licensee BioMed Central Ltd. This is an open access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

mailto:pe19@nyu.edu
mailto:bonneau@nyu.edu
http://creativecommons.org/licenses/by/2.0


modules. We have previously shown that cMonkey can
be used to ‘pre-cluster’ genes prior to learning global
regulatory networks [27]. Biclusters are iteratively opti-
mized, starting with a random or semi-random seed, via
a Monte Carlo Markov chain process. At each iteration,
each bicluster’s state is updated based upon conditional
probability distributions computed using the bicluster’s
previous state. This enables cMonkey to determine the
probability that a given gene or condition belongs in the
bicluster, dependent upon the current state of the
bicluster. The components of this conditional probabil-
ity (one for each of the different data types) are modeled
independently as P-values based upon individual data
likelihoods, which are combined to determine the full
conditional probability of a given gene or condition
belonging to a given bicluster.
Previous multi-species clustering methods generally

fall into two classes (for reviews see [17,28]). The first
class attempts to match conditions between species in
order to identify similarities and differences for a given
cell process [29-32]. By requiring matched conditions,
this approach is not well suited to large sets of public
experiments, as it is limited to only the conditions that
have direct analogs for both species. The second class of
multi-species clustering methods employs a strategy
where the datasets for each organism are reduced to a
unit-less measure of co-expression (for example Pear-
son’s correlation) and are then used to compare
co-expression patterns in multiple species [33-38]. This
second class includes methods analyzing the conserva-
tion of individual orthologous pairs [37,38] and those
seeking to identify larger conserved modules [33,34,36].
The common objective is to gain insight into the evolu-
tion of related species, including the role of duplication
in regulatory network evolution and the occurrence of
convergent evolution versus conserved co-expression
[35,38]. However, none of these studies can be consid-
ered a true multi-species biclustering algorithm; for
example, both Bergmann et al. [34] and Tanay et al.
[36] performed the analyses of the different species
sequentially. Furthermore, with the exception of Tanay
et al. [36], the methods were limited to considering only
expression data.
Below, we present multi-species cMonkey, a bicluster-

ing framework that enables us to integrate data across
multiple species and multiple data-types simultaneously.
Our approach maintains the independence of the organ-
ism-specific data while still allowing for true bicluster-
ing. Specifically, gene membership in multiple clusters is
possible and integration of a variety of data types
remains an integral part of the approach. Once the con-
served modules have been identified, our method further
allows the discovery of species-specific modifications
(which we term ‘elaborations’, that is, the addition of

species-specific genes that fit well with the conserved
core of the bicluster according to the multi-data score).
The ability to find species specific elaborations of con-
served co-regulated core sets of genes is a unique
strength of the method and is critical to understanding
the evolution and function of conserved modules.
Our multi-species biclustering method was applied to

all pairings that are possible for three closely related
species of Firmicutes: Bacillus subtilis, Bacillus anthracis
and Listeria monocytogenes. As one of the best-studied
bacterial model organisms, B. subtilis was selected due
to the wealth of publicly available genomic data and the
large amount of knowledge accumulated on this organ-
ism over the years. Additionally, B. subtilis and
B. anthracis have similar life cycles, alternating between
vegetative cell and dormant spore states [39-43]. The
third member of the triplet, L. monocytogenes, was
selected as it shares similar morphology and physiology
with B. subtilis and B. anthracis, but lacks the ability to
form spores. In addition, B. anthracis and L. monocyto-
genes are pathogenic species, while B. subtilis is
non-pathogenic. Evolutionarily, the Bacillus and Listeria
genera are estimated to have separated more than 1 bil-
lion years ago [44]. Analysis of the biclusters obtained
as a result of the procedure revealed several gene groups
of interest and led us to formulate new hypotheses
about the biology of these organisms. Specifically, we
were able to detect a temporal difference between the
two Bacillus species in the expression of a group of
metabolic genes involved in spore formation. Further-
more, the unexpected identification of a bicluster for
genes required for flagellum formation in B. anthracis
prompted us to re-examine the capacity for flagellar-
based motility in that species.

Results
In this section we provide a description and genome-
wide benchmarking of the multispecies integrative
biclustering method (or FD-MSCM for full-data multi-
species cMonkey). We compare our method to the ori-
ginal single-species cMonkey algorithm, a simple
k-means clustering method that has been adapted to
multi-species analysis and to several other single- and
multi-species biclustering algorithms. We will refer only
to analysis of pairs of organisms here and focus primar-
ily on the B. subtilis-B. anthracis pair. We note that the
method scales linearly with the number of species being
analyzed and can be extended to larger numbers of
organisms. The difficulties in validating biclustering per-
formance and the need to compare the algorithm to pri-
marily single species methods required that we initially
limit the scope of this work to the simpler pairwise case.
Lastly, we include examples of biologically significant
biclusters retrieved by the method.
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Our method is composed of two sequential phases
(Figure 1): an initial step where conserved cores are
learned in a integrated multiple-species fashion and a
later step where species-specific features are added to
the conserved core (called the elaboration step). The
algorithm takes as input a matrix of normalized expres-
sion data for each organism (where each organism’s
data matrix may be normalized separately), upstream
sequences for all genes, and one or more networks for
each organism (in this case we used metabolic and sig-
naling pathways from the Kyoto Encyclopedia of Genes
and Genomes (KEGG), predicted co-membership in an
operon and phylogenetic profile networks). The experi-
mental datasets collected for each organism are
described fully in Additional file 1 (Tables S1 and S2 in
Additional file 1).
The method begins by randomly selecting a single

orthologous pair (for example, dnaA) around which to
build a seed bicluster. For the randomly selected
orthologous pair, conditions are chosen in each organ-
ism’s expression matrix where the orthologous gene
from that organism is most significantly differentially
expressed. The semi-random seed is completed by add-
ing the five to ten most correlated orthologous pairs
(for example, dnaN) to the randomly selected seed pair
(over the conditions defined in each species). This
heuristic seeding is required as most of the MSCM
score terms demand that a bicluster have three or
more genes in each organism to compute the scores
required for further iterations. Once seeded, ortholo-
gous gene pairs are then iteratively added to (for
example, sigH) or dropped from (for example, cwlH)
the growing bicluster using the multi-data/multi-
species score until no improvements can be made
(convergence). After a bicluster converges, new biclus-
ters are seeded and built from additional random seeds
until no significant biclusters can be found or a maxi-
mum number of biclusters is reached.
Biclusters are generated sequentially and the number

of biclusters to be optimized is chosen by the user.
Considering that initially optimized biclusters will be
unaffected by later biclusters, the number of biclusters
is set higher than the expected number of true co-
regulated modules. For each of the three possible spe-
cies pairs, we generated 150 biclusters in the shared
(multi-species) data-space that were then elaborated in
the single-species data-space. Thus, each bicluster con-
tains a conserved core (orthologous pairs that were
added based on the entire integrated dataset), and 0 or
more genes that were added during the elaboration
step (performed separately for each organism, based on
each single species dataset). A complete specification
of the method is given in the Materials and methods
section.

