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ChemDIS-Mixture: an online tool 
for analyzing potential interaction 
effects of chemical mixtures
Chun-Wei Tung   1,2,3,4, Chia-Chi Wang1,2,3, Shan-Shan Wang1 & Pinpin Lin3,4

The assessment of bioactivity and toxicity for mixtures remains a challenging work. Although several 
computational models have been developed to accelerate the evaluation of chemical-chemical 
interaction, a specific biological endpoint should be defined before applying the models that usually 
relies on clinical and experimental data. The development of computational methods is desirable for 
identifying potential biological endpoints of mixture interactions. To facilitate the identification of 
potential effects of mixture interactions, a novel online system named ChemDIS-Mixture is proposed to 
analyze the shared target proteins, and common enriched functions, pathways, and diseases affected 
by multiple chemicals. Venn diagram tools have been implemented for easy analysis and visualization 
of interaction targets and effects. Case studies have been provided to demonstrate the capability of 
ChemDIS-Mixture for identifying potential effects of mixture interactions in clinical studies. ChemDIS-
Mixture provides useful functions for the identification of potential effects of coexposure to multiple 
chemicals. ChemDIS-Mixture is freely accessible at http://cwtung.kmu.edu.tw/chemdis/mixture.

Human beings are constantly exposed to mixtures of multiple chemicals. Simultaneous exposure to multiple 
chemicals could lead to complicated results compared with the exposure to individual chemicals1. While many 
prediction methods have been developed for potential effects associated with a single chemical, little progress has 
been made toward the computational identification of potential interaction effects between multiple chemicals. 
The development of computational methods for identifying the most potential effects of coexposure to multiple 
chemicals from numerous biological endpoints is highly desirable.

In contrast to direct chemical-chemical interactions which could be predicted by using chemical struc-
ture information2, the identification of potential indirect chemical-chemical interactions which disturb com-
mon targets or pathways remains a challenge. Several methods are proposed to predict the outcome of indirect 
chemical-chemical interactions based on individual experimental results. For example, concentration addi-
tion and independent action models are respectively applied to mixtures with shared targets and independent 
mode-of-action3,4. Biomolecular interaction networks have also shown potential for prediction and analysis of 
synergistic effects of drug combinations5–10. However, the abovementioned methods are only applicable to chem-
icals with a known common endpoint. There is a strong unmet need for the early identification of potential end-
points including target genes, pathways, functions and diseases.

Chemogenomics-based systems such as ChemDIS11 and Comparative Toxicogenomics Database (CTD)12 
have been established to support the inference of affected functions, pathways and diseases associated with a 
single chemical using chemical-gene/protein interaction profiles. The development of computational tools for 
integrative analysis of chemogenomics data from multiple chemicals could be useful for identifying potential 
endpoints of coexposure to multiple chemicals.

Our present study presents a novel tool named ChemDIS-Mixture for the analysis of potential coexposure 
effects, based on our previous ChemDIS system that has been successfully applied to the disease inference for 
various studies13–15. The shared interacting gene targets and enriched functions, pathways and diseases will be 
automatically identified with a joint p-value for prioritizing the potential interaction effects of coexposure. In 
addition, the enriched analysis of functions, pathways and diseases for all interacting genes will be calculated 
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representing the overall effect of the coexposure. The analysis functions of ChemDIS-Mixture were demonstrated 
by two case studies.

Results
We have developed a novel tool ChemDIS-Mixture for the analysis of chemical-chemical interactions with 
associated interacting protein data. The utilization of STITCH database16, the largest chemical-protein inter-
action database integrating several databases such as ChEMBL17, CTD12 and DrugBank18, enables the analysis 
for more than 430,000 chemicals. Currently, only human chemical-protein interaction data are integrated into 
ChemDIS-Mixture. The user interface for ChemDIS-Mixture is shown in Fig. 1. Autocomplete function has been 
implemented to help the selection of chemicals with available chemical-protein interaction data. CAS numbers 
are also acceptable for querying chemicals. Currently, up to four chemicals can be simultaneously analyzed using 
ChemDIS-Mixture for the sake of intuition. We are working on an extended version dealing with more chemicals 
that will soon be available. Users can specify the score threshold for filtering interacting proteins based on its 
confidence. Three levels of scores for identifying low, medium and high confidence interacting proteins for sub-
sequent analysis have been defined according to STITCH database16. While STITCH database versions of 4 and 5 
can be specified, the latest version providing more comprehensive data is recommended. An illustrative flowchart 
is shown in Fig. 2. For each input chemical, its interacting proteins will be extracted and enrichment analysis will 
be conducted based on a hypergeometric test for identifying the enriched GO, pathway, DO and DOLite terms 
with an adjusted p-value < 0.05 using Benjamini-Hochberg multiple test correction19.

