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Abstract

To efficiently transform genetic associations into drug targets requires evidence that a par-

ticular gene, and its encoded protein, contribute causally to a disease. To achieve this, we

employ a three-step proteome-by-phenome Mendelian Randomization (MR) approach. In

step one, 154 protein quantitative trait loci (pQTLs) were identified and independently repli-

cated. From these pQTLs, 64 replicated locally-acting variants were used as instrumental

variables for proteome-by-phenome MR across 846 traits (step two). When its assumptions

are met, proteome-by-phenome MR, is equivalent to simultaneously running many random-

ized controlled trials. Step 2 yielded 38 proteins that significantly predicted variation in traits

and diseases in 509 instances. Step 3 revealed that amongst the 271 instances from Gen-

eAtlas (UK Biobank), 77 showed little evidence of pleiotropy (HEIDI), and 92 evidence of

colocalization (eCAVIAR). Results were wide ranging: including, for example, new evidence

for a causal role of tyrosine-protein phosphatase non-receptor type substrate 1 (SHPS1;

SIRPA) in schizophrenia, and a new finding that intestinal fatty acid binding protein (FABP2)

abundance contributes to the pathogenesis of cardiovascular disease. We also demon-

strated confirmatory evidence for the causal role of four further proteins (FGF5, IL6R, LPL,

LTA) in cardiovascular disease risk.

Author summary

The targets of most medications prescribed today are proteins. For many common dis-

eases our understanding of the underlying causes is often incomplete, and our ability to

PLOS GENETICS

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1008785 July 6, 2020 1 / 24

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Bretherick AD, Canela-Xandri O, Joshi PK,

Clark DW, Rawlik K, Boutin TS, et al. (2020)

Linking protein to phenotype with Mendelian

Randomization detects 38 proteins with causal

roles in human diseases and traits. PLoS Genet

16(7): e1008785. https://doi.org/10.1371/journal.

pgen.1008785

Editor: George Davey Smith, University of Bristol,

UNITED KINGDOM

Received: June 24, 2019

Accepted: April 21, 2020

Published: July 6, 2020

Copyright: © 2020 Bretherick et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: Datasets supporting

the conclusions of this article are included within

the article and its additional files. In addition,

summary level data is available at https://doi.org/

10.7488/ds/2838. However, there is neither

research ethics committee approval, nor consent

from individual participants, to permit open release

of the individual level research data underlying this

study. Please contact the QTL Data Access

Committee (accessQTL@ed.ac.uk) for further

information if required.

http://orcid.org/0000-0001-9258-3140
http://orcid.org/0000-0003-4601-6289
http://orcid.org/0000-0002-6361-5059
http://orcid.org/0000-0002-1025-9185
http://orcid.org/0000-0002-0010-370X
http://orcid.org/0000-0003-4754-1675
http://orcid.org/0000-0003-3507-5611
http://orcid.org/0000-0002-8464-705X
http://orcid.org/0000-0002-6169-6262
http://orcid.org/0000-0002-4991-3797
http://orcid.org/0000-0002-9405-9550
http://orcid.org/0000-0001-5751-9178
http://orcid.org/0000-0003-4884-4475
http://orcid.org/0000-0003-0202-7816
http://orcid.org/0000-0001-5258-793X
http://orcid.org/0000-0002-9811-0210
https://doi.org/10.1371/journal.pgen.1008785
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pgen.1008785&domain=pdf&date_stamp=2020-07-06
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pgen.1008785&domain=pdf&date_stamp=2020-07-06
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pgen.1008785&domain=pdf&date_stamp=2020-07-06
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pgen.1008785&domain=pdf&date_stamp=2020-07-06
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pgen.1008785&domain=pdf&date_stamp=2020-07-06
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pgen.1008785&domain=pdf&date_stamp=2020-07-06
https://doi.org/10.1371/journal.pgen.1008785
https://doi.org/10.1371/journal.pgen.1008785
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.7488/ds/2838
https://doi.org/10.7488/ds/2838
mailto:accessQTL@ed.ac.uk


predict whether new drugs will be effective is remarkably poor. Attempts to use genetics

to identify drug targets have an important limitation: standard study designs link disease

risk to DNA but do not explain how the genotype leads to disease. In our study, we made

robust statistical links between DNA variants and blood levels of 249 proteins, in two sep-

arate groups of Europeans. We then used this information to predict protein levels in

large genetic studies. In many cases, this second step gives us evidence that high or low

levels of a given protein play a role in causing a given disease. Among dozens of high-con-

fidence links, we found new evidence for a causal role of a protein called SHPS1 in schizo-

phrenia, and of another protein (FABP2) in heart disease. Our method takes advantage of

information from large numbers of existing genetic studies to prioritize specific proteins

as drug targets.

Introduction

An initial goal of drug development is the identification of targets—in most cases, proteins—

whose interaction with a drug ameliorates the development, progression, or symptoms of dis-

ease. After some success, the rate of discovery of new targets has not accelerated despite sub-

stantially increased investment [1]. A large proportion of drugs fail during the last stages of

development—clinical trials—because their targets do not alter whole-organism phenotypes as

expected from observational and other pre-clinical research [2]. Genetic approaches to drug

development [3] offer a distinct advantage over observational studies. It is estimated that by

selecting targets with genetic evidence, the chance of success of those targets doubles in subse-

quent clinical development [4]. For example, a recent study found that 12% of all targets for

licensed drugs could be rediscovered using GWA studies [5]. Indeed, there have been a number

of recent high-profile successes prioritizing therapeutic targets at genome-wide scales [6,7].

Nevertheless, the genetic associations of disease are often still not immediately interpretable [8]

and many disease-associated variants alter protein levels via poorly understood mechanisms.

When combined with proteomic data, however, genetics can provide insight into proteins

that likely impact disease pathogenesis. Mendelian Randomization (MR) in this context uses

genetic variants to estimate the effect of an exposure on an outcome, using the randomness by

which alleles are allocated to gametes to remove the effects of unmeasured confounding

between a protein and the outcome [9]. Given a set of assumptions, detailed below, this

approach is analogous to a naturally-occurring randomized controlled trial. Using a genetic

variant that predicts the abundance of a mediating molecule, MR tests the hypothesis that this

molecule plays a causal role in disease risk. To do so it takes advantage of the patient’s, or par-

ticipant’s, randomization at conception to this molecule’s genetically-determined level. Under

this model, it is possible to use population level genetic information to draw causal inference

from observational data.

Proteome-by-phenome MR, in common with all other MR studies, has three key assump-

tions that must be fulfilled to ensure the legitimacy of any causal conclusions drawn [10]: 1)

that the SNP is associated with the exposure of interest, 2) that the SNP is independent of any

confounders, and 3) that the SNP does not influence the outcome of interest, except via the

exposure variable.

A common concern in the use of MR is that the genetic variant is linked to the outcome

phenotype via an alternative causal pathway. In a drug trial this would be analogous to an

intervention influencing a clinical outcome through a different pathway than via its reported

target. To avoid pursuing drugs that target an irrelevant molecular entity, and hence that have
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no beneficial effect, we applied MR to proteins—the likely targets of therapy—and limited our

genetic variants to those that are locally-acting protein quantitative trait loci (pQTLs). This

approach provides stronger supporting evidence for a causal role of the protein on disease

than relying on the proximity of a disease-associated genetic variant to a nearby gene, or using

mRNA abundance as a proxy for protein abundance [11].

