
Network-level macroscale structural connectivity predicts 
propagation of transcranial magnetic stimulation✩

Davide Momia,b, Recep A. Ozdemira, Ehsan Tadayona, Pierre Bouchera, Mouhsin M. Shafia, 
Alvaro Pascual-Leonec,d,e, Emiliano Santarnecchia,d,*

aBerenson-Allen Center for Non-Invasive Brain Stimulation, Beth Israel Deaconess Medical 
Center, Boston, MA, United States

bDepartment of Neuroscience, Imaging and Clinical Sciences, University of Chieti-Pescara, 
Chieti, Italy

cHinda and Arthur Marcus Institute for Aging Research and Deanna and Sidney Wolk Center for 
Memory Health, Hebrew SeniorLife, Boston MA

dDepartment of Neurology, Harvard Medical School, Boston, MA, United States

eGuttmann Brain Health Institut, Guttmann Institut, Universitat Autonoma, Barcelona, Spain

Abstract

Information processing in the brain is mediated by structural white matter pathways and is highly 

dependent on topological brain properties. Here we combined transcranial magnetic stimulation 

(TMS) with high-density electroencephalography (EEG) and Diffusion Weighted Imaging (DWI), 

specifically looking at macroscale connectivity to understand whether regional, network-level or 

whole-brain structural properties are more responsible for stimulus propagation. Neuronavigated 

TMS pulses were delivered over two individually defined nodes of the default mode (DMN) and 

dorsal attention (DAN) networks in a group of healthy subjects, with test-retest reliability assessed 

1-month apart. TMS-evoked activity was predicted by the modularity and structural integrity 

of the stimulated network rather than the targeted region(s) or the whole-brain connectivity, 

suggesting network-level structural connectivity as more relevant than local and global brain 
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properties in shaping TMS signal propagation. The importance of network structural connectome 

was unveiled only by evoked activity, but not resting-state data. Future clinicals interventions 

might enhance target engagement by adopting DWI-guided, network-focused TMS.
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1. Introduction

In the last two decades, transcranial magnetic stimulation (TMS) has been widely employed 

to study functional connectivity and plasticity in the human cortex ( Ziemann, 2004 ), as 

well as transiently manipulate brain spontaneous dynamics ( Santarnecchi et al., 2018 ) 

and human cognition ( Momi et al., 2019 ). Indeed, TMS allows a relatively focal 

stimulation (~2–2.5 cm diameter) of the human brain using very brief duration magnetic 

waves administered by an electromagnetic coil positioned on the scalp ( Hallett, 2007 ). 

However, the effect of the TMS pulse is not limited to the underlying stimulated tissue, but it 

can possibly reverberate within interconnected cortical networks, inducing synchronization 

of distant cortical areas and changes in functional connectivity dynamics ( Di Lazzaro, 

2004; Massimini et al., 2005; Siebner et al., 2001 ). A compelling way to quantify 

these cortico-cortical connectivity patterns is to combine TMS with electroencephalography 

(EEG) ( Voineskos et al., 2010 ), thus looking at millisecond-level brain activity propagation 

throughout the brain and potentially capture individual variability in response to external 

perturbation, as well as disease-specific alterations of brain activity ( Benussi et al., 2020; 

Massimini et al., 2012 ). In a recent TMS-EEG study ( Ozdemir et al., 2020 ), we have 

stimulated two resting-state networks (RSNs) ( Fox et al., 2005 ) (i.e. Default Mode 

Network, DMN, and Dorsal Attention Network, DAN) showing how the external-induced 

signal follows network dynamics usually measured via functional magnetic resonance 

imaging (fMRI). Changes in RSNs connectivity emerge when pathological states arise 

( Anderson et al., 2011 ), suggesting resting-state fMRI (rs-fMRI) as a potential biomarker 

of disease symptomatology and progression ( Ferguson et al., 2019 ). The possibility of 

indexing network activity via TMS-EEG would open new possibilities for disease tracking 

and early detection of network-level dysfunction, but more information about network 

engagement and propagation are needed.

While the understanding of TMS propagation pathways and principles is still incomplete, 

the vast majority of studies suggest that TMS pulses propagate along white matter tracts 

( O’Shea et al., 2008 ), with the conductivity of white matter bundles potentially shaping 

the propagation of action potentials ( McCann et al., 2019 ). In this context, individual 

differences in the complexity and organization of the structural connectome might play a 

critical role in determining the response to TMS, and such information could be used to 

guide TMS targeting and achieve maximal target engagement. Here we used image-guided 

TMS-EEG to selectively perturb one of two neighboring nodes of the DMN and DAN ( Fox 

et al., 2005 ) to then extrapolate individual network engagement values by computing the 
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area under the curve (AUC) for significant post-TMS time points, thus providing higher 

temporal resolution. Afterwards, we correlated individual response to TMS with macroscale 

structural properties of the brain. In particular, we combined TMS, EEG and Diffusion 

Weighted Imaging (DWI) to test an ad-hoc five-layer hierarchical framework ranging from 

local to network-level up to whole-brain structural connectivity, therefore moving along 

a gradient including local, regional patterns on one side and very unspecific whole-brain 

connections on the other end. Specifically, the response to TMS targeting the DMN and 

DAN was correlated with (a) the structural connectivity of the stimulated region with the 

rest of the brain, (b) the connectivity of the stimulated region with the other nodes of the 

same network, (c) the intrinsic connectivity of the targeted network, (d) the modularity of 

the brain as an index of between and within networks connectivity ( Sporns and Betzel, 

2016 ), and (e) the overall average structural connectivity of the entire brain. Given the 

relevance of local activation induced by TMS ( Krieg et al., 2013 ), we hypothesized that 

layers of the hierarchical model related to local connectivity (e.g. a and b) would constitute 

important predictors of the response to TMS, followed by network-level ones. To further 

investigate the specificity of the results, the structural connectivity of non-stimulated RSNs 

was also correlated as a control condition. Additionally, to verify whether measuring the 

response to TMS-based perturbation provides an advantage in capturing the relevance of 

individual structural connectivity properties, the same analysis was repeated by looking at 

network activity during resting-state EEG recording. Finally, considering the quest for data 

reproducibility, the same analyses were repeated on data collected on the same sample of 

healthy individuals across two separate study visits one month apart. For details on the study 

design please see Fig. 1 and the Methods section of the manuscript.