For each analyzed chemical, basic structure and property information including the chemical 2D structure, 
hydrogen-bond acceptor, hydrogen-bond donor, IUPAC name, InChI, InChIKey, molecular formula, molec-
ular weight, canonical SMILES, isomeric SMILES and topological polar surface area (TPSA) is available at 
ChemDIS-Mixture with hyperlinks to PubChem, 2D and 3D structures.

Figure 1.  The user interface of ChemDIS-Mixture. The plus icon is clickable for appending up to four chemicals 
for analysis. The score for filtering out low-confident chemical-protein interactions can be specified. The newest 
database version (default) is recommended.

Figure 2.  An illustrative flowchart of ChemDIS-Mixture for two chemicals.
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For the analysis of shared targets for potential interactions, ChemDIS-Mixture will extract chemical-protein 
interaction information and present the results as a summarized Venn diagram for easy visualization as shown in 
Fig. 3. The numbers in the Venn diagram are clickable for acquiring detailed information. For each protein, the 
Ensemble protein ID, gene symbol, Entrez gene ID, gene name and chemical-protein interaction score provided 
by STITCH database are browseable. Filter and sort functions have been implemented for each column.

ChemDIS-Mixture offers the analysis functionality of unique and overlapped GO, pathway, DO and DOLite 
terms among input chemicals. Given multiple chemicals, the enriched GO, pathway, DO and DOLite terms will 
be first calculated for each chemical based on its interacting proteins. Subsequently, the overlapped and unique 
terms will be calculated and plotted as a Venn diagram for easy visualization. In addition to the interaction effects, 
overall effects based on the union of interacting proteins will also be calculated for analyzing the overall effects of 
a given chemical set. All results are downloadable as an Excel file (Fig. 3).

Case study: interaction between antituberculosis and antiretroviral drugs.  Tuberculosis is one of 
the most important infections in HIV-infected patients. The drug-drug interaction of combining antituberculosis 
and antiretroviral therapy has been extensively studied with patient data20. Here, we validated the analysis results 
of ChemDIS-Mixture with the reported concurrent toxicity. Previous studies reported an increased incidence of 
peripheral neuropathy in patients prescribed isoniazid and stavudine concomitantly21,22. In ChemDIS-Mixture, 
the interaction of isoniazid and stavudine on peripheral neuropathy was identified from the overlapped DO term 
of peripheral nervous system disease.

Furthermore, the effects of combined use of rifampin and efavirenz compared with efavirenz alone could also 
be analyzed by using ChemDIS-Mixture. For example, the overlapped DO term of hepatitis (DOID:2237) has 
been identified for rifampin and efavirenz in this study whose incidence was significantly higher than efavirenz 
alone (p < 0.0001)21. However, the incidence of four other diseases including gastrointestinal disturbance, central 
nervous system disturbance, dermatitis, and peripheral nervous system disease was similar between the two stud-
ied groups21. ChemDIS-Mixture predicts that dermatitis and peripheral nervous system disease are not potential 
interaction effects of the combinatory therapy and the prediction is consistent with the previous study21. In con-
trast, two overlapped DO terms of gastrointestinal system disease (DOID:77) and central nervous system disease 
(DOID:331) were identified by ChemDIS-Mixture. Table 1 shows the adjusted p-values for each chemical and the 
joint p-value for the three identified disease terms. From the previous study, the definition of gastrointestinal and 
central nervous system disturbances is limited to easily observable symptoms such as vomiting and headache21. 
Our analysis suggests that there might be other interaction effects of rifampin and efavirenz on gastrointestinal 
and central nervous system.