Previous studies have also leveraged the increased availability of pQTL data for drug target

and biomarker discovery [12–18]. For example, in one of the largest pQTL studies to date, Sun

et al. [14] applied an aptamer-based approach (rather than an antibody-based assay as here) to

perform extensive co-localization analyses and used MR to assess the causal contribution of

IL1RL1–IL18R1 locus to atopic dermatitis, and that of MMP12 to coronary heart disease. In

the study presented here, we attempt to systematically use MR to link protein to outcome trait

by taking a three-step approach. Firstly, identifying replicated pQTL in our two European

cohort studies before then using these in a systematic MR approach with two large sets of

GWA study data. In a final step, we test results from one of these sets for evidence of heteroge-

neity and colocalization of effects.

Overall, our proteome-by-phenome MR approach assessed the causal role of 64 proteins in

846 outcomes (e.g. diseases, anthropomorphic measures, etc.), identifying 38 as causally con-

tributing to human diseases or other quantitative traits. Notwithstanding the assumptions of

MR, obtaining evidence for causality from studies such as this is far more scalable than via ran-

domized controlled trials, and is more physiologically relevant than model organism studies.

Results

Protein QTLs

The abundance of an individual protein can be associated with DNA variants that are either

local or distant to its gene (termed local- and distal-pQTLs, respectively). In many respects,

locally-acting pQTLs are ideal instrumental variables for MR: they tend to have large effect

sizes, have highly plausible biological relationships with protein level, and provide quantitative

information about (often) directly druggable protein targets. This is in contrast to distal

pQTLs, where the pathway through which they exert their effects is generally unknown, with

no a priori expectation of a direct effect on a single target gene.

We assayed the plasma levels of 249 proteins using high-throughput, multiplex immunoas-

says and then performed genome-wide association of these levels in each of two independent

cohorts (discovery and replication) of 909 and 998 European individuals who had previously

been genotyped.

Lead-SNPs, defined as the variant with the smallest p-value and accounting for linkage dis-

equilibrium (Methods), were identified for each protein. As expected, pQTLs were highly con-

cordant between the two independent cohorts (S1 Table). 121 pQTL were identified in the

discovery dataset, and, of these, 90.1% (109/121) were successfully replicated after accounting

for multiple testing in both the discovery and replication. However, this was felt to be exces-

sively stringent with respect to instrument identification, and a more permissive threshold of

5x10-8 was therefore used in the discovery cohort. Of the 209 lead-SNPs identified in the dis-

covery cohort at this threshold, 154 were successfully replicated (accounting for multiple test-

ing during replication and with consistent direction of effect). These represented pQTLs for 82

proteins, all but two proteins were successfully mapped to an autosomal gene (Ensembl

GRCh37). The majority of these proteins (64/80; 80%) had a replicated lead-SNP within 150kb

of the gene encoding the protein (Fig 1). The variant to use as the instrumental variable for

each protein was selected as the replicated lead-SNP lying within 150kb of the gene encoding

the protein with the lowest significant p-value in the discovery set (Methods). Increasing this
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Fig 1. Proteome-by-phenome Mendelian Randomization. A) Genome-wide associations of the plasma concentrations of 249 proteins from two

independent European cohorts (discovery and replication) were calculated. The plot shows pQTL position against chromosomal location of the gene that

encodes the protein under study for all replicated pQTLs. The area of a filled circle is proportional to its -log10(p-value) in the replication cohort. Blue

circles indicate pQTLs ±150kb of the gene (‘local-pQTLs’); red circles indicate pQTLs more than 150kb from the gene. B, C) Local-pQTLs of 64 proteins

were taken forward for proteome-by-phenome MR analysis. These were assessed against 778 outcome phenotypes from GeneAtlas [20] (panel B; UK

Biobank) and 68 phenotypes identified using Phenoscanner [21,22] (panel C). In each set of results an FDR of<0.05 was considered significant. D)

Heterogeneity in dependent instruments (HEIDI [23]) testing was undertaken for MR significant results from GeneAtlas (n = 271). This test seeks to

distinguish a single causal variant at a locus effecting both exposure and outcome directly (as in i) or in a causal chain (as in ii), from two causal variants in

linkage disequilibrium (as in iii), one affecting the exposure and the other effecting the outcome.

https://doi.org/10.1371/journal.pgen.1008785.g001
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proximity threshold to within 1Mb added a single protein only. Further support for the validity

of these instruments was provided through comparison with the results of Sun et al. [14] and

GTEx [19] (Methods): of the instrumental variables identified (a) 52% (14/27) of those compa-

rable were in high LD (r2>0.8) with the results of Sun et al. (S2 Table), and (b) 30% (16/54)

were also called as significant expression QTLs (eQTLs; Bonferroni correction; S3 Table) in

GTEx—in keeping with previous studies [14].

Proteome-by-phenome Mendelian Randomization

Proteome-by-phenome MR was then applied to 54,144 protein-trait pairs obtained from these

64 replicated local-pQTLs and 778 traits obtained from GeneAtlas (UK Biobank) [20], and 68

traits from 20 additional genome-wide association (meta-analysis) studies [24–43] identified

through Phenoscanner [21,22] (Fig 1; S4 Table; Methods). Phenoscanner studies were addi-

tionally analyzed because, although the UK Biobank cohort is large (~500,000 individuals), for

many diseases the number of affected individuals is small, resulting in low statistical power

(Methods).

Proteome-by-phenome MR yielded 271 significant protein-trait pairs (FDR <0.05) in Gen-

eAtlas, and 238 significant (FDR<0.05) pairs using Phenoscanner data. Thirty-two of the 64

proteins were causally implicated for one or more traits in GeneAtlas, and 36 of 64 in the Phe-

noscanner studies’ traits. GeneAtlas and Phenoscanner traits are not mutually exclusive, and

some of the Phenoscanner studies included UK Biobank data. Nevertheless, a majority (60%;

38/64) of the proteins were implicated in one or more traits (e.g. IL6R: as discussed below; S5

and S6 Tables).

For some of these inferences, genetic evidence of an association between a protein and phe-

notype has previously been proposed based simply on physical proximity of the genes to GWA

intervals. However, in actually measuring protein products we go well beyond genetic proxim-

ity-based annotation of GWA hits: (a) we provide direct evidence that a SNP actually changes

the abundance of a protein, and (b) notwithstanding the assumptions of MR, that the change in

protein abundance observed is consistent with a causal effect of the protein on outcome trait

variation. In addition, notwithstanding the different significance criteria, nearly two-thirds

(62%; 318/509) of the significant (FDR<0.05) MR associations between protein and outcome

were not matched by significant (p-value <5x10-8) association of the DNA variant to outcome.

Heterogeneity of effect-size estimates

For GeneAtlas results, we use HEIDI to test for heterogeneity of MR effect estimates, and eCA-

VIAR to assess the colocalization posterior probability (CLPP) of the instrumental variable,

within a locus. HEIDI tests for heterogeneity of MR effect between the lead variant (the pri-

mary instrument) and those of linked variants. More specifically, it tests the null hypothesis

that the observed MR result is consistent with a single causal variant [23], explicitly accounting

for the LD structure across the locus. eCAVIAR is a probabilistic method to assess the CLPP,

again accounting for LD, that allows for multiple causal variants within a locus.