Genome-wide assessment of multi-species biclustering
performance
To validate MSCM, we compared it to several multi-
species and single-species methods (Table 1; Table S3 in
Additional file 1). Among the single-species methods,
we included the single-species version of cMonkey
(SSCM; which was previously shown to be competitive
with other biclustering methods [20]) as well as two
recent single-species biclustering methods, QUBIC
(QUalitative BIClustering algorithm) [45] and Coalesce
[22] (COAL). In addition, we compared our method to
a multi-species version of the biclustering Iterative Sig-
nature Algorithm (MSISA) [13], and two multi-species
clustering methods, a simple multi-species k-means
algorithm (MSKM) [46] and a balanced multi-species
k-means clustering method (BMSKM). We constructed
the BMSKM version to balance the disproportionate
size of expression datasets between the two species and
thereby perform a more meaningful comparison to
MSCM. We refer to the results as ‘shared’ (SH) if we
restrict our analysis to orthologous pairs between the
two species and ‘elaborated’ (EL) if a second step is used
to add species-specific genes, that is, MSCM-EL. When
possible, we evaluate both SH and EL results. In order
to remain consistent with the MSISA nomenclature
[13], we also use the terms ‘purified’ (MSISA-P) and
‘refined’ (MSISA-R), as these terms were used in the ori-
ginal work describing these methods. Descriptions of the
multi-species methods can be found in the Materials
and methods section. When evaluating integrative meth-
ods that take into account more than just expression
data (FD: full data) we also compare to expression-only
(EO) runs of each method. Our evaluation of the various
methods is based on two criteria: the ability to detect
statistically significant modules; and more importantly
to this work, the ability to identify conserved modules.
We show that MSCM produces biclusters that are a
good balance of coverage, functional significance, and
conservation, suggesting that the biclusters obtained by
this procedure are of greater biological significance.
Using multiple metrics for validating multi-species
biclustering
Validation and comparison of clustering methods
remains a difficult problem [20,47]. There is, as of yet,
no ‘solved’ organism (that is, an organism whose full
regulatory network is known and experimentally vali-
dated) that can be used as a benchmark. Artificial data-
sets are also of limited value due to the complexity of
generating reasonable synthetic datasets (one would
have to generate sequences, expression data and net-
works, and make assumptions about the evolution of
these data-types). In the face of these challenges, several
criteria for judging the biological significance of gene
clusters have been implemented. We will focus on five
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Figure 1 Schematic overview of the multiple-species method. (a) Shared-space bicluster seeds are generated by calculating the pairwise
correlation of the gene pairs to a randomly selected gene pair. (b) The shared-space multi-species optimization, where orthologous gene pairs
are iteratively added or dropped from the bicluster according to the multi-species multi-data score. (c) When completed, shared-space biclusters
are separated into their respective species, and further optimized during the elaboration step. During this step the genes from the original
shared-space bicluster are prevented from being dropped, as indicated by the boxes surrounding these genes (represented as black circles). OC,
orthologous core (the set of actively expressed orthologous genes shared between a group of organisms on which we run our multi-species
biclustering).
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metric classes: 1) bicluster coherence; 2) functional
enrichment; 3) coverage; 4) overlap between biclusters;
and 5) conservation. We evaluate bicluster coherence
with five metrics that gauge the support of the three
data types cMonkey integrates, described further below
and in Additional file 1. We also assess the number of
biclusters that have a significant enrichment, considering
that enrichment metrics imply that co-functional and
interacting genes (by protein-protein or regulatory inter-
action) should have a higher probability of clustering.
Expression matrix coverage and overlap between biclus-
ters were calculated as the percentage of data-matrix
elements that can be in one or more biclusters (as
opposed to just genes). Gene-wise comparisons can be
found in Additional file 1.
The last metric we consider, unique to multi-species

datasets, is the conservation of (bi)clustered genes
between the two species. Although we cannot know a
priori what percentage of co-regulated genes will be pre-
served, we can state for two closely related organisms
that: if two biclustering methods are equivalent (accord-
ing to all other metrics), then the more conserved
method is likely to be of higher biological significance;
and the conserved score between biclustering methods
should be well separated from a random background,
but still lower than 1. In addition, more distantly related
organisms should have less conserved co-regulation. By
strictly enforcing a perfect conservation between the
species, the two k-means variants (BMSKM and MSKM)
are good examples of methods that over-estimate the
degree of conservation between two species.
Figures 2 and 3 and Table 2 present this multiple-

metric comparison; Additional file 1 contains additional
details and associated methods supporting these com-
parisons as well as this multi-metric comparison

performed for the other two organism pairings. Given
the above metrics and evolutionary considerations, our
assessment of methods attempts to balance the five
metric classes above:

bicluster quality 

data support  1  coherence  2  functi

− =

( ) ( ): , oonal enrichment

completeness  3  coverage  4  overl

⎡⎣ ⎤⎦ ×

( ) ( ): , aap

conservation  5  conservation score

⎡⎣ ⎤⎦ ×

( )⎡⎣ ⎤⎦:

Comparing the degree of conserved co-regulation detected
by each method
A bicluster is considered to be perfectly conserved when
all of the orthologous genes from that bicluster are
found in a single bicluster in the related species. We
evaluated the ability of all the tested methods to identify
conserved biclusters using a metric similar to the F-sta-
tistic [48], which gauges the degree of recovery between
a bicluster in one species with that of the closest biclus-
ter in the other species. For the multi-species methods,
we calculated the metric using the shared bicluster for
one organism with its bicluster counterpart in the other.
Details of the procedure can be found in the Materials
and methods section.
Using this simple measure of conservation, we evalu-

ated the results from all the multi-species (MS) methods
with those from several single-species (SS) methods
(Table 2 displays the results for the B. subtilis-B.
anthracis pairing; see Tables S2 and S3 in Additional
file 1 for the others). With the exception of MSISA-R,
the MS methods displayed a far greater degree of con-
servation than any of the SS methods, with the shared
(SH) steps (and the equivalent MSISA-P step) having
perfect conservation, and the elaboration (EL) steps hav-
ing conservation scores >0.85. As they overestimate the

Table 1 Key to abbreviations used for methods tested

Expression only Full data

Shared space Full genome (elaboration) Shared space Full genome (elaboration)

Multi-species

cMonkey EO-MSCM-SH EO-MSCM-EL FD-MSCM-SH FD-MSCM-EL

ISA MSISA-P MSISA-R NA NA

k-means MSKM-SH MSKM-EL NA NA

(Balanced) k-means BMSKM-SH BMSKM-EL NA NA

Single-species

cMonkey EO-SSCM FD-SSCM

Coalesce EO-COAL FD-COAL

Qubic QUBIC NA

Tested methods are shown organized by main method (multi-species or single-species), data types used, and whether the analysis was performed over the full
genome or restricted to only genes with orthologs across the species analyzed. ISA, Iterative Signature Algorithm; EO, expression only; MSCM, multi-species
cMonkey; SH, shared biclusters; MSISA, multi-species ISA; P, purified biclusters; MSKM, multi-species k-means; BMSKM, balanced multi-species k-means; EL,
elaborated biclusters; R, refined biclusters, applies only to the ISA algorithm (MSISA-R); FD, full data; SSCM, single-species cMonkey; COAL, Coalesce biclustering
method; QUBIC, QUalitative BIClustering algorithm.
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Figure 2 Comparing the distribution of expression and network coherence for single- and multi-species methods for the B. subtilis-B.
anthracis pairing. A comparison of the expression and network coherence for the different MS and SS methods. For brevity, we present here
only the results from full data methods (FD) from the B. subtilis-B. anthracis pairing (the results for the other pairings and expression only (EO)
methods can be found in Additional file 1). Abbreviations are given for each method; a key to these abbreviations can be found in Table 1.
Across the three comparisons, no method outperformed all other methods as judged by all three metrics, with the MSCM results performing
competitively with the others. (a) The distributions of the residual values from each method for the pairing of B. subtilis and B. anthracis. We also
show, next to each distribution (in gray), the residuals from randomly shuffled (bi)clusters that match the size distribution for each method with
n = 1000 for the number of copies of the original set of (bi)clusters (same number of genes, conditions and (bi)clusters). Most methods tested
were significantly better than random for both organisms; the exceptions being MSISA, QUBIC, and Coalesce (COAL). In addition, this plot
illustrates the tendency of MSKM to allow an organism with a considerably larger expression dataset to dominate the analysis. (b) The
distributions of the average absolute correlation from each method for the pairing of B. subtilis and B. anthracis are displayed to allow
comparison between methods that identify inversely correlated biclusters (MSISA, QUBIC) and those that do not. As in (a), we also display the
results from a randomly shuffled distribution next to each method in gray (n = 1000). In all cases, with the exception of QUBIC for B. subtilis, the
method was significantly higher than random. (c) The distributions of the association P-values (-log10) from each method compared.
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Figure 3 Comparison of the size, coverage and overlap for single and multi-species methods for the B. subtilis-B. anthracis pairing
(full data results only, where applicable). For brevity, we present here only the results from full data methods (FD) from the B. subtilis-B.
anthracis pairing (results for the other pairings and EO methods can be found in Additional file 1). (a) The distribution of the number of genes
in the (bi)clusters from the different methods. There is a consistent increase in the median size between the shared and elaboration steps (this is
most extreme in the case of the MSISA method). For both organisms, Coalesce (COAL) and QUBIC produced the next largest biclusters, in terms
of the number of genes. (b) The distribution of the number of conditions in the biclusters from the different biclustering methods only. We do
not show this for the MSKM and BMSKM results as these methods use all conditions. For both organisms, the MS/SS cMonkey methods
produced the biclusters with the most conditions. The MSISA method produced the biclusters with the least number of conditions. (c) The
coverage of the total expression data matrix by the (bi)clusters from the different methods is displayed. The elaborated results of the MSKM and
BMSKM methods achieve perfect coverage, by definition. The MSISA and QUBIC biclusters had the smallest coverage of any of the methods,
while the Coalesce biclusters achieved coverages comparable with the SSCM biclusters. (d) The distribution of all pairwise, non-zero overlaps
between the (bi)clusters from the different methods; overlap in terms of the overlap of expression matrix elements, rather than genes. By
definition, the MSKM and BMSKM clusters have no overlap, while the MSISA and QUBIC biclusters had the greatest. Of the biclustering methods,
Coalesce had the least overlap. Coalesce identifies more distinct biclusters with greater numbers of genes, but fewer conditions; and the SS/MS
cMonkey methods identify biclusters that are slightly more overlapped than does Coalesce, with fewer genes, but covering more conditions.
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Table 2 Summary of evaluation criteria for the single and multi-species methods for the B. subtilis-B. anthracis pairing