A high rate of unexpected hepatotoxicity has been reported in healthy volunteers receiving rifampin and 
saquinavir/ritonavir23. Based on ChemDIS-Mixture hepatotoxicity-related diseases have been successfully iden-
tified for the combined use of rifampin and saquinavir/ritonavir. For the combination of rifampin and saquinavir, 
potential interaction effects on liver-related diseases identified by ChemDIS-Mixture are presented as 5 DO terms 
of hepatobiliary disease (DOID:3118), hepatitis (DOID:2237), hepatocellular carcinoma (DOID:684), intrahe-
patic cholestasis (DOID:1852), and hepatic vascular disease (DOID:272). In addition to the abovementioned 5 
DO terms, the DO term of hepatoblastoma (DOID:687) was also identified that could be a potential interaction 
effect of the combination of rifampin and ritonavir. Please note that the potential effects are inferred from the 

Figure 3.  Venn diagram for easy visualization of potential interactions. Except for the basic structure 
information, Venn diagram analysis is available for protein, GO, pathway, DO and DOLite terms. All numbers 
in the Venn diagram are clickable for detailed information of associated proteins and p-values. The analysis 
result is downloadable as an Excel file.
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analysis of chemical-protein-disease association and further experiments are required to verify the association. 
For each association, ChemDIS-Mixture provides target information that may serve as a useful information for 
generating testable hypotheses.

Case study: interaction among endocrine disruptors.  Dietary flavonoids have a variety of potential 
effects. However many of them are endocrine disruptors and have been reported to interfere with steroid synthe-
sis. As flavonoids are ubiquitously distributed in foods, human beings may expose to flavonoids mixture via diet. 
Thus it is important to assess effects of combined exposure to a variety of flavonoids on human health. Soy-based 
foods contain flavonoids, such as daidzein and genistein24. It has been reported that exposure of daidzein, genis-
tein and apigenin mixtures inhibited cortisol, aldosterone and testosterone secretion by human adrenocortical 
H295R cells in an additive manner, suggesting additive effects of these flavonoids on steroid hormone synthe-
sis25. In ChemDIS-Mixture, 40 shared proteins interacted with these three flavonoids were identified as shown 
in Fig. 3. Among the shared proteins, cytochrome P450 family 19 subfamily A member 1 (CYP19A1), estrogen 
receptor 1 and 2, and androgen receptor were identified as potential targets responsible for the interaction effect. 
As CYP19A1 catalyzes many reactions involved in steroidogenesis, these flavonoids could interact with CYP19A1 
to disturb steroidogenesis. In addition, the shared targets of estrogen and androgen receptors demonstrate sim-
ilar endocrine disruption properties of these flavonoids. Please note that flavonoids could have unspecific and 
low-affinity protein interactions, experiments are required to validate the role of potential targets identified from 
ChemDIS-Mixture.

Recently, the effects of soy-based foods on human health are controversial. Relief of menopausal symptoms 
and prevention of heart disease, osteoporosis and cancers are the main health benefits associated with soy foods 
consumption. On the other hand, intake of soy foods may increase the risk of breast cancer, male hormonal and 
fertility problems and hypothyroidism26. An analysis of daidzein and genistein, the most abundant isoflavones 
in soy foods, by ChemDIS-Mixture reveals that DO terms of breast cancer (DOID:1612), male breast cancer 
(DOID:1614), male reproductive system disease (DOID:48), endocrine system disease (DOID:28) and thyroid 
gland disease (DOID:50) are potential interaction effects of daidzein and genistein. In addition, heart disease 
(DOID:114) and osteoporosis (DOID:11476) as the beneficial functions of soy foods are also identified. Detailed 
results are shown in Table 2. Soy consuming populations have been observed to have lower hip fracture rate 
suggesting the intake of soy-derived isoflavonoid may be effective in maintaining bone health27. Several epidemi-
ologic and dietary intervention studies demonstrated the association between phytoestrogens and serum markers 
of bone turnover, such as bone specific alkaline phosphatase, osteocalcin, insulin-like growth factor I (IGFI), and 
interleukin 628–31. Two shared proteins of IGFI and tumor necrosis factor superfamily member 11 (commonly 
known as RANKL) associated with osteoporosis may play roles in the therapeutic effects of soy-derived isofla-
vones on osteoporosis.