Amongst the GeneAtlas results, 77 of 271 survived the HEIDI heterogeneity testing (p-

value >0.05), and 92 of 271 have a CLPP >1% in eCAVIAR (threshold as per the original

eCAVIAR paper [44]), with an intersect of 32. These 32 proteins thus have: (1) high-quality

evidence of association to a DNA variant that provides congruent predictions for both

plasma protein levels and disease risk or trait, and (2) a low risk of pleiotropy, due to the

physical proximity of the pQTL to the protein’s gene, survival of the HEIDI test, and a high

CLPP in eCAVIAR (S7 Table). These 32 relationships therefore have the most robust evi-

dence that the level of the protein directly alters disease risk or trait. Nevertheless, we
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emphasize that all 509 causal inferences (271 from GeneAtlas [20] and 238 from studies

identified through Phenoscanner [21,22]; Fig 2, and S5 and S6 Tables), even those consistent

with heterogeneity (GeneAtlas only), remain potential high-quality drug targets. An appro-

priate interpretation of this result is that there are 271 potentially causal links identified in

GeneAtlas, with additional support for 77 based on results of the HEIDI analysis, 92 based

upon eCAVIAR analysis, and 32 with support from both. This may be because the HEIDI

Fig 2. Significant (FDR<0.05) proteome-by-phenome MR protein-outcome causal inferences: Disease subset. MR significant (FDR<5%) protein-

disease outcome results. a) All MR significant (FDR<5%) protein-disease outcome results for outcomes from the Phenoscanner [21,22] studies (see key for

details). b) All MR significant (FDR<5%) protein-disease outcome results for outcomes from GeneAtlas [20]. An asterisk indicates MR estimates that are

not significantly heterogeneous upon HEIDI testing (see key for details). c) Key. From the outside in: HGNC symbol of the protein (exposure); disease

outcome; key color (matching the protein name in the outer ring); bar chart of the signed squared beta estimate divided by the squared standard error of

the MR estimate, using pQTL data from the discovery cohort (CROATIA-Vis); bar chart of the signed squared beta estimate divided by the squared

standard error of the MR estimate, using pQTL data from the replication cohort (ORCADES). Central links join identical outcomes for which more than

one protein was found to be MR significant. The color of the links indicates similar outcome groups, e.g. thyroid disease. The key to the outcome

descriptions is detailed further in S9 and S10 Tables. d) Example concordance (due to sample overlap) plot for all proteins with significant MR evidence in

GeneAtlas for causal roles in asthma (IL1RL1, IL1RL2, IL2RA, IL4R, IL6R). GeneAtlas traits are on the left. Phenoscanner traits are on the right. Thickness

of connecting lines is proportional to -log10(p-value). The Phenoscanner studies included here are derived from [24,26,27,30,38,41–43], of which

[26,38,42,43] include at least some part of the UKBB data. However, [26,42,43] use only data from the first phase (~150,000 individuals) genotype release

from UK Biobank.

https://doi.org/10.1371/journal.pgen.1008785.g002
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heterogeneity test (Fig 1) is susceptible to type I errors (i.e. false positives) in the context of

this study. The method can report significant heterogeneity where there is, in fact, none if:

(a) there are multiple causal variants present within a locus, or (b) there are differences in

the LD structure among the discovery pQTL GWA population (used for lead-SNP selection),

the replication pQTL GWA study population (used for effect-size estimation), the outcome

trait GWA study population, or that of the LD reference. eCAVIAR may also fail to detect

colocalization due to differences in LD structure between the cohorts. In addition, CLPP

depends on the complexity of the LD within a locus, complex LD structure can result in low

CLPP values: suggesting the possibility of false negative results [44]. Finally, it is worth not-

ing that we applied the HEIDI test in a conservative manner: a significant HEIDI test implies

heterogeneity yet we did not apply a multiple testing correction. Applying a Bonferroni cor-

rection (271 tests) to the HEIDI p-value, yields 180 of the protein-outcome pairs (rather

than 77) as not significantly heterogeneous.

Tractability of the proteins assessed as therapeutic targets

Of the 32 proteins for which we identified a significant MR association in GeneAtlas (S5

Table), we found 1319 compounds (S8 Table) associated with 10 proteins in ChEMBL. Of

these compounds, 10 have already been tested in phase 2, or greater, trials: targeting DLK1,

LPL, and LGALS3.

Our results draw causal inference between the plasma concentration of specific proteins

and many diseases and outcome phenotypes. For example, we provide supporting evidence for

a role of IL4R in asthma, IL2RA in thyroid dysfunction, and IL12B in psoriasis (Fig 2), as well

as many cellular phenotypes, such as Transferrin receptor protein 1 (encoded by TFRC) in

mean corpuscular hemoglobin. Multiple disease endpoints exist to which we have found a MR

link and, additionally, for some diseases we have causal links from multiple proteins (Fig 2A

and 2B; S5 and S6 Tables).

Many-to-One: Multiple proteins link to asthma

Asthma is an inflammatory condition affecting the airways. Using GeneAtlas data, our analysis

finds 5 proteins—all interleukin receptors—whose levels causally contribute to asthma disease

risk: IL1RL1, IL1RL2, IL2RA, IL4R, and IL6R (Fig 2D). Prior links between these proteins and

asthma or atopy exist (IL1RL1 [45,46] and IL1RL2 [14], IL2RA [41,47], IL4R [48], and IL6R

[41,48–52]), albeit not necessarily strong evidence for a causal link. Of these, IL6R was not

significantly heterogeneous in HEIDI testing (p>0.05), and also IL4R if accounting for multi-

ple tests (p>0.05/271). Only IL6R had a CLPP >1% in eCAVIAR. Given the association

between eosinophils and asthma, it is worth noting that IL1RL1, IL1RL2, IL2RA, and IL4R are

all linked to ‘Eosinophil count’ and ‘Eosinophil percentage’ in GeneAtlas. Whilst not a true

replication, due to the use of UK Biobank data in both GeneAtlas and some of the Phenoscan-

ner studies, Fig 2D reveals strong concordance between the MR links identified between the

two. Of the 12 Phenoscanner studies reporting significant MR links in this study [24,26–

28,30,32,34,37,38,41–43], 5 include UK Biobank data from ~150,000 individuals

[26,32,34,42,43], and one uses the full UK Biobank release [38].

One-to-Many: Linking IL6R levels to atopy, rheumatoid arthritis, and

coronary artery disease

We also found evidence for a causal association between plasma IL6R abundance and coronary

artery disease (CAD), atopy, and rheumatoid arthritis (Fig 2, S5 and S6 Tables). We note previ-

ous support for these inferences: for example, tocilizumab (a humanized monoclonal antibody
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against IL6R protein) is in clinical use for treating rheumatoid arthritis [53], prior MR evi-

dence has linked elevated levels of soluble IL6R to reduced cardiovascular disease [54,55], and,

as discussed above, there is previous genetic evidence of a link between IL6R and atopy

[41,48–52].

SHPS1 and schizophrenia

Three proteins were implicated in the pathogenesis of schizophrenia: (i) Tyrosine-protein

phosphatase non-receptor type substrate 1 (SHPS1; SIRPA)–Fig 3, (ii) Tumor necrosis factor

receptor superfamily member 5 (CD40), and (iii) Low affinity immunoglobulin gamma Fc

region receptor II-b (FCGR2B).