2. Material and methods

2.1. Participants

The study was approved by the Institutional Review Board of the Beth Israel Deaconess 

Medical Center. Each participant provided written informed consent conformed to the 

Declaration of Helsinki and was compensated for the entire study. Twenty-one right-

handed ( Oldfield, 1971 ) healthy volunteers (mean age = 32 ± 10 years, ranging from 

19 to 49 years) with normal neurological and psychiatric evaluation and no history of 

drugs acting on the central nervous system were recruited through flyers and on-line 

advertisement. Participants carried out a pre-TMS assessment comprehensive of structural 

(e.g. T1-weighted (T1w) and DWI) and functional (e.g. fMRI) MRI. After that, two TMS 

visits, separated by one month, were performed where 120 single pulses were delivered in 

two neighboring parietal nodes corresponding to the DMN and DAN. At the beginning of 

each TMS visit, resting motor threshold (RMT) was identified for each participant, targeting 

the left motor cortex (M1) in order to define TMS intensity for each participant according 

to international TMS guidelines ( Rossi et al., 2020 ). Methods for data acquisition are 

presented in the following paragraph and have been further described in ( Ozdemir et al., 

2020 ).
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2.2. Conceptual framework

To explore the relationship between local/global brain features and response to network-

targeted TMS, we delineated a granular, ad-hoc five-levels hierarchical model ranging from 

high modularity to high generality where several connectivity measures were extracted (see 

Fig. 1 E):

a. Stimulated region to brain connectivity (Stim2Brain): a metric representing 

the number of structural connections between the stimulated region and any 

other brain region. This index was calculated by averaging the number of 

streamlines which originate from the stimulated area and terminate in every other 

brain region. This metrics captures global connectivity of the stimulated region 

regardless of the stimulated region/network;

b. Stimulated region to network connectivity (Stim2Network): an index expressing 

the connectivity between the stimulated region and any other node of its network. 

This index was calculated by averaging the number of streamlines which 

originate from the stimulated region and terminate in any other node of the same 

network. This metric captures local connectivity of the stimulated region with 

respect to the targeted network;

c. Stimulated network connectivity (Network): this metric incorporates the intrinsic 

connectivity of the stimulated network extracted by considering the streamlines 

that connect each pair of network nodes. This index was calculated by averaging 

the number of streamlines which connect every brain region belonging to the 

same network. This represents the stimulated network connectivity without 

considering global property of the brain;

d. Within/between network connectivity (Modularity): a general property of the 

individual connectome expressing how much each structural connectivity matrix 

was arranged in sub-modules ( Rubinov and Sporns, 2010 ). This index was 

computed using the Louvain algorithm ( Blondel et al., 2008 ), implemented in 

the Brain Connectivity Toolbox ( Rubinov and Sporns, 2010 ) as follows:

Q = 1
2m ∑

ij
Aij −

kikj
2m δ ci, cj

where m is the sum of all the nodes in the network; Aij is the adjacency matrix representing 

the edge weight between node i and node j; k i and k j are the sum of the weights of the 

edges attached to nodes i and j, respectively; δ(ci,cj ) are the communities of the nodes and is 

1 if nodes i and j belong to the same subset of the maximized partition of brain nodes, and 0 

otherwise.

e. Whole-brain connectivity (Brain): the most generic level where an index 

of global structural connectivity was computed regardless of network 

differentiation. This index was calculated by averaging the number of streamlines 

which traverse every brain region. This level represents global properties of 

Momi et al. Page 4

Neuroimage. Author manuscript; available in PMC 2022 May 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



each individual, that could affect TMS propagation regardless of the stimulated 

region/network;

For each subject, the structural connectivity metrics were accordingly extracted following 

this model and then used to predict TMS-EEG response. Specifically, the number of 

streamlines within each level was correlated with the average source-level induced activity 

in the target network (see DWI analysis section for more details on streamlines calculation). 

A multiple regression analysis was implemented to identify which level of the hierarchical 

model better explain the TMS-EEG response. For a summary of the study design, analytical 

framework and structural hierarchy please see Fig. 1. For details on the specific methods see 

dedicated sections below.

2.3. MRI data acquisition

A T1w anatomical MRI scan was obtained in all participants and used for neuronavigation. 

MRI data was acquired on a 3T scanner (GE Health-care, Ltd., United Kingdom) using a 3D 

spoiled gradient echo sequence: 166 axial-oriented slices for whole-brain coverage; 240-mm 

isotropic field-of-view; 0.937-mm × 0.937-mm × 1-mm native resolution; flip angle = 15°; 

TE/TR ≥ 2.9/6.9 ms; duration ≥ 432 s. DWI sequence were also acquired using a single-shot 

echo planar imaging (slices = 71; matrix size = 256 × 256 × 71; voxel size = 0.8 mm × 0.8 

× 2.2; repetition time = 8500 ms, time echo = 79 ms; 30 non-colinear directions, b-value = 

1000s/mm 2 ).

2.4. DWI data preprocessing and analysis

A customize pipeline running in Ubuntu 18.04 LTS was used for the preprocessing of 

DWI images using tools in FMRIB Software Library (FSL 5.0.3; www.fmrib.ox.ac.uk/fsl ) 

( Jenkinson et al., 2012 ), MRtrix3 ( mrtrix.readthedocs.io/en/latest/ ) ( Tournier et al., 

2012 ), FreeSurfer ( Fischl et al., 2004 ) and ANTs ( stnava.github.io/ANTs/ ) ( Avants et 

al., 2011 ). All images were denoised ( Veraart et al., 2016 ), preprocessed via FSL’s EDDY 

( Andersson and Sotiropoulos, 2016 ), and bias field corrected ( Zhang et al., 2001 ). The 

response function for a single fiber population was estimated using spherical deconvolution 

Tournier algorithm ( Tournier et al., 2007 ).