Discussion
The huge complexity of the assessment of bioactivity and toxicity for mixtures poses the need for novel tools 
assisting early identification of potential interaction effects. In this study, a novel system ChemDIS-Mixture has 
been implemented integrating analysis functions in ChemDIS and Venn diagram tools for easy visualization. The 
functionality of ChemDIS-Mixture has been demonstrated by two case studies. The potential interaction effects 
of the two case studies were successfully identified. The Venn diagram tool enables quick analysis of overlapped 
targets, GO, pathway and DO terms. While the analysis of overlapped targets depends on the data of available 
interacting proteins, poorly characterized chemicals with only a few known chemical-protein interaction data 
could also benefit from the analysis of enriched GO, pathway and DO terms. Compared with CTD based on 
only curated chemical-gene interaction data, the utilization of the largest chemical-protein interaction database 
STITCH integrating many databases enlarges the analysis capability for a large number of chemicals. Please note 

ID Description Adj. p-value (rifampin) Adj. p-value (efavirenz) Joint p-value

DOID:2237 hepatitis 4.32E-08 0.00906 3.91E-10

DOID:77 gastrointestinal system disease 1.00E-12 0.02271 2.28E-14

DOID:331 central nervous system disease 1.46E-07 0.00394 5.78E-10

Table 1.  Selected analysis results of rifampin and efavirenz.

ID Description Adj. p-value (daidzein) Adj. p-value (genistein) Joint p-value

DOID:1612 breast cancer 8.63E-16 1.13E-52 9.75E-68

DOID:1614 male breast cancer 0.00959 0.00107 1.00E-05

DOID:48 male reproductive system disease 2.91E-08 0.00001 3.99E-13

DOID:28 endocrine system disease 9.11E-12 5.51E-21 5.02E-32

DOID:50 thyroid gland disease 0.00014 2.27E-14 3.24E-18

DOID:114 heart disease 5.70E-09 1.22E-13 7.00E-22

DOID:11476 osteoporosis 2.84E-10 7.86E-13 2.24E-22

Table 2.  Selected analysis results of daidzein and genistein.
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that the potential interaction effects could be either therapeutic or toxic effects that should be further evaluated 
by experiments on different conditions of subjects. For example, chemotherapeutic agents are toxic to healthy 
human beings, but they provide therapeutic effects on cancer patients.

While ChemDIS-Mixture provides useful functions for analyzing potential interaction effects, major lim-
itations are discussed in the follows. First, there is currently no model for estimating dose-response effects of 
chemical mixtures, which is worth further research. Second, because the inference of interaction effects depends 
on known interacting proteins, ChemDIS-Mixture is not able to identify all potential effects for chemicals without 
the complete profile of interacting proteins. Third, although there are a few inhibition and activation data from 
STITCH, the small number of data limits the application for distinguishing additive, synergistic and antagonistic 
effects. Future works could be the development and integration of target prediction models that could further 
enhance the applicability of ChemDIS-Mixture to chemicals without the complete profile of interacting proteins. 
ChemDIS-Mixture aims to help the early identification of potential endpoints of chemical-chemical interactions 
whose interaction effects might be further studied by experiments and models such as concentration addition and 
independent action models. As data grows, ChemDIS-Mixture is expected to be more useful.

Methods
ChemDIS-Mixture was developed as a subsystem of ChemDIS11,14,32 for identifying potential effects and mecha-
nisms of coexposure to multiple chemicals. The core databases integrated in ChemDIS include STITCH for 
chemical-protein interaction data16, Gene Ontology for GO terms representing concepts of molecular functions, 
cellular components and biological processes33, Kyoto Encyclopedia of Genes and Genomes (KEGG)34, 
Reactome35 and SMPDB36 for pathway information, and Disease Ontology (DO and DOLite) for gene-disease 
associations37,38. STITCH database as the largest chemical-protein interaction database aggregating multiple data-
bases such as CTD12, ChEMBL17, DrugBank39, KEGG34 and Reactome35 largely increase the coverage of diverse 
chemicals in ChemDIS-Mixture. The core databases provide essential data on interacting genes for a given chem-
ical that will be further connected to the GO, pathway and DO terms. The user interface and computation mod-
ules were implemented using PHP, JavaScript and GO languages. Venn diagrams were dynamically generated 
using jvenn40 for the visualization of overlapped genes/pathways/diseases. For the prioritization of potential inter-
action effects, a generalized form of joint p-value = ∏ =p pj i

n
i1  will be calculated, where pi represents the adjusted 

p-value for chemical i. The joint p-value represents the overall significance of a given effect affected by multiple 
chemicals that has been shown to be effective for the identification of enriched terms supported by multiple 
datasets41.
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