Focusing on SHPS1, it is highly expressed in the brain, especially in the neuropil (a dense

network of axons, dendrites, and microglial cell processes) in the cerebral cortex (https://v18.

proteinatlas.org/ENSG00000198053-SIRPA/tissue [57–59]; accessed 01 Apr 2019), and co-

localizes with CD47 at dendrite-axon contacts [60]. Mouse models in which the SHPS1 gene is

disrupted exhibit many nervous system abnormalities, such as reduced long term potentiation,

abnormal synapse morphology and abnormal excitatory postsynaptic potential (MGI: 5558020

[61]; http://www.informatics.jax.org/; v6.13; accessed 01 Apr 2019). Other mouse and rat mod-

els link CD47 to sensorimotor gating and social behavior phenotypes [62–66]. In addition,

SHPS1 mediates activity-dependent synapse maturation [61] and may also have a role as a

“don’t eat me” signal to microglia [67]. SHPS1 levels tend to be lower in the dorsolateral pre-

frontal cortex of schizophrenia patients [68]. Finally, the observed effect of SHSP1 on schizo-

phrenia was not significantly heterogeneous in the results of the Schizophrenia Working

Group of the Psychiatric Genomics Consortium (2014) (p-value 0.53).

FABP2 and coronary artery disease

Four other proteins, in addition to IL6R, were identified as contributing to CAD pathogenesis,

namely FABP2, FGF5, LPL, and LTA (Fig 2). FGF5, LPL, IL6R, and LTA had been implicated

previously [26,69,70], whereas FABP2 had more limited prior evidence for its involvement.

pQTL analysis identified two lead DNA variants in close proximity (<150kb) to the FABP2
gene. Using SNP rs17009129, we find a causal link between FABP2 abundance and CAD (p-

value 1.1x10−4; FDR<0.05; βMR -0.11; seMR 0.028; βMR and seMR units: log(OR)/standard devi-

ation of residualised protein concentration) without significant heterogeneity (p-value 0.24)

which suggests shared causal genetic control. Furthermore, a second independent SNP (LD

r2 <0.2; rs6857105) replicates this observation (MR p-value 5.0x10−4; HEIDI p-value 0.34;

βMR -0.17; seMR 0.047). Both SNPs (rs17009129, and rs6857105) fell below genome-wide sig-

nificance (p-value <5x10−8) in the full meta-analysis of van der Harst [38] on CAD. Conse-

quently, this is the first time, to our knowledge, that variants associate with FABP2 abundance

have been demonstrated to contribute causally to CAD pathogenesis.

Discussion

Proteome-by-phenome MR efficiently and robustly yields evidence for proteins as drug tar-

gets. It offers a data-driven approach to drug discovery using population-level data, and quan-

tifies the strength of evidence for causation. Previous studies have made successful forays into

the use of pQTL in mapping protein variation onto disease [12–18], and both the coverage of

the proteome and the availability of disease and trait GWA study results are ever increasing.

By using the lead variants of locally-acting pQTLs as instrumental variables, we focused specif-

ically on a subset of functionally relevant variants for those proteins under study: this choice
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Fig 3. Co-localization of SHPS1 (encoded by SHPS1: Synonym SIRPA) and schizophrenia DNA associations. Upper panel,

LocusZoom [56] of the region surrounding SHPS1 and the associations with schizophrenia [28]; lower panel, associations with SHPS1.

Lower panel inset, the relative concentration of SHPS1 across the 3 genotypes of rs4813319 –the DNA variant used as the instrumental

variable (IV) in the MR analysis: CC, CT, and TT.

https://doi.org/10.1371/journal.pgen.1008785.g003
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reduced the multiple testing burden when compared to genome-wide scans for associations of

the outcome trait.

A potential problem with antibody- and aptamer-based assays is that any perturbation to

binding, such as a change to an epitope, appears incorrectly as a change in abundance. In the

absence of a well-defined reference, we cannot exclude the possibility that some of the pQTL

we have called indicate epitope changes rather than changes in protein abundance. However,

in each case, a bona fide biological association does exist between the genetic variant and the

protein. With respect to MR, this would change the biological interpretation of the exposure

only: protein abundance or sequence isoform, for example.

In addition, proteome-by-phenome MR has inherent limitations. First, a true positive MR

association in our analysis implies that any intervention to replicate the effect of a given geno-

type would alter the relevant phenotype. Nevertheless, this association is informative neither of

the time interval, during development for example, nor the anatomical location in which an

intervention would need to be delivered. Second, pleiotropic effects cannot be excluded

entirely without (unachievable) quantification of every mediator. Third, the abundance of a

protein in plasma may be an imperfect proxy for the effect of a drug targeting that protein at

the level of a whole organism. Finally, plasma abundance does not necessarily reflect activity.

For example, a variant may cause expression of high levels of an inactive form of a protein. Or,

for proteins with both membrane-bound and unbound forms, the MR direction of effect

observed from quantifying soluble protein abundance may not reflect that of membrane-

bound protein. For many membrane-bound proteins, a soluble (often antagonistic) form exists

that is commonly produced through alternative splicing or proteolytic cleavage of the mem-

brane-bound form. Based on 1,000 Genomes [71,72] data, the variant we use to predict IL6R

level, rs61812598, for example, is in complete LD with the missense variant rs2228145 whose

effects on proteolytic cleavage of the membrane-bound form and alternative splicing have

been examined in detail [73]. Carriers of the 358Ala allele at rs2228145 tend to have increased

soluble IL6R but reduced membrane-bound IL6R in a number of immune cell types. Differ-

ences between the effects of soluble and membrane-bound forms of a protein may be wide-

spread. For example, dupilumab is a monoclonal antibody that targets IL4R, a key component

of both IL4 and IL13 signaling. It is currently under investigation for the treatment of asthma

and has shown promising results in both eosinophilic and non-eosinophilic asthma [74,75].

Based on our results, we would have predicted that increased levels of IL4R result in a lower

risk of asthma (S5 Table). This is in contrast to the direction-of-effect due to dupilumab

administration. However, as with IL6R, IL4R has both a soluble and a membrane-bound form.

Encouragingly, despite this, a relationship between dupilumab and asthma remains plausible

—as evidenced by the 14 recently completed or ongoing clinical trials to assess the efficacy and

safety of dupilumab in asthma (as of 26 March 2019, ClinicalTrials.gov).

As well as its utility in identifying potential therapeutic targets for drug development, prote-

ome-by-phenome MR also allows for an assessment of potential off-target effects of existing

pharmacological targets. For example, we predict an effect of IL4R modulation on eosinophil

count and percentage. This is an association already realized in one of the phase II clinical tri-

als investigating dupilumab in asthma: a rise in eosinophil count was observed for some

patients, even leading to the withdrawal of one patient from the study [74].

In summary, we have identified dozens of plausible causal links by conducting GWA of 249

proteins, followed by phenome-wide MR using replicated locally-acting pQTLs of 64 proteins.

The approach is statistically robust, relatively inexpensive, and high-throughput. 54,144 pro-

tein-outcome links were assessed and 509 significant (FDR <0.05) links identified: including

anthropometric measures, hematological parameters, and diseases. Opportunities to discover

larger sets of plausible causal links will increase as study sizes and pQTL numbers grow.
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Indeed, whole-proteome versus Biobank GWA Atlas studies will likely become feasible as

pQTL measurement technologies mature further.

Methods

Ethics statement

ORCADES: The study was approved by Research Ethics Committees in Orkney and Aberdeen

(North of Scotland REC, 26/11/2003).

CROATIA-Vis: The study received approval from the relevant ethics committees in Scot-

land (South East Scotland Research Ethics Committee, REC reference: 11/AL/0222) and Croa-

tia (University of Split School of Medicine Ethics committee, Class:003-08/11-03/-005 No.:

2181-198-03-04/10-11-0008).

All participants gave written informed consent and both studies complied with the tenets of

the Declaration of Helsinki.