Simultaneously, the T1w images were coregistered to the b0 volume and then segmented 

using FAST algorithm ( Zhang et al., 2001 ). Following the anatomically constrained 

tractography was employed to generate the initial tractogram with 50 million streamlines 

using second-order integration over fiber orientation distributions ( Tournier et al., 2010 ). 

Then, spherical-deconvolution Informed Filtering of Tractograms (SIFT2) methodology 

( Smith et al., 2015 ) was applied in order to provide more biologically accurate measures of 

fiber connectivity. The Schaefer’s atlas ( Schaefer et al., 2018 ) which divided the brain into 

100 regions and 7 Networks was then mapped to the individual’s FreeSurfer parcellation and 

then used to construct the final structural connectome calculating the number of estimated 

tracts between any two brain regions. The final connectivity matrices were then normalized 

based on the size of each ROIs ( Bonilha et al., 2015 ). For further details on grand mean 

average structural connectome please see Supplementary Results and Figure S5.
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2.5. TMS

TMS was delivered using a figure-of-eight shaped coil with dynamic fluid cooling (Magspro 

75 mm cool B-65, Magpro A/S., Denmark) attached to a MagPro X-100 stimulator 

(MagVenture A/S, Denmark). Individual high-resolution T1w images were imported into 

the Brainsight ™ TMS Frameless Navigation system (Rogue Research Inc., Montreal, 

Canada), and co-registered to digitized anatomical landmarks for online monitoring of coil 

positioning. Motor evoked potentials (MEPs) were recorded from the right first dorsal 

interosseous (FDI) and the abductor pollicis brevis (APB) muscles. Ag-AgCl surface 

electrode-pairs placed on the belly and tendon of the muscles and a ground on the right 

ulnar styloid process. EMG data were amplified and digitized using a Power-lab 4/25T data 

acquisition system (ADInstruments) at a sampling rate of 4000 Hz (bandpass filtered at 

10 Hz to 2000 Hz). EMG signals were continuously streamed by using LabChart software 

(LabChart 8.0) to monitor MEPs and epochs were recorded with a 150 ms window length 

covering from 50 ms before to 100 ms after TMS pulse.

2.6. EEG

Whole scalp 64-channel EEG data was collected with a TMS-compatible amplifier system 

(actiCHamp system, Brain Products GmbH, Munich, Germany) and labeled in accordance 

with the extended 10–20 international system. EEG data were online referenced to Fp1 

electrode. Electrode impedances were maintained below 5k Ω at a sampling rate of 1000 Hz. 

EEG signals were digitized using a BrainCHamp DC amplifier and linked to BrainVision 

Recorder software (version 1.21) for online monitoring. Digitized EEG electrode locations 

on the scalp are also co-registered to individual MRI scans using Brainsight ™ TMS 

Frameless Navigation system.

2.7. TMS targets

In order to identify individualized TMS targets, group-level resting-state functional networks 

maps were used, based on a 7 networks parcellation covering cortical and subcortical 

structures ( Yeo et al., 2011 ). The 7 networks correspond to visual (VIS), somatosensory 

(SM), limbic (LIM), dorsal attention (DAN), anterior salience (AS), default mode (DMN), 

and fronto-parietal (FPN) RSNs. Confidence maps for each RSN were used, representing 

the confidence of each vertex belonging to its assigned network across a sample of 1000 

healthy subjects (expressed as valued between −1 and 1), with larger values indicating 

higher confidence. By using group-level functional parcellations and confidence maps, we 

were able to target the most consistent and reliable regions within each network, therefore 

increasing the generalizability of TMS-EEG findings. We first projected the 7-network 

functional cortical atlas and the confidence maps onto subject’s cortical surface using the 

spherical registration implemented in Freesurfer software ( Fig. 1 A). The resulting maps 

were then resampled to native structural T1w MRIs. Voxels within each network were 

weighted by the confidence map and the voxels with the highest confidence in angular gyrus 

and superior parietal in the right hemisphere were chosen for DMN and DAN stimulations 

respectively.
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2.8. TMS-EEG data collection

TMS stimulation intensity was determined based on individual resting motor threshold 

(RMT), defying as the lowest stimulation intensity necessary to elicit an MEP of at least 

50 μV in 5 out of 10 trials ( Rossini et al., 2015 ). The hotspot of stimulation was 

therefore defined as based on the cortical hand region where MEPs were the largest and 

more consistent, as recorded in the first dorsal interosseous (FDI) ( Rothwell et al., 1999 ). 

Throughout the stimulation visit, participants wore earplugs to protect their hearing ( Rossi 

et al., 2009 ), and auditory white noise masking was used to minimize the impact of the 

TMS click ( ter Braack et al., 2015 ). A thin layer of foam was placed under the TMS coil 

to minimize somatosensory contamination of the TMS-evoked EEG potentials. A total of 

120 single TMS pulses were delivered to each stimulation target (DMN target site within the 

angular gyrus, DAN target site within the superior parietal lobule)at an intensity of 120% 

RMT with randomly jittered (3000–5000 ms) inter stimulus intervals over two repeated 

blocks each consisting of 60 trials ( Fig. 1 B). Each participant completed two identical 

experimental sessions 4 weeks apart.

2.9. EEG data processing

All EEG data pre-processing was performed offline using EEGLAB 14.1 ( Delorme and 

Makeig, 2004 ), and customized script running in Matlab R2017b (Math-Works Inc., USA). 