GO KEGG

Conservation
score

Mean
correlation:
absolute
value

Mean net
P-value
(-log10)

Mean
number
of genes

Mean
number of
conditions

Number
of

biclusters

Coverage
element-
wise

Mean
overlap
element-
wise

Percent (bi)
clusters
enriched
(P < 0.01)

Number of
unique
enriched
terms

Percent (bi)
clusters
enriched
(P < 0.01)

Number of
unique
enriched
pathways

EO MSCM-SH 1 0.52 (0.69) 8.21 (6.45) 16.78
(16.78)

125.74
(25.86)

148 (148) 18.69%
(15.73%)

4.76%
(5.20%)

33.78% (37.16%) 378 (338) 4.05% (6.76%) 10 (16)

FD MSCM-SH 1 0.59 (0.85) 9.10 (8.57) 21.82
(21.82)

116.97
(24.87)

150 (150) 21.71%
(18.53%)

5.33%
(5.93%)

51.33%
(51.33%)

575 (500) 12.67%
(12.67%)

24 (28)

ISA-P 1 0.60 (0.56) 5.92 (5.63) 16.90
(16.90)

10.22 (6.85) 41 (41) 0.41%
(0.95%)

22.24%
(34.64%)

53.66% (75.61%) 160 (164) 19.51% (19.51%) 12 (15)

MSKM-SH 1 0.58 (0.52) 11.49
(11.62)

14.99
(14.99)

314 (51) 148 (148) 56.49%
(37.83%)

0% (0%) 50.68% (39.19%) 617 (559) 14.19% (14.86%) 22 (25)

BMSKM-SH 1 0.49 (0.72) 9.89
(12.19)

15.00
(15.00)

314 (51) 148 (148) 56.52%
(37.85%)

0% (0%) 50.00%
(48.65%)

658 (578) 16.89%
(15.54%)

29 (34)

EO MSCM-EL 0.907 0.54 (0.69) 7.41 (6.35) 22.74
(23.60)

129.69
(27.07)

148 (148) 25.03%
(21.68%)

4.38%
(5.06%)

40.54% (60.81%) 449 (485) 11.49% (10.81%) 18 (18)

FD MSCM-EL 0.852 0.61 (0.84) 7.64 (8.65) 33.75
(34.63)

119.87
(26.26)

150 (150) 31.29%
(29.90%)

4.00%
(5.72%)

56.00%
(72.67%)

649 (664) 15.33%
(21.33%)

30 (37)

ISA-R 0.093 0.55 (0.51) 3.54 (8.87) 106.05
(335.71)

10.22 (6.93) 41 (41) 2.36%
(6.90%)

18.34%
(46.28%)

95.12%
(100.00%)

287 (235) 24.39% (58.54%) 10 (20)

MSKM-EL 0.956 0.56 (0.58) 10.27 (6.65) 26.49
(39.44)

314 (51) 148 (148) 99.80%
(99.52%)

0% (0%) 63.51% (75.68%) 732 (675) 14.86% (12.16%) 31 (30)

BMSKM-EL 0.959 0.50 (0.71) 8.58 (7.93) 26.54
(39.63)

314 (51) 148 (148) 100%
(100%)

0% (0%) 52.70%
(81.76%)

743 (710) 15.54%
(11.49%)

35 (25)

EO SSCM 0.098 0.70 (0.91) 8.58 (7.43) 26.19
(34.11)

193.40
(38.66)

161 (210) 39.48%
(46.81%)

9.44%
(14.10%)

42.24% (66.19%) 499 (629) 10.56% (17.62%) 19 (29)

FD SSCM 0.124 0.56 (0.82) 10.14
(7.31)

23.06
(40.65)

200.76
(39.81)

295 (315) 54.55%
(61.24%)

7.53%
(15.46%)

50.51%
(61.59%)

746 (712) 11.53% (9.52%) 32 (31)

EO COAL 0.107 0.58 (0.64) 5.21 (5.06) 86.65
(115.71)

20.09
(13.13)

300 (158) 40.21%
(66.40%)

1.94%
(2.12%)

63.67% (76.58%) 744 (659) 17.67% (9.49%) 32 (24)

FD COAL 0.101 0.59 (0.62) 5.27 (5.69) 88.16
(131.12)

20.24
(14.24)

287 (136) 39.39%
(66.63%)

2.06%
(2.16%)

64.81%
(80.88%)

776 (686) 16.03%
(14.71%)

24 (24)

QUBIC 0.054 0.36 (0.49) 1.38 (5.90) 71.59
(188.25)

25.45
(12.63)

150 (150) 2.43%
(12.95%)

38.34%
(26.49%)

43.33% (88.67%) 227 (331) 3.33% (14.67%) 5 (13)

We compare several metrics of bicluster conservation, coverage, and functional enrichment. In all cases metrics are averaged over all biclusters produced by that method for each species. In each column, the results for B.
subtilis are listed first, with those for B. anthracis listed in parentheses. ‘Conservation score’ provides an estimate of the conservation identified between biclusters of the different organisms as defined in the methods. ‘Mean
correlation’ measures the coherence of the biclusters given the expression. ‘Mean net P-value’ measures the enrichment of network edges within biclusters. ‘Mean number of genes’, ‘Mean number of conditions’ and
‘Number of biclusters’ summarize the size distributions of the (bi)clusters identified. ‘Coverage element-wise’ is the percentage of the total expression data that is found in one or more (bi)cluster. ‘Mean overlap element-wise’
estimates the redundancy of the (bi)clusters; overlap is calculated as the mean of the maximum percentage of overlap for each bicluster in the full set of biclusters for a given method. ‘Percent (bi)clusters enriched (P < 0.01)’
for GO and KEGG provides an estimate of the functional significance of the (bi)clusters identified. ‘Number of unique enriched terms’ for GO and ‘Number of unique enriched pathways’ for KEGG are the number of unique
terms/pathways across all biclusters for that method; this number of enriched terms/pathwaus provides an estimate of the redundancy of the biological functions enriched in one or more biclusters across the full set of
biclusters for any given method. Further explanations of these metrics can be found within the text and Additional file 1. GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes; ISA, Iterative Signature
Algorithm; EO, expression only; MSCM, multi-species cMonkey; SH, shared biclusters; MSISA, multi-species ISA; P, purified biclusters; MSKM, multi-species k-means; BMSKM, balanced multi-species k-means; EL, elaborated
biclusters; R, refined biclusters (applies only to the ISA algorithm (MSISA-R)); FD, full data; SSCM, single-species cMonkey; COAL, Coalesce biclustering method; QUBIC, QUalitative BIClustering algorithm.
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conservation between the two species by assuming per-
fect conservation for all orthologous pairs during their
shared steps, both B/MSKM-EL results display a greater
degree of conservation than the MSCM-EL results. In
contrast, none of the SS methods possessed a conserva-
tion score >0.125 (although it is likely that this score
underestimates the degree of conserved co-regulation
they detect as the conservation scores for many of them
were still significantly greater than random (PHW,
unpublished results)).
The low conservation score for closely related organ-

isms obtained when running SS methods on individual
datasets was surprising. We expected that the truly con-
served co-regulated gene groups would be detected indi-
vidually by the SS methods and thus contribute to
higher conservation scores. We attribute the low conser-
vation scores in part to biologically relevant differences
in co-regulation, but also to the fact that SS biclusters
are supported by smaller datasets that contain systema-
tic errors that likely differ between species (and thus,
correctly cancel out in the multi-species analysis).
Importantly, the greater conservation scores for MSCM
had little or no negative impact on the other commonly
used evaluation metrics we employed.
Coherence of biclusters, coverage and bicluster overlap
In this section we evaluate the ability of each method to
simultaneously find coherent biclusters (Figure 2), cover
the input dataset, and minimize the overlap between
biclusters (Figure 3). We assess bicluster expression
coherence by: 1) residual, the mean error when the aver-
age expression value over the bicluster is used to predict
gene expression levels (Figures S1, S2, and S3 in Addi-
tional file 1); and 2) mean correlation, the average pair-
wise correlation between all (bi)cluster members, taking
the absolute value of the correlation to allow unbiased
comparison between methods that identify inversely cor-
related patterns (QUBIC and MSISA) and those that do
not (Figures S4, S5, and S6 in Additional file 1). These
two measures are dependent on the number of condi-
tions and rows in the bicluster and overall coverage of
the data matrix. Therefore, in all cases we compare co-
expression values to a randomized background gener-
ated specifically for that biclustering (see Materials and
methods). We assess bicluster network coherence by: 3)
association network P-values, a measure of the signifi-
cance of the subnetworks within biclusters compared to
the full network (Figures S7, S8, and S9 in Additional
file 1). We assess bicluster sequence coherence by 4)
upstream motif E-values, a measure of the quality/signif-
icance of the upstream binding site motifs detected for
each bicluster (Figures S10, S11, and S12 in Additional
file 1); and 5) sequence P-values, representing the pre-
ferential partitioning of the discovered motifs to genes
in the bicluster over the remainder of the genome