Cohort description. From the islands of Orkney (Scotland) and Vis (Croatia) respec-

tively, the ORCADES [76] and CROATIA-Vis [77,78] studies are of two isolated population

cohorts that are both genotyped and richly phenotyped.

The Orkney Complex Disease Study (ORCADES) is a family-based, cross-sectional study

that seeks to identify genetic factors influencing cardiovascular and other disease risk in the

isolated archipelago of the Orkney Isles in northern Scotland [76]. Genetic diversity in this

population is decreased compared to Mainland Scotland, consistent with the high levels of

endogamy historically. 2,078 participants aged 16–100 years were recruited between 2005 and

2011, most having three or four grandparents from Orkney, the remainder with two Orcadian

grandparents. Fasting blood samples were collected and many health-related phenotypes and

environmental exposures were measured in each individual.

The CROATIA-Vis study includes 1,008 Croatians, aged 18–93 years, who were recruited

from the villages of Vis and Komiza on the Dalmatian island of Vis during spring of 2003 and

2004. They underwent a medical examination and interview, led by research teams from the

Institute for Anthropological Research and the Andrija Stampar School of Public Health,

(Zagreb, Croatia). All subjects visited the clinical research center in the region, where they

were examined in person and where fasting blood was drawn and stored for future analyses.

Many biochemical and physiological measurements were performed, and questionnaires of

medical history as well as lifestyle and environmental exposures were collected.

Genotyping. Chromosomes and positions reported in this paper are from GRCh37

throughout. Genotyping of the ORCADES cohort was performed on the Illumina Human

Hap 300v2, Illumina Omni Express, and Illumina Omni 1 arrays; that of the CROATIA-Vis

cohort used the Illumina HumanHap300v1 array.

The genotyping array data were subject to the following quality control thresholds: geno-

type call-rate 0.98, per-individual call-rate 0.97, failed Hardy-Weinberg test at p-value

<1x10−6, and minor allele frequency 0.01; genomic relationship matrix and principal compo-

nents were calculated using GenABEL (1.8–0) [79] and PLINK v1.90 [80,81].

Assessment for ancestry outliers was performed by anchored PCA analysis when compared

to all non-European populations from the 1,000 Genomes project [71,72]. Individuals with a

mean-squared distance of>10% in the first two principal components were removed. Geno-

types were phased using Shapeit v2.r873 and duoHMM [82] and imputed to the HRC.r1-1 ref-

erence panel [83]. 278,618 markers (Hap300) and 599,638 markers (Omni) were used for the

imputation in ORCADES, and 272,930 markers for CROATIA-Vis.

Proteomics. Plasma abundance of 249 proteins was measured in two European cohorts

using Olink Proseek Multiplex CVD2, CVD3, and INF panels. All proteomics measurements
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were obtained from fasting EDTA plasma samples. Following quality control, there were 971

individuals in ORCADES, and 887 individuals in CROATIA-Vis, who had genotype and

proteomic data from Olink CVD2, 993 and 899 from Olink CVD3, and 982 and 894 from

Olink INF. The Olink Proseek Multiplex method uses a matched pair of antibodies for each

protein, linked to paired oligonucleotides. Binding of the antibodies to the protein brings the

oligonucleotides into close proximity and permits hybridization. Following binding and exten-

sion, these oligonucleotides form the basis of a quantitative PCR reaction that allows relative

quantification of the initial protein concentration [84]. Olink panels include internal and

external controls on each plate: two controls of the immunoassay (two non-human proteins),

one control of oligonucleotide extension (an antibody linked to two matched oligonucleotides

for immediate proximity, independent of antigen binding) and one control of hybridized oli-

gonucleotide detection (a pre-made synthetic double stranded template), as well as an external,

between-plate, control (http://www.olink.com/; accessed: 19th June 2016).

Prior to analysis, we excluded proteins with fewer than 200 samples with measurements

above the limit of detection of the assay. Of the 268 unique proteins reported by Olink, 253

passed this threshold in ORCADES, and 252 in CROATIA-Vis, with an intersect of 251 pro-

teins. Protein values were inverse-normal rank-transformed prior to subsequent analysis.

The subunits of IL27 are not distinguished in Olink’s annotation (Q14213, EBI3; and

Q8NEV9, IL27). However, it has only one significant locus, local to the EBI3 gene (lead variant,

rs60160662, is within 16kb). Therefore, EBI3 (Q14213) was selected as representative for this

protein when discussing pQTL location (local/distal) so as to avoid double counting.

The CVD2, CVD3, and INF panels are commercially available from Olink. The proteins on

these panels were selected by Olink due to a priori evidence of involvement in cardiovascular

and inflammatory processes. Two proteins, CCL20 and BDNF, have been removed at the

request of Olink (due to issues with the assay).

Detection of pQTL. Genome-wide association of these proteins was performed using

autosomes only. Analyses were performed in three-stages. (1) a linear regression model was

used to account for participant age, sex, genotyping array (ORCADES only), proteomics plate,

proteomics plate row, proteomics plate column, length of sample storage, season of venepunc-

ture (ORCADES only), and the first 10 principal components of the genomic relationship

matrix. Genotyping array and season of venepuncture are invariant in CROATIA-Vis and

therefore were not included in the model. (2) Residuals from this model were corrected for

relatedness, using GenABEL’s [79] polygenic function and the genomic relationship matrix, to

produce GRAMMAR+ residuals. Outlying GRAMMAR+ residuals (absolute z-score >4) were

removed and the remainder rank-based inverse-normal transformed. (3) Genome-wide asso-

ciation testing was performed using REGSCAN v0.5 [85].

Genome-wide association results were clumped by linkage disequilibrium using PLINK

v1.90 [80,81]. Biallelic variants within ±5Mb and r2 >0.2 to the lead variant (smallest p-value

at the locus) were clumped together, and the lead variant is presented. r2 was derived from all

European populations in 1,000 Genomes [71,72].

We have chosen to describe pQTL as local- or distant- so as to distinguish naming based on

genomic location from that based on mode of action i.e. cis- (acting on the same DNA mole-

cule) and trans- (acting via some diffusible mediator). That is, most local- variation may well

act in cis but not necessarily so.

Mendelian Randomization. In the context of proteome-by-phenome MR, a DNA variant

(a single nucleotide polymorphism in this case) that influences plasma protein level is

described as an ‘instrumental variable’, the protein as the ‘exposure variable’, and the outcome

phenotype as the ‘outcome variable’.
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The lead-SNP with the lowest p-value meeting the following criteria was used as the instru-

mental variable for each protein:

1. Minor allele frequency>1% in both ORCADES and CROATIA-Vis cohorts.

2. An imputation info score (SNPTEST v2) of>0.95 in both ORCADES and CROATIA-Vis.

3. Located within ±150kb of the gene coding for the protein (start and end coordinates of the

gene as defined by Ensembl GRCh37 [86]).

4. Significant (as defined below) SNP:protein link in both the discovery and replication

cohorts.

Lead-SNP selection was performed using the discovery (CROATIA-Vis; p-value <5x10-8)

cohort; replication was defined based on a Bonferroni correction for the number of significant

lead-SNPs present in the discovery cohort (CROATIA-Vis). In order to avoid a ‘winner’s

curse’, genome-wide association effect size estimates and standard errors from the replication

cohort (ORCADES) were used for MR.