The two single blocks of 60 trials each were merged into a single block of 120 trials 

and then segmented into epochs of 1500 ms each (from −500 ms (pre-pulse) to 1000 ms 

(post-pulse)). An amplitude of the mean pre-pulse ( −500 ms to −100 ms) signal was used 

to perform baseline correction. Noisy channels were removed following visual inspection, 

with an average of 3 ± 2 channels removed out of 63. Early TMS pulse artefact was 

removed by performing zero-padding on a window of −2 ms to 14 ms. Noisy epochs were 

then rejected based on the voltage ( ≥ 100 μV), kurtosis ( ≥ 3), joint probability (single 

channel-based threshold ≥ 3.5sd) and visual inspection. The data were reduced into 60 

components via principal component analyses (PCA) to minimize overfitting and noise 

components. Then, a first round of fast independent component analysis (fICA) ( Hyvärinen 

and Oja, 1997 ), further aimed at removing remaining early TMS-evoked and EMG artefacts 

(1 ± 1 component was removed; range 0–3 out of 60). The EEG data were then interpolated 

for previously zero-padded time window around TMS pulse using linear interpolation, band 

pass filtered using a forward-backward 4th order Butterworth filter from 1 to 100 Hz, 

notch filtered between 57 and 63 Hz, and referenced to global average. Data were further 

reduced into 57 dimensions using a second PCA followed by a second round of fICA 

to remove any remaining artefact ( Rogasch et al., 2017 ) including eye movement/blink, 

muscle noise (EMG), single electrode noise, TMS evoked muscle, cardiac beats (EKG) and 

auditory evoked potentials (22 ± 6 components were removed; range 18–28 out of 57). A 

semi-automated artefact detection algorithm incorporated into the open source TMS-EEG 

Signal Analyzer (TESA v0.1.0-beta; https://nigelrogasch.github.io/TESA/ ) was used during 

both fICA ( Rogasch et al., 2017 ). Finally, the data were low pass filtered with a 4th order 

Butterworth filter at 50 Hz and previously removed channels were spherically interpolated. 

Two participants dropped out before performing the re-test visit and were not included in the 

data analysis and two others were excluded because of bad signal to noise ratio in the EEG. 
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For a schematic representation of the preprocessing steps please see Supplementary Figure 

S2.

2.10. EEG source reconstruction

All TMS evoked EEG source reconstruction was performed using Brainstorm ( Tadel et al., 

2019 ). First, digitized EEG channel locations and anatomical landmarks of each subject 

were extracted from Brainsight ™ (nasion ‘NAS’, left pre-auricular ‘LPA’, and right pre-

auricular ‘RPA’ points), and registered onto individual MRI scans in brainstorm. Next, the 

EEG epochs, from −500 ms to 1000 ms with respect to TMS pulse, for each TMS trial 

were uploaded and average epoch time series was generated for each subject. Forward model 

solution of neuro electric fields was performed using the open MEEG symmetric boundary 

element method ( Gramfort et al., 2010 ), all with default parameter settings ( Tadel et al., 

2019 ). Noise covariance was estimated from individual trials using the pre TMS (from −500 

ms to −100 ms) time window as baseline. The inverse model solution of the cortical sources 

was performed using dynamic statistical parametric mapping (dSPM) and by constraining 

source dipoles to the cortical surface. The resulting output of EEG source reconstruction was 

the current density time series for each cortical vertices.

2.11. Source-level metrics

In order to determinate the network engagement, the average current density timeseries were 

extracted (after flipping the sign of sources with opposite directions) from the all 7 RSNs 

maps projected on surface space for each individual both for DMN and DAN stimulation 

( Fig. 1 D). The final timeseries were normalized (z-score) and rectified ( Cheng et al., 

2013 ). Then, to assess the threshold for significance of timeseries, a bootstrap method ( Lv 

et al., 2007 ) which does not assume normal distribution of the observations, was applied 

by shuffling the time samples of pre TMS activity (from −500 ms to 0 ms). Specifically, 

500 surrogated pre-stimulus timeseries were computed to obtain a maximum distribution 

(control for type I error) and significance level was set at p < 0.01. Finally, both a time-wise 

permutation testing and a cluster-based thresholding ( Pernet et al., 2015 ) as a correction 

for multiple comparisons were performed. Specifically, the permutation test transformed 

the difference between the TMS condition (from 0 ms to 500 ms) and the baseline (from 

−500 ms to 0 ms) into a z value with respect to a null distribution of surrogate conditions 

difference values, obtained by swapping condition labels at each of 1000 permutations. 

The resulting z-scores were thresholded at p < 0.05. With an additional 1000 iterations 

permutation test, a distribution of cluster sizes of contiguous significant time points under 

the null hypothesis of no condition difference was computed, and only clusters that exceeded 

the 95th percentile of this distribution were retained. Finally, the AUC was extracted from 

the significant clusters ( Fig. 1 D).

It is important to mention that for the EEG timeseries it was not possible to create a 

five-levels hierarchical model equivalent to the DWI metrics. Indeed, the current density 

extracted from the stimulated region does not reflect neither the Stim2Brain nor the 

Stim2Network level of the DWI framework. Specifically, both these metrics express the 

connectivity of the stimulated region with either the rest of the brain (Stim2Brain) or the 

network (Stim2Network) of interest. Such connectivity information is not addressed by 
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EEG-source current density extracted from the stimulated region which simply reflect the 

engagement of the such region following a TMS-pulse. Therefore, in this paper we focused 

on the amount of network engagement following an external perturbation of a single node.

2.12. Control analyses

To control for the specificity of the stimulated network, intrinsic connectivity measures were 

extracted for the other RSNs by considering the streamlines that connect each network’s 

node. We hypothesized that TMS-evoked network engagement was only predicted by the 

intrinsic connectivity of the stimulated network instead of the connectivity of the other 

RSNs. In addition, EEG source metrics were also computed for the non-stimulated RSNs 

and correlated with the modularity of the structural connectome. Moreover, similarly to a 

recent work published by our group ( Ozdemir et al., 2020 ), AUC of the cortical activations 

in the resting-state period (from −500 ms to −100 ms) preceding TMS were also extracted 

and correlated with DWI measures. We hypothesized that structural connectome profiles 

only predicted TMS-evoked activity instead of conventional resting-state EEG. Finally, to 

assure the specificity of the network engagement, electric field induced by TMS pulses 

was mathematically modelled ( Fig. 1 C) and overlapped with the individual the RSNs. For 

further details on method and results please see Supplementary Information and Fig. 2 B&C.