(Figures S13, S14, and S15 in Additional file 1). We
direct the reader to Additional file 1 and prior work
[20] for detailed descriptions of these metrics, along
with the individual comparisons. Note, in the case of
the non-integrative methods, sequence and network
based metrics or scores were calculated post hoc for the
(bi)clusters they produced.
We found that for all five coherence metrics, FD-

MSCM performed as well or better than the other
methods (Tables S4, S5, S6, S7, and S8 in Additional file
1); specifically in 71 of the 92 individual comparisons of
the expression residual distributions, in all 92 of the
mean correlation comparisons, in 77 of the 92 compari-
sons for the network association P-values, in 69 of the
92 comparisons for the motif E-values, and in 72 of the
92 comparisons for the sequence P-values. Note, the
large number of comparisons (92) results from the fact
that we have three organism pairings and that for each
run we must separate the multi-species run into a set of
biclusters for each species to calculate these validation
metrics (thus, each species pair results in twice the
number). Similar comparisons with EO-MSCM (Tables
S9, S10, S11, S12, and S13 in Additional file 1) indicated
that for four of the five metrics, it did as well or better
than the other methods tested - the sole exception
being motif E-values.
In the comparisons with the random permutation

results for the expression metrics (Tables S14 and 15 in
Additional file 1), expression residuals for the MSCM
and SSCM were all significantly better than random dis-
tributions generated for each method (differing cluster
and bicluster sizes required a separate calculation of the
random background for these expression coherence
metrics for each method and for each data-set), for all
organisms and pairing combinations, as were those for
the two MS k-means variants (B/MSKM). In contrast,
the residuals from both QUBIC and the two MSISA
steps were all significantly worse than random; while the
residuals from COAL were significantly better for
B. anthracis, but somewhat worse for B. subtilis and
L. monocytogenes. However, when considering the mean
correlation results, nearly all methods were better than
random, the sole exception to this being the MSISA
results for L. monocytogenes in the pairing with
B. subtilis.
Regardless of the pairing, both QUBIC and MSISA

produced biclusters with the most genes (Figures S16,
S17, and S18 in Additional file 1) and fewest conditions
(Figures S19, S20, and S21 in Additional file 1), while
also simultaneously having the least coverage (Figures
S22, S23, S24, S25, S26, and S27 in Additional file 1)
and most redundant set of biclusters (Figures S28, S29,
S30, S31, S32, and S33 in Additional file 1). We exclude
QUBIC and MSISA from further consideration for this
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reason. By contrast, the two B/MSKM variants display
complete coverage of the data space. Although it is not
possible to say what the optimal value for coverage
should be, it is clear that numbers approaching 100%
include several false positives (with respect to conserved
co-regulation), as one cannot reasonably expect every
gene to be a member of a conserved regulatory module,
and that methods that cover 2% or less of the data
space are likely missing the majority of conserved co-
regulation. We note that the coverage of both the gen-
ome and expression dataset for MSCM is considerably
smaller in comparison to SSCM and COAL. This is not
unexpected because the search spaces are constrained
by the orthologous core, with the search space of the
elaboration step indirectly constrained by results of the
shared step. The SS methods typically had better

coverage, reflecting that a significant fraction of co-
expressed gene groups are not conserved across the spe-
cies investigated.
Estimating functional coherence via enrichment of function
annotations
We compared the percentages of biclusters that were
significantly enriched (P-value <0.01) for both Gene
Ontology (GO) terms and co-presence in KEGG path-
ways. Again, we limit the discussion of these below to
the pairing of B. subtilis with B. anthracis (Figure 4; Fig-
ure S34 in Additional file 1), though similar patterns
were observed with the other pairings as well (Figure
S35 and S36 in Additional file 1). For all of the multi-
species methods, there was a consistent increase
between the shared and elaboration optimizations, indi-
cating the importance of adding species-specific genes

Figure 4 Comparison of the fraction of biclusters with significant GO and KEGG annotation enrichments for the single and multi-
species methods for the B. subtilis-B. anthracis pairing. (a) GO terms. For all multi-species methods there is a consistent increase from the
shared to elaboration step, with the percentage of elaborated biclusters with significant GO term enrichments consistently greater than those
from the single species optimization. (b) KEGG pathways. For both of the multi-species biclustering methods (MSCM and MSISA), there is a
consistent increase in percentage from the shared to elaborated optimizations, similar to the GO term enrichments, with a similarly large
increase for the refined MSISA biclusters for B. anthracis. The two k-means clustering variants showed either negligible increase or even a
decrease between the shared and elaboration steps.
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to conserved co-regulated cores. For example, for FD-
MSCM, the percentage of biclusters with GO term
enrichments increases from 51.3% to 56.0% for B. subti-
lis (from 51.3% to 72.7% for B. anthracis) between the
shared and elaboration optimizations (similarly, for
MSKM, the increase is from 50.7% to 63.5% for B. subti-
lis; 39.2% to 75.7% for B. anthracis). The large increase
observed for the MSISA results (53.7% to 95.1% for
B. subtilis; 75.7% to 100% for B. anthracis) is a reflection
of the small number of large and highly redundant
biclusters it identifies. When a filter is applied that
allows a GO term to be enriched for only a single
bicluster, these percentages drop considerably (70.1% for
B. subtilis, 39% for B. anthracis, MSISA-R biclusters).
The percentage of biclusters with enriched KEGG

pathways is much higher for the MS methods than for
SSCM. For example, the percentage of the FD-MSCM-
EL for B. subtilis was enriched 15.3%, while the percen-
tage of the FD-SSCM results was 11.5% (21.3% versus
9.4% for B. anthracis). We observed a pattern similar to
what was observed with the GO terms, in the sense that
there was also a consistent increase between the shared
and elaboration runs. For example, with FD-MSCM, the
percentages increase from 12.7% to 15.3% for B. subtilis
(12.7% to 21.3% for B. anthracis).
We also compared the performance of different spe-

cies-species pairings (see Additional file 1 for data). We
observed that for both of the pairings involving B. subti-
lis, the residuals of the clusters generated by MSKM
were significantly better for the B. subtilis clusters, but
significantly worse for the other organisms. As the
B. subtilis expression dataset contained nearly six times
more conditions than the other organisms, a key limita-
tion of this and other similarly constructed methods is
the dominance of a single species in the results. This
effect was muted by the ‘balancing’ procedure (that is,
the BMSKM method). However, while the performance
for the organism with the smaller dataset improved, the
performance for the organism with the larger dataset
decreased significantly. A similar effect was observed
with MSISA.
Finally, we noticed that there was a consistent increase

in the quality of the motifs associated with the biclusters
returned by the elaboration step of both MS methods.
One possible explanation for this behavior is simply
algorithmic, namely, that MEME [49], the motif infer-
ence tool we use, is able to infer more significant motifs
from the larger pool of sequences accessible to the ela-
borated biclusters. Another reason may be that this
behavior indicates a significant species-specific change
at the level of binding sites, even when the gene mem-
bership in a module is conserved (an example of this is
provided below). Our methodology for modeling and
detecting binding sites as part of the multi-species

procedure can likely be improved substantially and
should prove a promising area for future work.