We perform MR as a ratio of expectations, using up to second-order partial derivatives of

the Taylor series expansion for effect size estimates, and up to first-order for standard errors

(Delta method) [87]:
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where βij is the causal effect of j on i, seij is the standard error of the causal effect estimate of j
on i; subscript X is the exposure, Y the outcome trait, and Z the instrumental variable. F is the

cumulative density function of the standard normal distribution. This method is identical to

that of SMR [23] apart from the second term in the bracket of Eq 1 (resulting from the inclu-

sion of second-order partial derivatives). An FDR of<0.05 was considered to be significant.

FDR estimations were performed separately on those results derived from GeneAtlas and

those derived from studies in Phenoscanner.

DNA variant to trait association: GeneAtlas. UK Biobank has captured a wealth of

information on a large—approximately 500,000 individuals—population cohort that includes

anthropometry, hematological traits, and disease outcomes. All 778 outcome traits from UK

Biobank in GeneAtlas (http://geneatlas.roslin.ed.ac.uk/; Canela-Xandri et al. (2018) [88]) were

included. The analysis method of all 778 traits was as described for 717 in Canela-Xandri et al.

(2017) [20]. For each protein, the lead (lowest DNA variant-protein association p-value in the

discovery cohort) biallelic (Phase 3, 1,000 Genomes [71,72]) variant meeting the criteria above

and an imputation info score >0.95 in UK Biobank, was selected for each protein, and MR

performed.

DNA variant to trait association: Phenoscanner. Phenoscanner [21,22] was used to

highlight existing GWA studies for inclusion. For each protein, the lead (lowest DNA variant-

protein association p-value in the discovery cohort) biallelic (1,000 Genomes [71,72]) meeting

the criteria above was selected. rs545634 was not found in the Phenoscanner database and was
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therefore replaced with the second most significant variant meeting the above criteria:

chr1:15849003. Phenoscanner was run with the following options: Catalogue: ‘Diseases &

Traits’, p-value cut-off: ‘1’, Proxies: ‘None’, Build ‘37’. The results from those studies that

returned a value for all input variants were kept and MR performed. Phenoscanner (http://

www.phenoscanner.medschl.cam.ac.uk/information/; accessed 25 Sep 2018) state that they

report all SNPs on the positive strand. Given this, alleles were harmonized as required. No

attempt to harmonize based on allele frequency was made; therefore, the direction of effect of

C/G and A/T SNPs should be interpreted with care. Results from 20 additional studies were

obtained, corresponding to 68 outcomes.

HEIDI. Heterogeneity in dependent instruments (HEIDI) analysis [23], is a method of

testing whether the MR estimates obtained using variants in linkage disequilibrium with the

lead variant are consistent with a single causal variant at a given locus (Fig 1D). HEIDI analysis

was performed using software provided at https://cnsgenomics.com/software/smr/ (accessed

28 Aug 2018; v0.710). We used pQTL data from ORCADES for assessment as the exposure.

Biallelic variants from the 1,000 Genomes [71,72] (European populations: CEU, FIN, GBR,

IBS, and TSI) were used as the linkage disequilibrium reference. We used the default ‘cis-win-

dow’ of 2000kb, and a maximum number of variants of 20 (as is the default value for the

software).

We performed HEIDI analysis of all exposure-outcome links that were found to be signifi-

cant (FDR <0.05) using outcomes from GeneAtlas (n = 271), as well as links found to be MR

significant (FDR<0.05) with CAD from the meta-analysis of van der Harst [38], and for

SHPS1 and schizophrenia [28].

We applied the following filters for variants to be included in the analysis: minor allele fre-

quency MAF >0.01 and, in the GeneAtlas and ORCADES data, an imputation info score of

>0.95.

eCAVIAR. eCAVIAR [44] is a method for assessing the colocalization posterior probabil-

ity (CLPP) for two traits at a locus, whilst allowing for multiple causal variants. We ran eCA-

VIAR with a maximum of 5 causal variants per locus and defined a locus as per the original

eCAVIAR paper [44]: 50 SNPs up- and down-stream of the relevant variable (the instrumental

variable in this case). eCAVIAR was run using software provided at https://github.com/

fhormoz/caviar/ (accessed 12 Mar 2020; v2.2). As with HEIDI, we used pQTL data from

ORCADES for assessment as the exposure, biallelic variants from the 1,000 Genomes [71,72]

as an LD reference, and applied identical filters for variant inclusion.

We performed eCAVIAR analysis of all exposure-outcome links that were found to be sig-

nificant (FDR<0.05) using outcomes from GeneAtlas (n = 271).

Comparison to eQTL

Result for all SNP:gene pairs analyzed in whole blood were downloaded from GTEx [19] (v7)

from the GTEx Portal (https://gtexportal.org/; accessed 04 Sep 2019). Results were extracted

for the instrumental variables and the genes encoding their proteins for the 64 proteins for

which an instrumental variable was successfully identified in this study. Matching was based

on Ensembl Gene ID, and variant chromosome, position, and alleles (GRCh37).

Comparison to plasma pQTL using an orthogonal, aptamer-based, method

The supplementary data files for Sun et al. [14] were downloaded on 04 Sep 2019. From Sup-

plementary Table 4, pQTL identified were extracted for the 64 proteins for which an instru-

mental variable was successfully identified in this study. Proteins were matched based on an

exact UniProtID match. The LD (r2) between the lead locally-acting (as defined above) and
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‘cis-acting’ (as defined by Sun et al.) SNP identified for each protein was calculated using the

European populations from the 1,000 Genomes project (as described above) using PLINK

v1.90 [80,81].

Links to existing drug therapies

Protein names were matched to ChEMBL IDs using the UniProtID mapping API (https://

www.uniprot.org/help/api_idmapping; accessed 27 Oct 2019). ChEMBL [89] was searched

programmatically using the ChEMBL web resource client in Python 3.6 (https://github.com/

chembl/chembl_webresource_client; accessed 27 Oct 2019).

Supporting information

S1 Table. List of pQTLs (linkage disequilibrium clumped). List of lead SNPs for each protein

following linkage disequilibrium (LD) clumping, together with replication information. Bialle-

lic variants within ±5Mb and r2 >0.2 to the lead variant (smallest p-value at the locus) were

clumped together. European populations in 1,000 Genomes [71,72] were used as the LD refer-

ence. Columns are: ‘hgnc_symbol’: HUGO gene naming consortium symbol of the exposure

(protein); ‘snpid’: ‘chr’_‘pos’; ‘rsid’: rsID; ‘chr’: chromosome (GRCh37) of the SNP; ‘pos’: posi-

tion (GRCh37) of the SNP; ‘a1’: effect allele; ‘a0’: other allele; ‘n_pri’: number of individuals in

the primary cohort (CROATIA-Vis); ‘freq1_pri’: frequency of the effect allele in the primary

cohort (CROATIA-Vis); ‘beta1_pri’: beta estimate of the effect allele in the primary cohort

(CROATIA-Vis); ‘se_pri’: standard error of ‘beta1_pri‘ in the primary cohort (CROATIA-Vis);

‘p_pri’: p-value of ‘beta1_pri‘ and ‘se_pri’; ‘info_pri’: SNPTEST (v2) info of the imputation in

the primary cohort (CROATIA-Vis); ‘r2_pri’: coefficient of determination of the regression in

the primary cohort (CROATIA-Vis); ‘n_sec’: as for the primary cohort (CROATIA-Vis) but in

the secondary cohort (ORCADES); ‘freq1_sec’: as for the primary cohort (CROATIA-Vis) but

in the secondary cohort (ORCADES); ‘beta1_sec’: as for the primary cohort (CROATIA-Vis)

but in the secondary cohort (ORCADES); ‘se_sec’: as for the primary cohort (CROATIA-Vis)

but in the secondary cohort (ORCADES); ‘p_sec’: as for the primary cohort (CROATIA-Vis)

but in the secondary cohort (ORCADES); ‘info_sec’: as for the primary cohort (CROATIA-