3. Results

3.1. Accuracy of TMS targeting, target engagement and reliability

A set of analyses were conducted to verify the goodness of our dataset before proceeding 

with the exploration of the hierarchical framework, including accuracy of targeting 

procedures, location of individual stimulation sites, amount of induced activity in each 

targeted network and reliability of such activity across sessions.

To verify the goodness of TMS targeting procedures across participants, a quantitative 

spatial overlap analysis (DICE coefficient) ( Dice, 1945 ) between E-field maps and 

stimulated networks was computed. Results suggest high targeting accuracy for both 

networks, with high overlap between the stimulated network and the E-field maps, both 

for DMN (top, 91.3%) and DAN (bottom, 86.9%) ( Fig. 2 B&C). For details on biophysical 

modeling please see Methods section and Supplementary Materials.

The percentage of network engagement as measured via EEG source analysis for each 

network was also calculated, indexing the amount of activity generated in the target 

network as compared to the rest of the brain/other RSNs. Importantly, this metric includes 

permutation testing and cluster correction ( Pernet et al., 2015 ) and partially differs 

from what was previously published by our group ( Ozdemir et al., 2020 ), where only 

the stimulated network sources were extracted without taking into account other RNSs. 

Stimulation of the DMN resulted in greater activity of the DMN network (30.60%) 

compared all other RSNs (DAN = 10.29%, VIS = 11.01%, SM = 12.83%, AS = 12.34%, 

LIM = 11.40%, FPN = 11.50%). Conversely, stimulation of DAN node engaged selectively 

the DAN network (32.08%) more than all other RSNs (DMN = 14.14%, VIS = 12.16%, SM 

= 12.52%, AS = 8.95%, LIM = 9.45%, FPN = 10.67%) (see Fig. 2 D).
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To test the reproducibility of TMS evoked cortical activation dynamics, TMS-evoked 

potentials (TEPs) time series were computed for each EEG channel across both stimulation 

conditions and visits. AUC extracted from significant clusters were highly reproducible 

( Fig. 2 E) within each participant and across visits (DMN stimulation: Visit 1 AUC M = 

242, SD = 67.93 - Visit 2 AUC M = 233.66, SD = 56.96; DAN stimulation: Visit 1 AUC M 
= 213.45, SD = 61.51 - Visit 2 AUC M = 206.46, SD = 49.62). For further details on test 

re-test reliability of TEPs please refer to Supplementary Results.

3.2. Hierarchical framework and TMS-evoked network engagement

Considering our hierarchical model, a significant positive correlation was found between 

the structural connectivity of the stimulated network (see level c of the hierarchical model 

in Methods/ Fig. 1 ) and the TMS-EEG response ( Fig. 3 A) for both DMN (R 2 = 23%, 

p < 0.02) and DAN (R 2 = 32%, p < 0.006). Results were highly replicable at the retest 

visit (DMN: R 2 = 23%, p < 0.02, DAN: R 2 = 25%, p < 0.01). Moreover, brain structural 

modularity (Q, level d of the hierarchical model; M = 0.65, SD = 0.2) was also significantly 

related to the TMS-EEG response ( Fig. 3 B). Specifically, a positive correlation was 

found between modularity and the magnitude of the evoked response within the stimulated 

network for both DAN and DMN stimulation, and this correlation was reproducible across 

the two TMS visits (DMN Visit 1: R2 = 18%, p = 0.04; Visit 2: R2 = 27%, p = 0.01; DAN 

Visit 1: R2 = 21%, p = 0.03; Visit 2: R2 = 23%, p = 0.02). Interestingly, correlation between 

modularity and evoked TMS-EEG activity was present only for the stimulated network; 

there was no significant correlation between modularity and evoked activity within the DAN 

when the DMN was stimulated (Visit 1: R2 = 0.002%, p = 0.83; Visit 2: R2 = 0.005%, 

p = 0.73), and between modularity and evoked activity in the DMN when the DAN was 

stimulated (Visit 1: R2 = 0.02%, p = 0.45; Visit 2: R2 = 0.01%, p = 0.60). For further details 

on the correlation between brain modularity and other RSNs please see Supplementary 

Results and Figure S3.

Conversely, no significant correlation was reported between the TMS-EEG response and 

Brain (Visit 1: DMN: R2 = 0.009%, p < 0.65; DAN: R2 = 0.08%, p < 0.18; Visit 2: DMN: 

R2 = 0.005%, p < 0.73; DAN: R2 = 0.11%, p < 0.14), Stim2Network (Visit 1: DMN: R2 = 

0.001%, p < 0.85; DAN: R2 = 0.01%, p < 0.49; Visit 2: DMN: R2 = 0.08%, p < 0.21; DAN: 

R2 = 0.04%, p < 0.26) or Stim2Brain (Visit 1: DMN: R2 = 0.03%, p < 0.39; DAN: R2 = 

0.008%, p < 0.69; Visit 2: DMN: R2 = 0.03%, p < 0.38; DAN: R2 = 0.0001%, p < 0.99) 

connectivity ( Fig. 4 A).

