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A B S T R A C T   

Breast cancer (BC) is the most common malignancy, and the largest cause of cancer death among 
women. The interactions between tumor cells and tumor micro environmental factors have a 
major impact on tumor progression. One of the critical pro-inflammatory cytokines present in 
breast cancer tumor microenvironment is TNF-α. The aim of this study was to evaluate the long- 
term effect of TNF-α (1 week) along with p38 or TAK1 inhibitors as well as metformin on in-
duction of cellular death, cancer stem cell and expression of metastatic marker CXCR4. MCF-7 
and MDA-MB-231 cells were treated with TNF-α for one week and then were treated with 
combination of Takinib, SB203580 or Metformin; after all treatments were done, cell prolifera-
tion, cellular death, surface expression of CXCR4, CD44 and CD24 were determined. The results 
showed that treatment with TNF-α alone or in combination with Takinib, SB203580 and met-
formin elevated induction of cellular death in both cell lines compared to the control group. TNF- 
α also increased CXCR4 expression in MCF-7 cells, but it reduced its expression in the MDA-MB- 
231 cells. Also, breast cancer stem cells (BCSCs) population decreased in MDA-MB-231 cells 
treated with TNF-α alone or in combination with SB203580 and metformin. Although, in MCF-7 
cells only combination of TNF-α and Takinib reduced BCSCs population in a time dependent 
manner. Altogether, we showed that TNF-α alone or in combination with other treatments can 
affect the progression of breast cancer.   

1. Introduction 

Breast cancer is one of the main leading cause of death by cancer among women [1]. In 2020, breast cancer (BC) with over 2.3 
million new diagnoses, is the most commonly diagnosed malignancy among women worldwide, accounting for nearly 24.5 % of all 
new cancer cases [2]. BC includes several subtypes with different genetic, molecular and clinical differences that lead to different 
proliferation and metastatic potential [3]. Treatment and patient treatments outcomes depend on the underlying BC subtype [4]. 
Despite the current treatment for breast cancer such as radiotherapy, surgery and chemotherapy, the rate of resistance to treatment and 
recurrence of the disease is still high [5]. Cancer is caused by a broad variety of genetic and epigenetic alterations that confer unique 
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characteristics of cancer cells that enable them to display autonomous proliferation, invasiveness, cell-dead resistance, replicative 
immortality, immunity system escape, and metastatic potential [6]. In addition, the interactions between tumor cells with stromal 
components of the tumor microenvironment (TME) have a major impact on tumor progression and tumor fate [7]. Various mediators 
like inflammatory cytokines,which are common in TME, can govern tumor cell metastasis or cancer progression [8]. One of the critical 
pro-inflammatory cytokines present in the TME of breast cancer patients is TNF-α [9,10]. TNF-α is a double-edged sword for tumors, it 
causes tumor cells necrosis and apoptosis and strong immune responces, on the other hand it promotes tumor cells proliferation, 
survival, metastasis and invasion [11–14]. Nevertheless, the mechanism by which TNF-α promotes breast cancer stem cells (BCSCs) 
has not been fully elucidated. TNF-α also can activate TAK-1 [15]. TAK-1 is a serine/threonine kinase of mitogen-activated protein 
(MAP) kinase signaling cascade family [16]. TAK1 is an important mediator in inflammation/immune responses and cancer pro-
gression, by activating a list of downstream pathways, like P38 and AMP-activated kinase (AMPK) [17,18]. Interestingly AMPK 
activation inhibited CXCR4 upregulation, the chemotactic factor which induce tumor metastasis. Beside TAK1, metformin as an 
activator of AMPK seems to reduce tumor metastasis via CXCR4 inhibition. Thus, the aim of this study is to evaluate the chronic effect 
of TNF-α along with p38 and TAK1 inhibitors as well as metformin in inducing cell death, cancer stem cell count and expression of 
metastatic marker CXCR4. 

2. Methods 

2.1. Agents and antibodies 

Soluble TNF-α was acquired from eBioscience. TAK1inhibitor (Takinib) was bought from BioVision. 3 [4,5dimethylthiazol2yl]- 
2,5diphenyl tetrazolium bromide (MTT), p38 inhibitor (SB203580) and Metformin were purchased from Sigma-Aldrich. Takinib 
and SB203580 were dissolved in Dimethyl sulfoxide (DMSO). FITC Annexin V and PI apoptosis detection kit (556,547, BD Biosciences, 
USA) was purchased from BD Biosciences. FITC-conjugated anti-CD24 antibody (Clone M1/69), PE -conjugated anti-CD44 antibody, 
(Clone IM7) and PE-Cyanine5-conjugated anti-CD184 (CXCR4) antibody (Clone 12G5) were obtained from eBioscience. 