Examples of conserved modules detected by the multi-
species analysis: application to B. anthracis and B. subtilis
To illustrate the strength of our method’s ability to
identify conserved modules and also to highlight species
specific elaboration of these modules, we focus on two
processes - endospore formation (sporulation) and fla-
gellum synthesis. In the case of sporulation, both
B. anthracis and B. subtilis can sporulate, while L.
monocytogenes cannot [50]. Similarly, both B. subtilis
[51] and L. monocytogenes [52] possess flagella and are
motile, while B. anthracis is a non-motile species [53].
Biclusters involved in sporulation shared between B. subtilis
and B. anthracis
Sporulation is a cellular differentiation process that
B. subtilis and B. anthracis undergo as a response to
resource depletion [39-42]. Sporulating cells divide
asymmetrically near one cell pole to produce a smaller
cell, the forespore and a larger cell, the mother cell. The
forespore will differentiate into a highly resistant dor-
mant cell type called an endospore (hereafter: spore).
The mature spore is surrounded by two membranes and
a thick proteinaceous layer (the coat). A modified pepti-
doglycan layer (the cortex) is synthesized in the inter-
membrane space.
As expected, the multi-species method identified sev-

eral sporulation modules from the B. subtilis-B. anthra-
cis pairing and no sporulation modules from the
pairings involving L. monocytogenes. Here, we focus on
three biclusters (32, 82 and 84), whose orthologous
cores contained largely non-overlapping sets of genes.
Analysis of the gene content indicated that each biclus-
ter was involved in distinct biological functions during
sporulation. Bicluster 84 primarily contains genes
involved in metabolic functions (Figures S43 and S44 in
Additional file 1). Bicluster 32 contains genes involved
in activation of late sporulation s factors (sG and sK)
and cortex synthesis (Figures S39 and S40 in Additional
file 1). Bicluster 82 contained a majority of spore coat
genes (Figures S41 and S42 in Additional file 1).
Most of the genes found in those three biclusters had

been previously identified as members of the mother
cell transcriptome in B. subtilis [54-56]. Specifically, 16
of the 26 core genes from the metabolism bicluster, 36
of the 38 core genes from the cortex bicluster and the
24 core genes from the coat bicluster are expressed
under the control of the early mother-cell s factor, sE.
Nevertheless, the metabolism bicluster contained five
previously unrecognized sporulation genes (ykwC, ctaC,
ctaD, ctaE and ctaF). The ykwC gene encodes a protein
from the 3-hydroxyisobutyrate dehydrogenase family,
which is consistent with the function of several other
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genes found in that bicluster (for example, the mmg and
yngJ operons [57]). The cta operon encodes the four
subunits of cytochrome C oxidase. These genes are sub-
ject to catabolite repression by glucose; therefore, their
expression is prevented during exponential growth in
glucose-containing medium [58]. During sporulation
initiation, the cta operon is activated by Spo0A~P (the
master regulator of sporulation) [59]. The neighboring
ctaA gene, which is transcribed in the divergent direc-
tion, has been previously reported to be controlled by
RNA polymerase containing sE [60]. Examination of the
ctaC upstream region reveals a possible sE binding site
with a reasonable match to the consensus (Figure S37 in
Additional file 1). Protracted expression of these genes
(first under the control of Spo0A~P in the pre-divisional
cell and then of sE after asymmetric division) is consis-
tent with the conclusions of previous studies indicating
that tricarboxylic acid cycle function (and by extension
the electron transport chain) is required during sporula-
tion [61-63].
Unexpectedly, we uncovered a key species-specific dif-

ference in the timing of expression of one conserved
sporulation module (the metabolism bicluster). The
expression data we used for B. anthracis is a time series
transcriptional profile of the entire life-cycle, from ger-
mination through sporulation [64]. Expression of genes
from the metabolism bicluster reaches its maximal level
at t = 180 minutes (Figure 5a), 2 hours before the
expression peak of genes from the cortex and coat
biclusters at t = 270 minutes. No such temporal differ-
ence exists between the metabolism bicluster and the
other two biclusters during B. subtilis sporulation (Fig-
ure 5b) because most of these genes are directly con-
trolled by sE in B. subtilis. We propose that the
observed timing difference between the two species is
caused by transcriptional re-wiring. In support of this
interpretation, examination of the regulatory sequence
upstream of the genes from the metabolism bicluster
did not reveal obvious sE binding sites in B. anthracis,
while putative sE promoters were present upstream of
genes from the cortex and coat biclusters in both spe-
cies. Thus, in B. anthracis, the metabolism bicluster may
be under the control of a transcription factor active
prior to sE activation. This is further supported by the
fact that in B. anthracis sigE itself is expressed after the
expression peak of the metabolism bicluster [64].
Flagellar assembly biclusters shared between B. subtilis,
B. anthracis and L. monocytogenes
Assembly of the bacterial flagellum is a well-known
pathway (Figure 6a) that has been studied over a wide
range of prokaryotes [65-67]. It contains approximately
25 proteins conserved across numerous species, though
not all these species are motile [66]. Here we use the
expression of flagellar genes as another benchmark of

the multi-species method. We expected that multi-spe-
cies integrative biclustering with any pairing including
B. anthracis would be unable to recover modules
enriched with flagellar genes. Nonetheless, we discov-
ered that flagellar modules were retrieved with all possi-
ble pairings (Figures 6b; Figures S45, S46, S47, S48, S49,
and S50 in Additional file 1). Furthermore, recovery was
well supported by the B. anthracis portion of the multi-
data score. This result was unexpected as it was
assumed that the loss of motility would be rapidly fol-
lowed by loss of coordinated expression of flagellar
genes.
One simple explanation of the conservation of the

B. anthracis motility bicluster would be that the strain
is, in fact, still motile or able to recover motility through
a common reversion mutation. To explore and partially
rule out this possibility, we confirmed experimentally
that B. anthracis Sterne was non-motile at 37°C by per-
forming swimming motility assays on 0.3% agar plates
(Figure 6c). We used B. cereus ATCC 14579 and B. sub-
tilis PY79 as positive controls for swimming [51,68] and
B. subtilis PY79 ΔmotAB::tet as a negative control [69].
Even after prolonged incubation of those plates at 37°C
for several days, we were unable to observe motile B.
anthracis cells.
B. anthracis Sterne lacks six flagellar genes present in

B. subtilis (fliK, fliO, fliJ, fliT, flgM, and sigD) [70].
Although most of these genes are likely to be essential
for flagellum function in B. subtilis (Table S16 in Addi-
tional file 1), they are absent in several motile species,
including L. monocytogenes and B. cereus. These genes
may in fact be dispensable for motility if a different
gene provides a corresponding function. For example,
while sD and FlgM (the anti- sD factor) regulate flagel-
lar gene expression in B. subtilis, they are not found in
L. monocytogenes, where flagellar gene expression is
regulated by the transcription factor MogR, which is
absent in B. subtilis [52] (Table S17 in Additional file 1).
We performed a BLAST search-based analysis of the
presence or absence of flagellar assembly and chemo-
taxis genes for L. monocytogenes and various Bacillus
species (Table S18 in Additional file 1). Since B. cereus
is the closest motile relative to B. anthracis [71], we
focused on cases where a flagellar gene was present in
B. cereus and absent in B. anthracis. Specifically, BLAST
searches were performed against the genomes of various
B. anthracis strains using B. cereus ATCC 14579 protein
sequences as a reference. In B. anthracis Sterne two
strong hits were retrieved for MotB; each of which cov-
ered a different half of the B. cereus MotB sequence.
Upon closer inspection, it was found that both these
coding sequences derived from the same gene, which
had undergone a frameshift mutation via a one base-
pair deletion. The frameshift resulted in an in-frame
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Figure 5 Expression profiles of three partially conserved sporulation biclusters, identified by the multi-species analysis of B. subtilis
and B. anthracis. Bicluster 84 (blue line) is composed primarily of genes involved in metabolic functions during sporulation, bicluster 82 (green
line) includes primarily genes encoding spore coat proteins, and bicluster 32 (red line) contains genes involved in spore cortex formation and
activation of the s factors required for the latest stages of sporulation. (a) The B. anthracis biclusters display distinct profiles, revealing a temporal
aspect not present in the B. subtilis dataset. The B. subtilis biclusters all follow the same expression profile (that is, similar expression over nearly
every experimental condition included in the dataset), as shown for (b) only sporulation experimental conditions (with abscissa corresponding
to: 1) hour 2 sigF; 2) hour 2.5 sigE; 3) hour 3.5 gerR; 4) hour 3.5 spoIIID; 5) hour 4 sigG; 6) hour 4.5 sigK; 7) hour 5 spoVT; 8) hour 5.5 gerE; 9) hour
6.5 gerE) and (c) all experimental conditions within the three biclusters.
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Figure 6 Conserved motility modules active in all three organisms and motility assays. (a) We show a schematic of the flagellar apparatus
for B. subtilis showing the location of 26 flagellar proteins, two motor proteins (MotA and MotB) and two transcriptional regulators (FlgM and
SigD) (using gene names from B. subtilis). (b) The left panel shows the presence (blue)/absence (white) of the corresponding genes in the
genomes of B. anthracis Sterne (BAS), B. cereus ATCC 14579 (BC), L. monocytogenes EGD-e (LMO) and B. subtilis 168 (BSU). In B. anthracis Sterne,
motB, fliM, fliF, and flgL are represented by two colors indicating a gene coding for a truncated protein due to a frameshift mutation that
introduces a premature stop codon. The right panel shows the gene presence in the main flagellar bicluster resulting from each of the three
pairwise multi-species biclusterings. Indicated are genes of the flagellar apparatus - included in the bicluster core (red), in the elaboration of the
bicluster (orange), and not included in the bicluster (gray). B. subtilis and L. monocytogenes are both known to be flagellated and motile. B.
anthracis Sterne is non-motile, but our results indicate a bicluster enriched for genes involved in flagellar biosynthesis. (c) Swimming motility was
assayed on 0.3% agar plates for B. cereus ATCC 14579, B. anthracis Sterne, B. subtilis PY79, and B. subtilis PY79 ΔmotAB::tet (strain DS219). B. cereus
and B. subtilis are motile [51,68]. A deletion of motAB in B. subtilis impairs motility [69,91]. The assay shows that B. anthracis Sterne is not motile
under the conditions tested.
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stop codon shortly following the deletion (Figure S38 in
Additional file 1). In B. subtilis, motB has been shown
to be essential for motility [69] (Figure 6c).
We then examined the protein sequences of all the