Vis) but in the secondary cohort (ORCADES); ‘r2_sec’: as for the primary cohort (CROATIA-

Vis) but in the secondary cohort (ORCADES); ‘uniprot_swissprot’: UniProtID of the exposure

(protein), see http://www.uniprot.org/; ‘ensembl_gene_id’: Ensembl gene ID (GRCh37;

see http://grch37.ensembl.org/index.html) of the gene-of-origin of the protein; ‘chromo-

some_name’: chromosome (GRCh37) of the gene of the protein, as per Ensembl GRCh37;

‘start_position’: start position (GRCh37) of the gene of the protein, as per Ensembl GRCh37;

‘end_position’: end position (GRCh37) of the gene of the protein, as per Ensembl GRCh37;

‘description’: HUGO gene naming consortium description of the exposure (protein); ‘replica-

ted_pqtl’: is the lead SNP of the cluster (as identified in the primary cohort) replicated in the

secondary cohort (Bonferroni correction for multiple testing. TRUE if it is; FALSE if not);

‘within_gene_plus_flank_tol’: is the SNP within the gene-of-origin of the protein +/- 150kb

(TRUE is it is; FALSE if not).

(TSV)

S2 Table. Comparison of the lead-SNPs identified here and those identified using an

orthogonal, aptamer-based assay. Aptamer-based assay results are those of Sun et al. [14].

Columns are ‘hgnc_symbol’: the HGNC symbol corresponding to the UniProtID; ‘exposure’:

the UniProtID of the protein; ‘rsid_olink’: the rsID of the lead-SNP from this study;

‘chr_olink’: the chromosome, GRCh37, of the lead-SNP from this study; ‘pos_olink’: the
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position, GRCh37, of the lead-SNP from this study; ‘a1_olink’: allele 1 of the lead-SNP from

this study; ‘a0_olink’: allele 0 of the lead-SNP from this study; ‘rsid_sun’: the rsID of the lead-

SNP from Sun et al.; ‘chr_sun’: the chromosome, GRCh37, of the lead-SNP from Sun et al.;

‘pos_sun’: the position, GRCh37, of the lead-SNP from Sun et al.; ‘a1_sun’: allele 1 of the lead-

SNP from Sun et al.; ‘a0_sun’: allele 0 of the lead-SNP from Sun et al.; ‘ld_r2’: the linkage dis-

equilibrium (r2) of the two SNPs, as measured in the European individuals from 1,000

Genomes (Methods).

(TSV)

S3 Table. Comparison of the lead-SNPs identified here and eQTL. eQTL data derived from

‘Whole blood’ from GTEx [19] (v7). Bonferroni correction 0.05/54. Columns are ‘hgnc_sym-

bol’: the HGNC symbol corresponding to the UniProtID; ‘rsid’: rsID of the SNP; ‘chr’: chro-

mosome of the SNP, GRCh37; ‘pos’: position of the SNP, GRCh37; ‘a1’: the effect allele; ‘a0’:

the other allele; ‘uniprot’: UniProtID of the protein; ‘n_protein_pri’: number of individuals

in the primary protein cohort (CROATIA-Vis); ‘freq1_protein_pri’: frequency of the effect

allele in the primary protein cohort (CROATIA-Vis); ‘beta1_protein_pri’: effect-size

estimate in the primary protein cohort (CROATIA-Vis); ‘se_protein_pri’: standard error of

‘beta1_protein_pri’; ‘p_protein_pri’: p-value of ‘beta1_protein_pri’ and ‘se_protein_pri’;

‘info_protein_pri’: SNPTEST (v2) imputation info score in the primary protein cohort

(CROATIA-Vis); ‘n_protein_sec’: as for the primary cohort (CROATIA-Vis) but in the sec-

ondary cohort (ORCADES); ‘freq1_protein_sec’: as for the primary cohort (CROATIA-Vis)

but in the secondary cohort (ORCADES); ‘beta1_protein_sec’: as for the primary cohort

(CROATIA-Vis) but in the secondary cohort (ORCADES); ‘se_protein_sec’: as for the primary

cohort (CROATIA-Vis) but in the secondary cohort (ORCADES); ‘p_protein_sec’: as for the

primary cohort (CROATIA-Vis) but in the secondary cohort (ORCADES); ‘info_protein_sec’:

as for the primary cohort (CROATIA-Vis) but in the secondary cohort (ORCADES);

‘ensembl_gene_id’: Ensembl gene ID corresponding to the protein; ‘pval_nominal_gtex’: nom-

inal p-value in GTEx (v7) whole blood; ‘slope_gtex’: effect-size estimate in GTEx (v7) whole

blood; ‘slope_se_gtex’: standard error of ‘slope_gtex’ in GTEx (v7) whole blood; ‘pval_nomi-

nal_threshold_gtex’: nominal p-value threshold for calling a variant-gene pair significant for

the gene in GTEx (v7) whole blood; ‘min_pval_nominal_gtex’: smallest nominal p-value for

the gene in GTEx (v7) whole blood; ‘pval_beta’: beta-approximated permutation p-value for

the gene in GTEx (v7) whole blood.

(TSV)

S4 Table. Additional studies identified using Phenoscanner. Table of the additional studies

(and outcome traits) identified through Phenoscanner [21,22]. Note that ‘Coronary artery dis-

ease’ was included from van der Harst et al. [38] both with and without the inclusion of data

from UK Biobank. Columns are ‘Outcome’: trait under study; ‘PMID’: PubMed ID of the

study; ‘First author’: First author the publication; ‘Year’: year of publication of the study;

‘Paper title’: title of the study.

(TSV)

S5 Table. Mendelian Randomization results from GeneAtlas. Table of the all significant

(FDR<0.05) Mendelian Randomization (MR) results using data from GeneAtlas [20]. pQTL

for both cohorts are included, however, in order to avoid a ‘winner’s curse’, MR was conducted

using data from the secondary protein cohort (ORCADES). Columns are ‘hgnc_symbol’:

HUGO Gene Nomenclature Committee symbol of the exposure protein; ‘outcome_descrip-

tion’: description of the UK biobank outcome from GeneAtlas; ‘rsid’: rsID; ‘snpid’: ‘chr’_‘pos’;

‘chr’: chromosome (GRCh37); ‘pos’: position (GRCh37); ‘a1’: effect allele; ‘a0’: other allele;
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‘exposure’: UniProtID of the protein; ‘ensembl_gene_id’: Ensembl (GRCh37) gene ID of the

exposure protein; ‘n_exposure_pri’: number of individuals in the primary protein cohort

(CROATIA-Vis); ‘freq1_exposure_pri’: frequency of the effect allele in the primary protein

cohort (CROATIA-Vis); ‘beta1_exposure_pri’: regression coefficient (per additional effect

allele) in the primary protein cohort (CROATIA-Vis); ‘se_exposure_pri’: standard error of

‘beta1_exposure_pri’; ‘p_exposure_pri’: p-value of ‘beta1_exposure_pri’ and ‘se_exposure_pri’;

‘info_exposure_pri’: SNPTEST (v2) imputation info score in the primary protein cohort

(CROATIA-Vis); ‘n_exposure_sec’: as for the primary cohort (CROATIA-Vis) but in the sec-

ondary cohort (ORCADES); ‘freq1_exposure_sec’: as for the primary cohort (CROATIA-Vis)

but in the secondary cohort (ORCADES); ‘beta1_exposure_sec’: as for the primary cohort