3.3. TMS-evoked network engagement in non-targeted RSNs

Connectivity metrics were also extracted for other RSNs as a control analysis. Considering 

TMS-EEG response following DMN stimulation ( Fig. 4 B, left panel; Figure S4), no 

significant correlations were found with the structural connectivity of DAN (Visit 1: R 2 = 

0.001%, p = 0.85; Visit 2: R 2 = 0.07%, p = 0.21), VIS (Visit 1: R 2 = 0.004%, p = 0.75; 

Visit 2: R 2 = 0.00001%, p = 0.98), SM (Visit 1: R 2 = 0.08%, p = 0.19; Visit 2: R 2 = 0.11%, 

p = 0.09), AS (Visit 1: R 2 = 0.005%, p = 0.74; Visit 2: R 2 = 0.11%, p = 0.09), LIM (Visit 1: 

R 2 = 0.02%, p = 0.48; Visit 2: R 2 = 0.07%, p = 0.21) and FPN (Visit 1: R 2 = 0.006%, p = 

0.72; Visit 2: R 2 = 0.02%, p = 0.44).
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As for TMS-EEG response following DAN stimulation ( Fig. 4 B, right panel, Figure S4), 

no significant correlations were found with the structural connectivity of DMN (Visit 1: R 2 

= 0.06%, p = 0.25; Visit 2: R 2 = 0.03%, p = 0.37), VIS (Visit 1: R 2 =0.04%, p = 0.34; Visit 

2: R 2 = 0.05%, p = 0.28), SM (Visit 1: R 2 = 0.01%, p = 0.58; Visit 2: R 2 = 0.16%, p = 

0.07), AS (Visit 1: R 2 = 0.04%, p = 0.32; Visit 2: R 2 = 0.08%, p = 0.19), LIM (Visit 1: R 
2 = 0.02%, p = 0.45; Visit 2: R 2 = 0.02%, p = 0.51), FPN (Visit 1: R 2 = 0.006%, p = 0.72; 

Visit 2: R 2 = 0.03%, p = 0.37).

3.4. Relationship between structural connectivity and resting-state EEG

In order to demonstrate that the aforementioned results were not a function of resting-state 

brain oscillations, but due to specific activity elicited by TMS instead, source-level activity 

was computed (i.e. AUC) for both networks using baseline resting-state EEG data, and 

further correlated with the structural connectivity of the stimulated network and modularity. 

As shown in Fig. 5 A, no significant correlation was found between the baseline resting-state 

EEG data and the structural connectivity of the stimulated network for both DMN (left 

panel: visit 1: R2 = 0.002%, p = 0.83; visit 2: R2 = 0.01%, p = 0.54) and DAN (right panel: 

visit 1: R2 = 0.09%, p = 0.16; visit 2: R2 = 0.01%, p = 0.64).

As shown in Fig. 5 B, no significant correlation was found between baseline resting-state 

EEG data and the structural modularity for both DMN (left panel: visit 1: R2 = 0.005%, p = 

0.74; visit 2: R2 = 0.0003%, p = 0.91) and DAN (right panel: visit 1: R2 = 0.002%, p = 0.82; 

visit 2: R 2 = 0.03%, p = 0.39).

4. Discussion

A recent study by our group has used a network-perturbation approach to characterize 

individual brain dynamics within discrete brain networks with high temporal resolution 

( Ozdemir et al., 2020 ), showing how source reconstruction of individual TEPs was highly 

reliable and propagated within the stimulated network. Here, we further expanded this 

concept showing how the structural modularity of the whole-brain and the connectivity 

of the stimulated network explain individual variability in propagation of TMS pulses. 

Results were replicable across two separated visits and selective for the stimulated network, 

supporting the relevance of macroscale structural connectivity in predicting network-level 

response to perturbation. Finally, brain structural wiring also seems more related to 

propagation of activity after perturbation rather than spontaneous resting-state activity, 

suggesting perturbation-based approaches as a valuable tool to investigate structure/function 

relationship in the human brain.

Contrary to our original hypothesis, the structural connectivity of the stimulated network 

revealed to be more relevant in predicting TMS-evoked activity than the connectivity of 

either the stimulated region or the whole brain. Instead, we found that signal propagation 

induced by single-region stimulation was highly related to the structural connectivity 

throughout the stimulated network, showing how the amount of fibers within the perturbed 

network might play a role in the propagation of action potentials. The idea that the 

underlying anatomical architecture of the cerebral cortex shapes brain functioning on 

multiple time scales has been already amply demonstrated by combining DWI and rs-fMRI 
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techniques ( Honey et al., 2009, 2007 ). Recent studies have also evaluated the relationship 

between functional and structural connectivity using source estimated resting-state EEG 

recording and probabilistic tractography ( Chu et al., 2015 ). Moreover, a study reported a 

temporary decrease in the whole-brain correlation between source EEG activity and DWI 

connectivity measures after TMS in the α, β, and γ frequency bands ( Amico et al., 

2017 ). In this context, our result represents the first set of empirical evidence that the 

efficacy of TMS, as a tool to induce network changes, is dependent upon the white matter 

connectivity of the same network, therefore offering crucial insight for the selection of 

optimal stimulation targets for maximal target engagement (e.g. stimulate networks with 

higher intrinsic connectivity over highly connected regions) as well as to predict response to 

TMS in clinical populations.

Our results also stress the importance of brain modularity for the prediction of individual 

propagation trajectories after TMS. Researches from various fields, such as physics or 

computational biology, have shown how modular network organization is associated with 

several leverages, including greater robustness ( Kirschner and Gerhart, 1998 ), the 

minimization of wiring costs ( Clune et al., 2013 ) as well as resilience to damage ( Wig, 

2017 ). In the context of brain functioning, previous studies have shown how modular 

organization of brain networks accounts for better cognitive functions, such as working 

memory ( Stevens et al., 2012 ) and general intelligence ( Hilger et al., 2017 ). It has 

been suggested that information processing within segregated networks sub-serves specific 

cognitive functions, while the exchange of information between modules is assumed to 

be responsible for the coordination and integration of cognitive processes ( Gratton et al., 

2012 ). The fact that we observe a relationship between network engagement induced by an 

external perturbation and the amount of brain modularity is in line with the aforementioned 

studies stating that a more segregated system might support more organized network-level 

information flow ( Baum et al., 2017 ). Interestingly, such relationship was not present 

for the non-stimulated network, suggesting how network engagement following an external 

perturbation may constitute a valuable biomarker of network dynamics.

Among the five hierarchical levels, non-significant correlations between TMS-evoked 

network activity and the connectivity of stimulated region with the rest of the brain (level 

a) is less expected than the negative result for connectivity of the entire brain (level e). 