flagellar proteins in B. anthracis Sterne by performing
multiple alignments with other related Bacilli and dis-
covered that three additional proteins appeared trun-
cated: FliM, FliF and FlgL. Investigation of the gene
sequences for these proteins in B. anthracis Sterne
revealed that they all contained a frameshift mutation,
which resulted in the introduction of an in-frame stop
codon. In B. subtilis, fliM mutations result in a non-fla-
gellated phenotype [72], while fliF and flgL are essential
for flagellar assembly in L. monocytogenes [73,74]. In
addition, we found a similar frameshift in cheV, a gene
required for chemotaxis in B. subtilis.
The presence of the frameshift mutations for these key

motility genes most likely explains why B. anthracis
Sterne is non-motile and does not readily revert back to
a motile phenotype. Importantly, this observation indi-
cates that a conserved module can persist for some time
even after the loss of the associated phenotype.

Discussion
Any attempt to detect conserved modules across multi-
ple species data collections needs to simultaneously
address the following non-trivial challenges: 1) modules
may be active or coherent in subsets of the conditions
for each species; 2) in most cases there is little or no
correspondence between the experimental conditions
and experimental designs across different species data-
sets; 3) the amount and quality of data available often
varies dramatically across species of interest; 4) modules
may not be conserved in their regulation or function; 5)
conserved modules may have extensive species specific
elaborations that complicate their detection; 6) in many
cases, the sequence-based orthology is not a one-to-one
mapping; and 7) integration of additional data types
needs to be robust to the differences in the available
data and annotation completeness of the species consid-
ered. In this investigation, we have introduced a new
algorithm, multi-species cMonkey (MSCM), that allows
us to address all of these challenges in a unified analysis.
We tested six other biclustering and clustering methods
in various combinations (13 clustering and biclustering
formulations were tested) and found no other method
capable of balancing all of these challenges. We have
shown that MSCM provides better or comparable cover-
age, functional enrichment scores, bicluster coherence,
and conservation than other tested methods, with all
other methods failing in one of the main categories of
assessment. Furthermore, our method effectively bal-
ances the influence of each organism, preventing organ-
isms with more complete datasets from dominating the

analysis, while also integrating other supporting data
types, enabling the method to identify more biologically
relevant modules and delimit the conditions over which
the modules are active. The fact that the MSCM biclus-
ters have many-fold higher conservation scores than
several of the tested methods suggests that they have a
higher level of biological significance than equally co-
expressed (and/or equally functionally enriched) non-
conserved alternative biclusters. An analysis that takes
into account several validation metrics supports the idea
that MSCM is the top performing method for compara-
tive biclustering.
In the single-species setting, SSCM and other biclus-

tering methods, particularly Coalesce, are comparable in
performance (when one considers score, enrichment
and coverage but not conservation). Our analysis sug-
gests that multi-species extensions of other top perform-
ing algorithms (particularly Coalesce) will also perform
well at detecting conserved modules (assuming that
such extensions are possible). For all the organism pair-
ings, there was a consistent increase in the percentage
of GO and KEGG enrichments from the shared to ela-
boration steps of the MSCM method. This results from
shared biclusters that contain enrichments that are
insignificant until genes from outside of the orthologous
core are added during the elaboration step. We argue
that this improved functional coherence illustrates the
necessity of a species-specific elaboration step in any
type of multi-species analysis similar to the one
described here. Future work will include development of
methods for adding non-obvious homologs, and perhaps
phenologs [75], to the comparative phase of our analysis.

Conclusions
A careful examination of several of the conserved biclus-
ters generated as part of the MSCM analysis indicates
that our method can reveal important new biology. For
instance, we found two cases where conserved biclusters
function differently in the species analyzed. The recov-
ery of a flagellar module in the non-motile B. anthracis
species shows that it is possible to identify conserved
modules, even in cases where phenotypic divergence
suggests none should exist. In addition, a key temporal
difference in the sporulation programs for B. subtilis
and B. anthracis emerged that led us to propose that a
rewiring event took place during the evolution of the
expression of a group of metabolic genes involved in
sporulation. Our biclustering approach also appears use-
ful in generating functional hypotheses for genes that
are grouped with other genes of previously established
functions, considering that many of the unannotated
genes contained in biclusters with GO or KEGG enrich-
ments are well supported across six or more datasets (2
organisms × 3 or more data types). Our method also
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reveals new links between functions that were previously
considered to be separate, such as the association of the
cta operon and the ykwC gene with several other B. sub-
tilis metabolism genes.

Materials and methods
Here, we describe the main steps in the MSCM algo-
rithm, which is implemented in the R programming lan-
guage and freely available [76]. We emphasize the novel
modifications to the algorithm that allow for identifying
biclusters in a multi-species context; for a more detailed
description of the individual cMonkey scoring function
components see [20]. Methods used for global assess-
ment and comparison of our methods to other biclus-
tering and clustering methods, experimental validation
of results, and code release as well as two simple multi-
species clustering methods of our own construction
(multi-species k-means and balanced multi-species k-
means) are also described. A complete description of
the data used for each organism is provided in Addi-
tional file 1.

Multi-species cMonkey method overview
Briefly, the MSCM algorithm is composed of three steps
(optionally four): 1) the identification of orthologous
genes between closely related species; 2) an iterative,
Monte Carlo optimization within the space of shared
orthologs (involving pairs of orthologous genes); 3) an
iterative, Monte Carlo optimization in the space of each
organism’s genome that elaborates the biclusters found
in step 2 by adding non-orthologous genes; and 4
(optional) an application of the original, single-species
method to the remainder of each organism’s genome
(that was not added to the conserved biclusters found in
steps 2 and 3) to identify completely species-specific
biclusters.
Algorithm overview
1) Identification of orthologous genes, 2) Identification
of shared biclusters by optimizing MSCM score (ortho-
logous gene space), 3) Single-species elaboration of
shared biclusters from step 2 (single-species full genome
space), 4) Identification of non-shared biclusters (single
species full genome space) (optional).

Determining putative orthologs spanning relevant
genomes (step 1)
Our analysis requires the identification of putative
orthologs between each pair of organisms as input. As
identification of ortholog sets between species is not a
primary focus of this investigation, we rely on publicly
available tools and resources to define our starting set
of putative orthologs between two or more species.
Dependent upon the organisms used, there may be
databases that can provide these ortholog sets, such

as the well-annotated list of orthologs from the
Mouse Genomics Informatics database [77]. In cases
where a pre-existing curated list of orthologs is una-
vailable, we use the InParanoid algorithm [78] as two
recent benchmarks [79,80] determined it to be among
the most accurate when identifying pairwise orthol-
ogy. InParanoid allows for the identification of
families of orthologous and paralogous genes that are
shared by two genomes, rather just single pair
matches (for example, as the cotZ gene in B. subtilis
has two possible orthologs in B. anthracis, cotZ1 and
cotZ2, both the cotZ-cotZ1 and cotZ-cotZ2 pairs will
be considered by our algorithm). This feature of the
InParanoid algorithm is useful in the context of this
work as it allows for more permissive supersets of
putative orthology from which we can sample using
cMonkey (thus letting the data select amongst ortho-
logous super-sets).
Defining the multi-species data-space
In the first phase of our algorithm, biclustering is per-
formed on groups of orthologous genes (in this study
we limit the algorithm to pairs, but the algorithm is
easily extendable to larger groups). For any two gen-
omes, GU and GV, we use OCU and OCV to refer to the
portions of these genomes with one or more orthologs
in the other genome, which we term the ‘orthologous
cores’ of these genomes. Furthermore, we will use OCUV

to refer to the list of all possible pairings of orthologs
between the species, which for convenience we will refer
to as ‘orthologous pairs’. In the case of gene families,
where genes from one genome have several putative
orthologs in the other, we allow the algorithm to sepa-
rately consider gene pairs for each of the possible pair-
wise relationships. Thus, if we have a family, f, that has

four members in genome U, OC g gU
f

U U= { }1 4, , and

three in genome V, OC g gV
f

V V= { }1 3, , this will result

in 12 possible pairs for this family, that is,

OC g g g g g g g gUV
f

U V U V U V U V= { }1 1 1 2 4 2 4 3, , , , .