(CROATIA-Vis) but in the secondary cohort (ORCADES); ‘se_exposure_sec’: as for the pri-

mary cohort (CROATIA-Vis) but in the secondary cohort (ORCADES); ‘p_exposure_sec’:

as for the primary cohort (CROATIA-Vis) but in the secondary cohort (ORCADES);

‘info_exposure_sec’: as for the primary cohort (CROATIA-Vis) but in the secondary cohort

(ORCADES); ‘outcome’: outcome code of the UK biobank outcome from GeneAtlas;

‘beta1_outcome’: beta of the effect allele on the outcome in GeneAtlas; ‘se_outcome’: standard

error of ‘beta1_outcome’; ‘p_outcome’: p-value corresponding to ‘beta1_outcome’ and

‘se_outcome’; ‘info_outcome’: imputation info score in UK Biobank; ‘freq1_outcome’: fre-

quency of the effect allele in UK Biobank; ‘beta_mr_delta_sec’: beta value using the delta MR

method (using up to second order partial derivatives; See the appendix of Lynch and Walsh

for further information) using estimates from the secondary cohort; ‘se_mr_delta_sec’: stan-

dard error of ‘beta_mr_delta_sec’ using the delta MR method (using up to first order partial

derivatives; See the appendix of Lynch and Walsh for further information) using estimates

from the secondary cohort; ‘p_mr_delta_sec’: p-value corresponding to ‘beta_mr_delta_sec’

and ‘se_mr_delta_sec’; ‘fdr_sig_mr_delta_sec’: significance of ‘p_mr_delta_sec’ at a False Dis-

covery Rate (FDR) of<5%. True / False.

(TSV)

S6 Table. Mendelian Randomization results from studies identified using Phenoscanner.

Table of all Mendelian Randomization results using data acquired through Phenoscanner [21,22].

pQTL for both cohorts are included, however, in order to avoid a ‘winner’s curse’, MR was con-

ducted using data from the secondary protein cohort. Columns are ‘hgnc_symbol’: HUGO Gene

Nomenclature Committee symbol of the exposure protein; ‘trait’: outcome trait description; ‘snp’:

chr‘chr’:‘pos’; ‘rsid’: rsID; ‘chr’: chromosome (GRCh37); ‘pos’: position (GRCh37); ‘a1’: effect

allele; ‘a0’: other allele; ‘exposure’: UniProtID of the protein; ‘n_exposure_pri’: number of individ-

uals in the primary protein cohort (CROATIA-Vis); ‘freq1_exposure_pri’: frequency of the effect

allele in the primary protein cohort (CROATIA-Vis); ‘beta1_exposure_pri’: regression coefficient

(per additional effect allele) in the primary protein cohort (CROATIA-Vis); ‘se_exposure_pri’:

standard error of ‘beta1_exposure_pri’; ‘p_exposure_pri’: p-value of ‘beta1_exposure_pri’ and

‘se_exposure_pri’; ‘info_exposure_pri’: SNPTEST (v2) imputation info score in the primary

protein cohort; ‘n_exposure_sec’: as for the primary cohort (CROATIA-Vis) but in the second-

ary cohort (ORCADES); ‘freq1_exposure_sec’: as for the primary cohort (CROATIA-Vis) but

in the secondary cohort (ORCADES); ‘beta1_exposure_sec’: as for the primary cohort (CROA-

TIA-Vis) but in the secondary cohort (ORCADES); ‘se_exposure_sec’: as for the primary

cohort (CROATIA-Vis) but in the secondary cohort (ORCADES); ‘p_exposure_sec’: as for the

primary cohort (CROATIA-Vis) but in the secondary cohort (ORCADES); ‘info_exposure_sec’:

as for the primary cohort (CROATIA-Vis) but in the secondary cohort (ORCADES); ‘ensembl_

gene_id’: Ensembl (GRCh37) gene ID of the exposure protein; ‘study’: name of the consortium/

lead author of the outcome study; ‘pmid’: PubMed ID of the outcome study; ‘ancestry’: ancestry
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of the population within which the outcome was measured; ‘year’: the year the outcome study

was published; ‘beta1_outcome’: regression coefficient (per additional effect allele) in the

outcome study; ‘se_outcome’: standard error of ‘beta1_outcome’; ‘p_outcome’: p-value of

‘beta1_outcome’ and ‘se_outcome’; ‘n_outcome’: number of individuals in the outcome study;

‘n_cases_outcome’: number of cases in the outcome study; ‘n_controls_outcome’: number of

controls in the outcome study; ‘n_studies_meta_outcome’: if a meta-analysis, number of studies

included; ‘units_outcome’: units of analysis in the outcome study (IVNT stands for inverse nor-

mal rank transformed phenotype); ‘dataset’: Phenoscanner dataset ID; ‘beta1_outcome_flipped’:

has the sign of ‘beta1_outcome’ been inverted from that provided by Phenoscanner due to call-

ing of the effect vs. non-effect allele? True / False; ‘beta_mr_delta_sec’: beta value using the

delta MR method (using up to second order partial derivatives; See the appendix of Lynch and

Walsh for further information) using estimates from the secondary cohort; ‘se_mr_delta_sec’:

standard error of ‘beta_mr_delta_sec’ using the delta MR method (using up to first order partial

derivatives; See the appendix of Lynch and Walsh for further information) using estimates

from the secondary cohort; ‘p_mr_delta_sec’: p-value corresponding to ‘beta_mr_delta_sec’

and ‘se_mr_delta_sec’; ‘fdr_sig_mr_delta_sec’: significance of ‘p_mr_delta_sec’ at a False Dis-

covery Rate (FDR) of<5% (True / False).

(TSV)

S7 Table. HEIDI and eCAVIAR. Table of the eCAVIAR [44] and HEIDI [23] results for all

significant (FDR<0.05) Mendelian Randomization (MR) results using data from GeneAtlas

[20]. Columns are ‘snpid’: chromosome_position (GRCh37); ‘exposure’: UniProtID of the pro-

tein; ‘hgnc_symbol’: HUGO Gene Nomenclature Committee symbol of the exposure protein;

‘outcome’: outcome code of the UK biobank outcome from GeneAtlas; ‘outcome_description’:

description of the UK biobank outcome from GeneAtlas; ‘p_HEIDI’: p-value of the HEIDI sta-

tistic; ‘nsnp_HEIDI’: the number of SNPs used in the calculation of the HEIDI statistic;

‘CLPP’: colocalization posterior probability (as per eCAVIAR).

(TSV)

S8 Table. ChEMBL results. Compounds targeting the mediators listed in S5 Table. Columns

are ‘uniprot’: UniProtID; ‘gene_symbol’: Gene Symbol; ‘target_chembl_id’: CHEMBL ID for

this protein; ‘compound_id’: CHEMBL compound ID; ‘max_phase’: CHEMBL-reported max-

imum phase of drug development for this compound; ‘drug_synonyms’: drug names; ‘indica-

tion_class’: CHEMBL-reported indication for this compound.

(TSV)

S9 Table. Key of Fig 2A. Key for the abbreviations used in Fig 2A. Columns are ‘Abbreviation’

and ‘Outcome Description’.

(TSV)

S10 Table. Key of Fig 2B. Key for the abbreviations used in Fig 2B. Columns are ‘Abbrevia-

tion’ and ‘Outcome Description’.

(TSV)
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