2.2. Cell culture 

The human breast cancer cell lines MCF-7 and MDA-MB-231 were purchased from Pasteur Institute of Iran. These cell lines were 
maintained in RPMI 1640 (Gibco BRL) media which supplemented with 10 % fetal bovine serum (Gibco BRL, Gaithersburg, MD, U.S.A) 
and 100 mg/ml streptomycin and 100 mg/ml penicillin and were cultured in incubator at 37 ◦C with humidified atmosphere con-
taining 5 % CO2. 

2.3. Measurement of cellular viability 

The cells were treated with TNF-α for one week. The cell culture medium were replaced in 3 days and TNF-α was added to each 
culture again. Then the cells were exposed to Takinib or SB203580 or Metformin for 24 or 48h separately. Cell viability was Assay via 
MTT method. The results reflect 3 independent experiments on average. 

2.4. Quantification of apoptosis by annexin V labelling 

Apoptosis and necrosis quantity (as a cell death) have been measured using Annexin V-FITC/PI detection kit (BD bioscience) based 
on the manufacturer’s instructions. Briefly, the cells were suspended in the staining buffer and then stained with Annexin V-FITC/PI for 
the investigation of cellular death. Then, the cells were washed and investigated through a flow cytometer. Flowjo 10 software was 
used for analyzing data results. 

2.5. Flow cytometry 

To analyze the percentage of BCSC (CD44+ CD24− cells), FITC-conjugated anti-CD24, PE-Conjugated anti-CD44 and corresponding 
isotype control have been added to cell suspensions and incubated at 4 ◦C in darkness for 30 min. To evaluate the CXCR4 positive cells 
PE-Cy5-conjugated anti-CXCR4 and corresponding isotype control have been added to cell suspensions and incubated at 4 ◦C in 
darkness for 30 min. Afterward, the cells were washed and investigated through a flow cytometer. Flowjo 10 software was used for 
analyzing data results. 

2.6. Statistical analysis 

The displayed values are given as mean ± SD. The statistical analysis was done by one-way analysis of variance (ANOVA) with 
Tukey test using GraphPad Prism 8. In entire cases, * = P < 0.05, ** = P < 0.01, *** = P < 0.001, **** = P < 0.0001 were considered to 
be statistically significant. Each trial was repeated three times. 
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3. Results 

3.1. TNF-α induce cellular death in MDA-mb-231 and MCF-7 cell lines 

The preceding study showed that TNF-α, SB203580 and Metformin at a concentration of 5 ng/ml, 10 μM and 10 mM, respectively; 
have optimal effects on breast cancer lines (21–23). The concentration of Takinib that used in previous research that had an optimal 
effect on MCF-7 cell line was 10 μM (24) but this dose was lethal for MDA-MB-231 cells; so we evaluated the IC50 of Takinib for MDA- 
MB-231 cells using MTT method. The appropriate concentration of Takinib for MDA-MB-231 cell line was as follows: for 24 h 
treatment, 7 μM and for 48 h treatment 4 μM. 

The viability of cells that were treated with TNF-α alone or in combination with Takinib, SB203580 or Metformin were measured 
with the MTT test. As shown in Fig. 1, cell viability was not significantly changed after 24 h of treatment with a combination of TNF-α 

Fig. 1. Comparison of the cell viability (A) and cell death, apoptosis + necrosis, (B) in MDA-MB-231 and MCF-7 cells. Cell survival after treating 
with TNF-α for one week or its combination with SB203580 or Metformin or Takinib for 24 and 48 h. Example of the cell death quadrant in MCF-7 
and MDA-MB-231 cells (C). The data represent n = 3 (Mean ± SD). P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001. 
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and Takinib but decreased significantly after 48 h in MCF-7 and MDA-MB-231 cells (P < 0.01 and P < 0.0001, respectively) (Fig. 1A). 
Also, As shown in Fig. 1 cell viability was not significantly changed after 24 h of treatment with a combination of TNF-α and Met-
formin, but decreased significantly after 48 h in MDA-MB-231 cell line (P < 0.01) and it decreased in a time-depend manner in MCF-7 
cells (P < 0.0001) (Fig. 1A). Although, combination treatment of TNF-α and SB203580 in MDA-MB-231 cell increased cell viability in a 
time-depend manner (P < 0.01 and P < 0.0001, respectively) but in MCF-7 cells this combination decreased cell viability after 48 h of 
treatment (P < 0.001) (Fig. 1A). 