Seeding the biclustering
The first step in building multiple-species biclusters out
of ortholog pairs, as defined above, consists of seeding a
bicluster (selecting a starting subset of orthologous pairs
to define as the starting bicluster). For example, this can
be done via selection of a random subset of orthologous
pairs as a ‘seed’, which is then optimized. For this study
we choose a semi-random seeding. We choose a random
orthologous gene pair and then 1) define the bicluster
seed to be the 70% of conditions in each organism’s
dataset where the ortholog pair has the highest variance,
and 2) add the most correlated five to ten ortholog pairs
(where the correlation is calculated as the average for
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each gene in the ortholog pair over only the conditions
in the bicluster). We refer to this simple procedure for
seeding the bicluster optimization as semi-random seed-
ing. The main motivation behind this scheme (described
in Additional file 1 and [20]) is to improve the conver-
gence rate by jump-starting the optimization, though
MSCM can also be used to refine randomly generated
seeds.

Finding biclusters in the multi-species data-space (step 2)
Given a bicluster seed (semi-random, random or a seed
generated via a different method) we begin the multi-
species optimization by iteratively adding and dropping
genes and conditions as part of a simulated annealing
optimization of the multi-species integrative score. Let-
ting XU and XV represent the expression datasets for the
two genomes considered, a single-species bicluster is
defined as a set of genes and a set of conditions in XU

and XV. In the single-species biclustering case, we calcu-
late a combined score for every gene in the genome
(given the supporting data) to determine the likelihood
of it being added or dropped from the bicluster. Extend-
ing this idea to the multi-species space requires that, for
every orthologous pair, we can determine the likelihood
of that ortholog pair being added or dropped from a
given shared-space bicluster. We do this by combining
the single-species gene scores (calculated separately for
each organism within its independent data space) for
the genes in an orthologous pair to compute the multi-
species score πik:

  ik ik ik
U

ik
V

ik
U

ik
Vp y g g g g= =( ) ∝ + +( )( )1 0 1| , exp

where gik
U and gik

V are the species-specific likelihoods

for the members of pair i for bicluster k, and b0 and b1
are the parameters of the logistic regression. Note, this
framework can easily be extended to more than two
organisms, where the likelihood of the orthologous
N-tuples for the N organisms would be defined as:

  ik ik ik
N

ik ik
N

ik
n

n N

p y y g g g= = =⎛
⎝⎜

⎞
⎠⎟

∝ +
⎛

⎝

⎜

∈
∑1 1

0 11 1, , | , , exp 
⎜⎜

⎞

⎠

⎟
⎟

The parameters in this regression determine a deci-
sion boundary between genes in and out of the bicluster
(fitted to the combined single-species scores for the
pairs in OCUV at the previous iteration). It is important
to note that individual data types from each species are
not concatenated or combined through any other lossy
or unbalanced transformation. The multiple species
integration occurs solely via the computation of this
decision boundary at this final step in computing the
score. We believe that this imparts significant flexibility

to the algorithm that will allow extension to other data
types and larger collections of species in the future
within this framework. For each organism j (j Î {U, V}),

gik
j , is defined as in the SSCM algorithm, as:

g r r s s q qik
j

ik
j

ik
j n

nik
j

n N

= ( ) + ( ) + ( )
∈
∑0 0 0log log log  

where rik
j , sik

j , and qnik
j are the individual likeli-

hoods for the expression, sequence and networks, as
defined by our earlier work and r0, s0 and q0 are mixing
parameters set to roughly equalize the influence of each
data type in this work (these mixing parameters can also
be used to increase the influence of single data types if
desired). For this work these mixing parameters were
set such that each data type would have equal aggregate
effect on the biclustering. Each of these individual score

components, rik
j , sik

j , and qnik
j , are described in [20].

The probability that any gene pair in OCUV is added to
the growing bicluster is a well balanced function of the
evidence derived from the integrated dataset for each

species, formulated as the two multi-data scores, gik
1

and gik
2 , that represent the individual species support

values for each gene in an orthologous pair ( gik
1 and

gik
2 represent the multi-data-type integration for each

organism separately and πik affects the multi-species
integration). Once this coupled version of the cMonkey
score is obtained, the algorithm progresses in a manner
similar to SSCM, but adding and removing pairs from
the bicluster during each iteration instead, and stopping
when convergence criteria are met [20,27]. At this stage,
the formation of ortholog-pair biclusters, we limit any
given bicluster to including only a single pair from any
one particular ortholog family. Multiple members of an
orthologous core can be included in different biclusters,
and additional members of any given family of orthologs
can be added in the following species-specific elabora-
tion stage.

Identification of species-specific elaborations of
conserved-core biclusters (step 3)
In this step, we identify species-specific modifications to
the biclusters that are discovered during the ortholo-
gous-pair biclustering described above (Figure 1c). To
do this, we decouple the orthologous pairs from the
shared-space modules to generate two biclusters, one
for each organism, which represent the conserved cores
of a putative, conserved, co-regulated module. These
effectively serve as ‘super-seeds’ for this step, which are
each separately optimized in a manner similar to the
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original SSCM method, but now considering the full
genomes of each respective organism (genes without
clear orthologs in the other organism can now be added
if supported by the integrative score). Unlike the original
method, though, in this step, we anchor these searches
by preventing the genes from the original shared-space
orthologous cores from being dropped. In so doing, we
maintain the original putative, conserved module, while
allowing the addition of species-specific or non-con-
served orthologous core genes that fit well to the biclus-
ter in a species-specific manner. During this stage, we
also remove the constraint that only one gene from a
given orthologous group can be selected by a given
shared bicluster to permit detection of bona fide co-reg-
ulation of multiple members of paralogous gene families
(for example, enabling the potential identification of
dosage selection of paralogous genes). Finally, unlike
either the shared-space or single-species optimizations
previously described, where the mixing parameters, r0,
p0 and q0, follow a structured annealing schedule during
the optimization, in this optimization step we hold these
mixing parameters constant, using the final values from
the shared optimization for these.

Identification of species-specific biclusters (optional
step 4)
Once the multi-species analysis has been completed, as
an optional final step, any species-specific modules
that are completely unique to each organism can be
identified by running SSCM on the remaining un-
biclustered genes. We direct the reader to Additional
file 1 for a more detailed description and discussion of
this step as it is not a main focus of this first demon-
stration of our method. These last two species-specific
steps provide our method with the strength and flex-
ibility to simultaneously identify both conserved, par-
tially conserved and species-specific modules, giving a
correct limiting behavior across a wide range of possi-
ble species pairings.

Gauging conservation between biclusters: the
conservation score
We provide a measure for how well the single species
version of the algorithm would do at detecting con-
served co-regulation if the algorithm was run indepen-
dently on each species dataset and then aligned and
compared after the uncoupled single species bicluster-
ings. To make this comparison, we introduce a cluster-
ing conservation metric, based on the F-statistic [48], to
gauge the degree of conservation between a biclustering
from one organism to that from another. Thus, for two
organisms, U and V, we measure the degree of conser-

vation between biclusters, bk
U and bl

V , for each as:

Cons b b
OC

OC OC
k
U

l
V b b

b b

k
U

l
V

k
U

l
V

,
,( ) =

⋅

+

2

where OC
bk

U is the set of genes from bicluster bk
U

that belong to the orthologous core for genome U, OCU,

(where OC b
b k

U

k
U ⊆ and OC OC G

b U U
k
U ⊂ ⊂ ). Likewise

OC
bl

V is defined similarly for genome V and OCV.

OC OC OC
b b b bk

U
l
V

k
U

l
V,

=  is the set of genes in bicluster

bk
U with direct matching orthologs in bl

V , and vice

versa. This measure is similar to an F-statistic that
gauges the ability of the biclustering for one organism
to recall the biclustering of another (after orthology-
based alignment/matching of the biclusters). To make
this metric more general, in the case of multi-member
orthologous families, we consider all possible pairs,
including those with putative paralogs, such as those
returned by InParanoid.