One would assume that the specific region directly targeted by TMS always carries more 

information than either the whole network or the entire brain, instead our data suggest 

network structural connectivity as the best predictor. This finding highlights the need for 

investigation of whole-network dynamics, rather than local ones, when trying to unveil TMS 

propagation patterns. Related to this, a previous study showed that the size of TEPs response 

was related to local property of the stimulated tract (i.e., fractional anisotropy), but it did not 

control for the same measure at the network or at the whole brain level ( Kearney-Ramos 

et al., 2018 ). Contextually, recent evidences demonstrated that, in order to control a given 

brain network, a single node modulation is insufficient and a multi-node controllability 

model is needed instead ( Tu et al., 2018 ), which might partially explain why the stimulated 

region connectivity by itself is not able to predict network-level response.
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Furthermore, our control analysis revealed that network structural connectivity and overall 

modularity were not related to resting-state EEG data, suggesting that the characteristics 

of network engagement following perturbation may significantly index the integrity 

of structural networks (outperforming spontaneous brain activity). So far, the majority 

of studies have focused on correlating individual measures with data acquired during 

unconstrained spontaneous activity showing how resting-state correlation patterns between 

various networks can be used to predict individual variability in several cognitive functions 

( Finn et al., 2015 ), personality traits ( Adelstein et al., 2011 ) and behavior ( Fox et 

al., 2007 ). Nevertheless, recent evidences reported that the association between cognitive 

abilities and individual connectivity patterns could be better highlighted by task-based 

neuroimaging ( Finn et al., 2017; Greene et al., 2018 ). In this framework, a recent study 

published by our group ( Ozdemir et al., 2020 ) reported a significant positive correlations 

between TMS-evoked network engagement and high-order cognitive abilities (i.e. abstract 

reasoning, IQ) which was not observed when considering resting-state EEG. Present results 

demonstrate that brain structural wiring is more related to the propagation of activity after 

network perturbation than to spontaneous activity, implying perturbation-based approaches 

as a promising tool to investigate structure/function relationship in the human brain. Future 

studies should systematically compare intrinsic network structural connectivity with resting-

state, task-based and perturbation-based activity data.

Finally, recent evidences have reported that patients with neurological and psychiatric 

diseases might have reduced structural network configuration compared to healthy subjects 

( Alexander-Bloch et al., 2010 ). The modulation of rs-fMRI networks has become a relevant 

topic especially in clinical settings, but requires extreme precision because of individual 

differences in fMRI patterns ( Fox et al., 2012 ). In order to modulate pathological network 

interactions, the majority of TMS studies have used intrinsic fMRI connectivity to identify 

TMS targets ( Eldaief et al., 2011 ). We propose that structural connectivity might be a 

suitable way to better engage network dynamics, as the future clinical utility of TMS is 

dependent on considering structural architectures as a tool for patient-specific dosing.

In regard of the limitations of the study, a possible caveat is represented by the unfeasibility 

of applying the ad-hoc hierarchical framework used for structural connectivity to TMS-EEG 

data. In fact, only intrinsic network dynamics were extracted from source EEG data (i.e. 

average current density in a given network mask), and even if it would be possible to 

extrapolate the current density just from the stimulated region this local metric would 

be partially different from its “equivalent ” structural connectivity layers (i.e. layer a and 

b), representing connection from the stimulated region and not just activity or fibers 

related to the stimulated area. Moreover, source reconstructed TMS-EEG metrics might 

be contaminated by peripherally evoked artifacts, such as somatosensory and auditory 

potentials ( Conde et al., 2019 ), therefore challenging reliability. However, our control 

analysis reported no significant correlation between TMS-EEG measures and the intrinsic 

connectivity of the others RSNs, especially those that might be related with artifactual 

activity/propagation (e.g., somatosensory network related to muscular artifacts), suggesting 

our findings reflect transcranial evoked cortical activity alone.
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In conclusion, intrinsic network structural connectivity provides valuable information 

to estimate network engagement following controlled, functional networks perturbation. 

Moreover, brain structural wiring is more related to propagation of activity after perturbation 

than spontaneous activity, implying perturbation-based approaches as a valuable tool to 

investigate structure/function relationship in the healthy and pathological brain.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Study design and conceptual framework. (A) TMS targets were individualized based on 

resting-state fMRI data. A high degree of variability in functional connectivity of the TMS 

targets was present. (B) fMRI-guided TMS was applied to two neighboring parietal nodes 

corresponding to the DMN and DAN. Anatomical MRI were used for the neuronavigation 

of the TMS spots while hd-EEG with 64 channels was simultaneously recorded. (C) TMS-

induced electric field was modelled with SimNIBS (Thielscher et al., 2015). The final 

map was overlapped with the 7 Network parcellation (Schaefer et al., 2018) in order to 

assure network engagement specificity. (D) The EEG signal was projected at source level 

using dynamic statistical parametric mapping (dSPM) and constraining source dipoles to 

the cortical surface. The RSNs time series were extracted for both DMN and DAN. The 

raw time series were first rectified (Cheng et al., 2013 ) and then a baseline bootstrapping 

procedure (Lv et al., 2007 ) was applied. Then, 1000 permutation t -test were performed in 

which the surrogated post-TMS vs pre-TMS difference was computed after each iteration 

and statistically compared with the real difference ( Pernet et al., 2015 ). Finally, the cluster 

threshold was determined as the 95th percentile of the cluster’s surrogate distribution and 

the area under the curve (AUC) of the significant clusters was extracted. (E) The individual 

whole brain structural connectome was computed. A five-layers hierarchical model was 

created where several connectivity metrics were extracted, ranging from local to whole-brain 

measures. Note: V/m: Volt per meter; DAN: Dorsal attention network; DMN: Default mode 
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network. (For interpretation of the references to color in this figure legend, the reader is 

referred to the web version of this article.)
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Fig. 2. 
Specificity of network engagement and reproducibility of TMS-EEG measures. (A) 

Individualized DMN and DAN targets mapped to MNI space are provided to show 

variability of TMS sites across individuals. (B) Average TMS-induced electric field as 

modelled with simNIBS ( Thielscher et al., 2015 ). The normalized electric field (Efield) 

distribution was thresholded considering only the 83% of the maximal E-field. For each 

site/session, the thresholded cluster was overlapped with the RSNs parcellation by Yeo et al. 