To study the effects of TNF-α on cellular death, the cells were treated with 5 ng/ml of cytokine for one week and then were exposed 
to Takinib, SB203580 or Metformin. TNF-α increased cellular death in both cell lines (P < 0.0001) (Fig. 1B). As shown in Fig. 1 cell 
death was significantly increased after in contrast to control group (Fig. 1B). Although, treatment with combination of TNF-α and 
Metformin increased cellular death higher than other combinatorial treatment. 

Fig. 2. Comparison of BCSCs (CD44+ CD24− markers) population in MCF-7 cells (A) and in MDA-MB-231 cells (B). BCSCs population after treating 
cells with TNF-α for one week or its combination with SB203580 or Metformin or Takinib for 24 and 48 h. Example of the BCSCs population in MCF- 
7 and MDA-MB-231 cells (C) & (D). The data represent n = 3 (Mean ± SD). P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001. 
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3.2. TNF-α effect on BCSCs 

As shown in Fig. 2 TNF-α single treatment didn’t changed BCSCs population in MCF-7 cells significantly (Fig. 2A), but it decreased 
BCSCs in the MDA-MB-231 cells (P < 0.0001) (Fig. 2B). Although, combination of TNF-α + Metformin induced a significant decrease in 
BCSC population in MCF-7 (Fig. 2A). Also, all single or combinatorial treatment of TNF-α induced a significant decrease in BCSC 
population in MDA-MB-231 cell line (Fig. 2B). 

3.3. TNF-α effect on CXCR4 expression 

TNF-α elevated CXCR4 expression on MCF-7 cells (P < 0.0001) (Fig. 3A) and decreased CXCR4 expression on MDA-MB-231 cells (P 

Fig. 3. CXCR4+ population after treating cells with TNF-α for one week or its combination with SB203580 or Metformin or Takinib for 24 and 48 h 
compared to control (untreated) cells. Percentage of CXCR4+ population in MCF-7 cells (A) and in MDA-MB-231 cells (B). Example of the CXCR4+
population in MCF-7 (C) and MDA-MB-231 cells (D). The data represent n = 3 (Mean ± SD). P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001. 
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< 0.0001) (Fig. 3B). While, combination of TNF-α + Takinib 48h treatment reduced CXCR4 expression on MCF-7 cells and make it’s 
elevation insignificant, but all other treatment increased CXCR4 expression on MCF-7 cells significantly, (Fig. 3-A). On the other hand, 
treatment with single TNF-α or its combination with SB203580 or Metformin or Takinib reduced CXCR4 expression on MDA-MB-231 
cells (Fig. 3B). 

4. Discussion 

Various kind of cytokines and other factors produced by tumor cells, stroma cells and tumor infiltrate immune cells; provide 
positive and negative feedback on tumor growth, progression, differentiation and metastasis [19]. One of the famous tumor envi-
ronment factor is TNF-α, the pro-inflammatory cytokine which has been reported elevated even in the blood of breast cancer patients 
[20,21]. TNFα, performs its function by activating NF-κB and some other transcription factors, which regulates survival, proliferation 
or apoptotic [21]. Previous study showed that, TNF-α single treatment for one week, elevated cell death compared to the control group. 
As well, Nicholas and colleagues observed that TNF-α reduces survival, cell cycle arrest and induces apoptosis in the MCF-7 cancer cells 
in a time-dependent manner [22]. Pileczki et al. Showed that TNF-α gene deletion was associated with inhibition of cell proliferation 
and cellular death in TNBC cells [23]. Our results show that one week exposure of the breast cancer cells with TNF-α induced cellular 
death and decrease BCSCs population and CXCR4 expression in MDA-MB-231 cells but increase CXCR4 positive cells in MCF-7 cells. 
Thus, based on the expression of CXCR4, it seems presence of TNF-α in the breast tumor environment reduce metastasis of TNBC 
(MDA-MB-231) and increase metastasis of MCF-7 cells. Although, combination of TNF- α and Takinib for 48 h reduce the BCSCs 
population and CXCR4 expression in MCF-7 cells. Thus, TAK-1 inhibitor, Takinib, is much efficient in MCF-7 cells rather than TNBC 
cells. Thus, induction or treatment with TNF-α in combination with Takinib can be a potential treatment for breast cancer. TNF-α 
signaling can activate Transforming growth factor-β-activated kinase-1 (TAK-1) [15]. TAK-1 is a serine/threonine kinase of MAP 
kinase family that can phosphorylate and activate regulate various cellular processes, like differentiation, proliferation, metastasis and 
apoptosis [24]. 