Multi-species k-means and balanced multi-species k-
means
For comparison we also re-implemented a simple
MSKM method similar to the method used in Hersch-
kowitz et al. [46] to compare human and mouse micro-
array data. In this simple method, only the reciprocal
best Blast matches are selected as orthologous pairs.
These one-to-one pairwise relationships are first used to
form a concatenated expression matrix, so that a row in
this matrix corresponds to the concatenation of the
expression data for two orthologous genes. This conca-
tenated expression matrix is next clustered using
k-means, using the Euclidean distance metric and with k
= 150 (as this was the same size used for the test of the
MSCM method) to generate what we will call shared
k-means clusters. Next, as a modification to Herschko-
witz et al.’s shared k-means algorithm, we added a sub-
sequent step, similar to the elaboration step of the
MSCM algorithm. In this step, the components of the
shared k-means centroids are separated by organism
(into the components that correspond to the organism-
specific conditions of the concatenated expression data-
set). For each organism, then, the organism-specific
shared k-means (sub-)centroids are used to perform a
Voronoi partitioning of that organism’s non-orthologous
core expression data. Thus, in this step, the orthologous
genes that belonged to the original shared k-means clus-
ters remain in their original cluster.
As our comparisons indicated that MSKM is prone to

allowing an organism to dominate the analysis if its
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expression data have far more conditions than those of
the other organism, we also implemented a balanced
version of the multi-species k-means algorithm
(BMSKM). There are a number of ways this balancing
could be implemented. One would be to use individual
weights for the different conditions from the different
species. Another, even simpler implementation, which
we used, is to concatenate the smaller dataset to itself
so that it has roughly an equivalent number of condi-
tions as the larger dataset, and use this in the MSKM
analysis instead. For example, when B. anthracis, with
51 conditions in its expression data, was paired with B.
subtilis, which has >300 conditions, a new dataset for
B. anthracis was generated that contained the original
B. anthracis dataset concatenated it to itself 5 times, so
that there were 6 copies of each condition. This analysis
was not applied to this pairing of B. anthracis and L.
monocytogenes as their expression datasets are roughly
equivalent in size.

Multi-species Iterative Signature Algorithm
We re-implemented a multi-species version of the ISA
described by Bergmann et al. [13], using the isa2 pack-
age for R [13,81], available from the Comprehensive R
Archive Network. A more thorough discussion of the
MSISA method can be found in Additional file 1, but as
a quick review of the method, MSISA contains five
main steps. First, a well-characterized organism is used
as a ‘reference’ organism, with a less characterized
organism as the ‘target’ organism (note, we use the ter-
minology of a later paper from the same group [35],
which employs a similar strategy for multi-species com-
parisons). Second, using a pre-generated set of biclusters
from the reference organism, biclusters containing genes
that have putative orthologs in the target organism are
selected and used to generate ‘homologous’ biclusters
for the target organism that contain these putative
orthologs such that there is a direct one-to-one mapping
between the biclusters for both organisms. Third, stan-
dard, single-species ISA is performed on the target
organism, using only these homologous biclusters as
seeds. Fourth, the intersection of the homologous
bicluster seeds input into step 3 and resulting biclusters
produced by step 3 are selected to generate a set of
‘purified’ biclusters in order to select only the conserved
genes in the reference organism. In the final step, sin-
gle-species ISA is run again on each organism, but using
the purified biclusters to generate a set of ‘refined’
biclusters for each organism. As such, this step is similar
to the elaboration step of MSCM as it allows species-
specific modifications to be added to the purified
bicluster.
For combinatoric reasons, MSISA was only applied to

the pairings involving B. subtilis, using B. subtilis as the

reference organism as it is the best studied organism of
the three we consider in this study. Hence there are no
MSISA results to report for the pairing of B. anthracis
with L. monocytogenes.

Visualization and exploration of multi-species biclusters
The Comparative Microbial Module Resource [82] is an
integrated collection of diverse functional genomics
datasets and software tools that facilitate the visualiza-
tion and analysis of conserved cMonkey biclusters, or
putatively co-regulated gene modules, across species.
The interface allows the visualization and exploration of
a bicluster’s properties (such as coupled multi-species
biclusters, conserved orthologous core gene members,
species-specific gene members, experimental conditions,
gene coexpression pattern, sequence motif logos, and
significant functional annotations). Integration with the
Gaggle allows access to additional biological information
from online databases and further analysis (for example,
integrated tools include, but are not limited to, the Fire-
Goose plugin, cytoscape, the Data Matrix Viewer, and
an R goose for using the R language and environment
for statistical computing and graphics).

Multi-species cMonkey code release, maintenance and
documentation
Both the MSCM and a re-factored SSCM are freely
available for download and use [76]. This website
includes functionality for bug tracking, tutorials on use,
example datasets and runs of the algorithm, links to
required packages, and python code developed to aid in
data import. MSCM is written in R [83] with a data
import module written in Python and has three main
modules: a reader; the main code; and validation and
visualization codes. With regards to the reader, cMon-
key is given gene expression matrices and ortholog
pairs, along with optional protein association networks
and upstream sequences. The user may request cMon-
key to automatically find the required and optional data
types for each organism. The main code is written in R
and contains bicluster seeding, bicluster overall optimi-
zation, scoring functions, and methods for output and
visualization of results. The validation and visualization
codes implement the bicluster and biclustering assess-
ment described, code to facilitate connection to network
and cluster visualization tools, such as the Gaggle. All
code (cMonkey, the reader, and validation code) are
freely available.
We have attempted to make several of the steps

required for assembling and integrated dataset auto-
matic in this code release, in the hope that this will
extend the usefulness of the algorithm to a greater num-
ber of biologists. The biologist needs only to prepare
simple gene expression matrices and pairs of orthologs.
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The rest of the data types will be queried from biologi-
cal databases (networks, sequences, annotations for vali-
dation scripts, and so on). All input and output will also
be stored in a portable, standard relational database that
will readily permit use of the integrated dataset and
cMonkey results by other tools. These key changes to
how data are imported and stored in cMonkey’s data-
base and the core data-object for cMonkey allow for
multi-species integration. The biologist may use the
reader in two modes: automatic or manual. In automatic
mode, the biologist need prepare only gene expression
matrices and pairs of orthologs, while protein associa-
tion networks and upstream sequences are queried from
biological databases such as BioNetBuilder [84],
MicrobesOnline [85], Prolinks [24], STRING [86,87] and
RSAT [88,89].

Swimming motility assays
Individual colonies of B. subtilis PY79 [90] and DS219
[91], B. cereus ATCC 14579 (obtained from Daniel
Ziegler, Bacillus Genetic Stock Center, Ohio State
University) and B. anthracis Sterne (a gift from Adam
Driks, Loyola University Chicago) were picked with a
wooden stick and inoculated into Luria-Bertaini (LB)
10 g tryptone, 5 g yeast extract, 5 g NaCL per liter of
broth. Cultures were grown to log phase and 3 μl of the
broth culture was centrally inoculated on LB agar plates
containing 0.3% agar. Motility was scored after approxi-
mately 20 hours incubation at 30°C. Plates were photo-
graphed against a dark background such that areas of
bacterial colonization appear light.

Additional material

Additional file 1: Additional results. This document contains detailed
descriptions of the dataset and any external tools used in our analysis;
additional method steps not described in the main text; detailed
definitions of the global bicluster quality metrics, figures and descriptions
of the statistical tests comparing the results from the different methods
compared; gene lists and bicluster images of the sporulation and
flagellar biclusters described above; and further information regarding
the B. anthracis flagellar pathway genes.

Abbreviations
BMSKM: balanced multi-species k-means; COAL: Coalesce biclustering
method; EL: elaborated biclusters (multi-species biclusters that have
additional genes unique to each organism added (MSCM, MSKM, BMSKM));
EO: expression only; FD: full data (EO and FD are used to distinguish
between expression only tests and full data runs of integrative methods);
GO: Gene Ontology; ISA: Iterative Signature Algorithm; KEGG: Kyoto
Encyclopedia of Genes and Genomes; LB: Luria-Bertaini; MS: multiple-species;
MSCM: multi-species cMonkey; MSISA: multi-species ISA; MSKM: multi-species
k-means; OC: orthologous core (the set of actively expressed orthologous
genes shared between a group of organisms on which we run our multi-
species biclustering); P: purified biclusters (applies only to the ISA algorithm
(MSISA-P)); QUBIC: QUalitative BIClustering algorithm; R: refined biclusters
(applies only to the ISA algorithm (MSISA-R)); SH: shared biclusters (biclusters

generated only from orthologous pairs (MSCM, MSKM, BMSKM)); SS: single
species; SSCM: single-species cMonkey.
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