(2011) ( Schaefer et al., 2018 ) in order to quantify network engagement. (C) Quantitative 

spatial overlap analysis ( Dice, 1945 ) between thesholded E-field maps and stimulated 

networks. High overlap was found between the stimulated network and the E-field maps 

both for DMN (top, 91.3%) and DAN (bottom, 86.9%). (D) The percentage of network 

engagement as measured via EEG source analysis for each network is shown, demonstrating 

high propagation specificity after TMS of DMN and DAN. (E) Test-retest reliability of 

source-level network engagement showing high reproducibility across visits for both DMN 

(top, red lines) and DAN (bottom, green lines). (F) Subject’s topographical maps for visit 1 

(top, magenta) and visit 2 (bottom, cyan) show the reproducibility of TMS-evoked measures. 

(G) Evoked activity map (left) and EEG time series for electrodes F6, C6 and P6 (right) for 

visit 1 (magenta line) and visit 2 (cyan line). Note: V/m: Volt per meter; AUC: Area under 

the curve; DAN: Dorsal attention network, SM: Sensorimotor network; VIS: Visual network; 

Momi et al. Page 21

Neuroimage. Author manuscript; available in PMC 2022 May 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



DMN: Default mode network; FPN: Fronto-parietal network; LIM: Limbic network; AS: 

Anterior salience network. (For interpretation of the references to color in this figure legend, 

the reader is referred to the web version of this article.)
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Fig 3. 
structural connectivity predictors of TMS-EEG propagation. (A) At visit 1 (left panel) 

a significant positive correlation was found between the structural connectivity of the 

stimulated network and the TMS-EEG response for both DMN (R 2 = 23%, p = 0.02) 

and DAN (R 2 = 32%, p = 0.006). The same pattern was observed at visit 2 (right panel) 

for both DMN (R 2 = 23%, p = 0.02) and DAN (R 2 = 25%, p = 0.01). (B) With DMN 

stimulation (top), a significant positive correlation was found between brain modularity and 

DMN response (red dots) for both visit 1 (R 2 = 18%, p = 0.04) and visit 2 (R 2 = 27%, 

p = 0.01), while no significant correlation was found for DAN (green dots) for both visit 

1 (R 2 = 0.002%, p = 0.83) and visit 2 (R 2 = 0.005%, p = 0.73). With DAN stimulation 

(bottom), a significant positive correlation was found between the brain modularity and the 

DAN response (green dots) for both visit 1 (R 2 = 21%, p = 0.03) and visit 2 (R 2 = 23%, 

p < 0.02), while no significant correlation was found for DMN (red dots) for both visit 1 

(R 2 = 0.02%, p = 0.45) and visit 2 (R 2 = 0.01%, p = 0.60). Note: AUC: Area under the 

curve; DAN: Dorsal attention network; DMN: Default mode network. (For interpretation of 

the references to color in this figure legend, the reader is referred to the web version of this 

article.)
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Fig 4. 
Control analyses. (A) No significant correlation was found between the TMS-EEG response 

and Bra in (Visit 1: DMN: R2 = 0.009%, p < 0.65; DAN: R2 = 0.08%, p < 0.18; Visit 2: 

DMN: R2 = 0.005%, p < 0.73; DAN: R2 = 0.11%, p < 0.14), Stim2Network (Visit 1: DMN: 

R2 = 0.001%, p < 0.85; DAN: R2 = 0.01%, p < 0.49; Visit 2: DMN: R2 = 0.08%, p < 0.21; 

DAN: R2 = 0.04%, p < 0.26) or Stim2Brain (Visit 1: DMN: R2 = 0.03%, p < 0.39; DAN: 

R2 = 0.008%, p < 0.69; Visit 2: DMN: R2 = 0.03%, p < 0.38; DAN: R2 = 0.0001%, p < 
0.99) connectivity. (B) FPN (top) and VIS (bottom) intrinsic connectivity do not correlate 

with visit 1 and visit 2 of TMS-EEG response both for DMN (left panel: visit 1 FPN: R2 = 

0.006%, p = 0.72; VIS: R2 = 0.004%, p = 0.75; visit 2: FPN: R2 = 0.02%, p = 0.44; VIS: R 
2 = 0.00001%, p = 0.98) and DAN (right panel: visit 1: FPN: R2 = 0.06%, p = 0.25; VIS: R2 

= 0.04%, p = 0.34; visit 2: FPN: R2 = 0.03%, p = 0.37; VIS: R2 = 0.05%, p = 0.28). Note: 

AUC: Area under the curve; DAN: Dorsal attention network; DMN: Default mode network.
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Fig. 5. 
Spontaneous vs Evoked EEG activity. (A) While TMS-evoked activity display correlations 

with network-level structural connectivity (red, green), resting-state EEG is not correlated 

with structural connectivity of the stimulated network, for both DMN (left panel: visit 1: R2 

= 0.002%, p = 0.83; visit 2: R2 = 0.01%, p = 0.54) and DAN (right panel: visit 1: R2 = 

0.09%, p = 0.16; visit 2: R2 = 0.01%, p = 0.64). (B) TMS-evoked activity was correlated 

with brain structural modularity (red, green) whereas no relationship was found considering 

resting-state EEG baseline for both DMN (left panel: visit 1: R2 = 0.005%, p = 0.74; visit 2: 

R2 = 0.0003%, p = 0.91) and DAN (right panel: visit 1: R2 = 0.002%, p = 0.82; visit 2: R2 = 

0.03%, p = 0.39). Note: AUC: Area under the curve; DAN: Dorsal attention network; DMN: 

Default mode network. (For interpretation of the references to color in this figure legend, the 

reader is referred to the web version of this article.)
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