AMPK was originally identified as a cell energy sensor and plays a crucial role in homeostasis of cellular energy. Recent research has 
shown that AMPK does its functions with phosphorylation and regulation of several signaling molecules downstream in normal tissues. 
Decreased level of AMPK or downregulation of its activity engaged in promoting of breast tumorigenesis, hence the activation of AMPK 
found to have benefit effects on tumor prognosis [25]. Metformin (1,1-dimethylbiguanide hydrochloride), a famous AMPK activator is 
a common diabetic patients’ treatment. It has been shown that the risk of breast cancer has been decreased in diabetic patients who 
received metformin than those treated with other antidiabetic drugs [26,27]. We observed that metformin has an additive effect on 
TNF-α role in elevation of cellular death or reduction of BCSCs in both cell line but this combination therapy induces CXCR4 expression 
on MCF-7 cells. Takinib role in inhibition of CXCR4 expression may increase potential of this combination therapy in breast cancer and 
reduce the possible side effect like metastasis. 

Inhibition of p38 is a strategy for improvement of immune response and reversion of immune senescence [28]. Nevertheless, 
SB203580 a specific p38 inhibitor may potentiate immune response but our finding shows that p38 inhibitor can induce breast tumor 
progression. Although, inhibition of P38 via SB203580 may not be a good candidate for direct tumor cells therapy but it may increase 
immune responses to tumor cells which is needed further research to demonstrate its beneficial or adversary effects. In addition, the 
combination of TNF-α + SB203580 increase cellular death in MCF-7 cells but it also highly increased CXCR4+ population in MCF-7 
cells. 

CXCR4 is the most commonly expressed chemokine receptor on cancer cells; that has been uncovered, in over 23 types of human 
tumors such as kidney, lung, brain, breast and prostate cancers [29]. CXCR4 was the first chemokine receptor diverted through breast 
cancer cells to proliferate and metastasize to distant organs [30]. In line with the results of Hamaguchi et al. Who stated that TNF-α, by 
positively regulating CXCR4, causes metastasis and invasion of breast cancer cells [31]; our study have shown that TNF-α induce 
CXCR4 expression on MCF-7 cells. Though, as mentioned above, Takinib can antagonize its involvement in CXCR4 expression after 
48h. But in the MDA-MB-231 cells, combined treatments of TNF-α (TNF-α + Takinib, TNF-α + SB203580 and TNF-α + metformin) in 
the MDA-MB-231 subtype, similar to TNF-α single treatment, caused a decrease in CXCR4. Indeed, the combination of TNF-α + Takinib 
can be a candidate treatment that reduces resistant BCSCs population and resuces CXCR4 expression cells in both cell lines. 

Metformin has been reported to inhibit the EMT process, which leading to induce CSCs, and limiting CSCs self-renewal properties 
[32]. TAK-1 is NF-κB enhancer, and previous studies shown that inhibiting NF-κB may reduce EMT-related events, It is therefore 
confirm that inhibition of TAK-1 leads to the reduction of the EMT process [33,34]. In breast cancer BSCSs are the reasons for resistance 
to therapy or disease relapsing is the presence of BCSCs inside the cancerous tissue increase the capacity of self-renewal and differ-
entiation of tumor cells, and also may be responsible for initiation of the tumor. These cells are known to be highly resistant to 
chemotherapy and radiotherapy [35]. In our study, one week treatment of MCF-7 cells with TNF-α did not change the amount of cancer 
stem cells, but decreased the BCSCs in MDA-MB-231 cell. This findings were in contrast to previous studies that have shown that TNF-α 
causes BCSC phenotype in breast cancer and increases the self-renewal ability and invasion of BCSCs [36,37]. However, on of 
important difference between these studies was the duration of treatment, in previous studies the time of TNF-α exposure was different 
from our study, which could indicate a difference in the results. Although, many study survey the tumor environmental factor after a 
while, but we should consider that tumor is a chronic disease situation and it cells encountered to various kind of tumor environmental 
factor chronically. 

Thus, long term environment factors effect can reveal more logical and real data than short term treatment study. In our study, one 
week exposure of breast cancer cells with TNF-α showed the benefactor effect on elevation of cellular death, reduction of BCSCs 
population and CXCR4 expression (except MCF-7 cells). Takinib as a TAK-1 inhibitor showed the additive effect in combination with 
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TNF-α. It also suppresses expression of CXCR4 on MCF-7 cells induced by TNF-α. 

5. Conclusion 

Altogether, TAK-1 inhibitor (Takinib) is a potential product that can prevent breast cancer progression especially when TNF-α 
present in tumor micro environment. In addition, in both cell line Takinib in combination with TNF-α decreased CSCs population. 
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