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Background: The rapid advancement in wearable solutions to monitor and

score sleep staging has enabled monitoring outside of the conventional

clinical settings. However, most of the devices and algorithms lack extensive

and independent validation, a fundamental step to ensure robustness, stability,

and replicability of the results beyond the training and testing phases. These

systems are thought not to be feasible and reliable alternatives to the gold

standard, polysomnography (PSG).

Materials and methods: This validation study highlights the accuracy and

precision of the proposed heart rate (HR)-based deep-learning algorithm for

sleep staging. The illustrated solution can perform classification at 2-levels

(Wake; Sleep), 3-levels (Wake; NREM; REM) or 4- levels (Wake; Light; Deep;

REM) in 30-s epochs. The algorithm was validated using an open-source

dataset of PSG recordings (Physionet CinC dataset, n = 994 participants, 994

recordings) and a proprietary dataset of ECG recordings (Z3Pulse, n = 52

participants, 112 recordings) collected with a chest-worn, wireless sensor and

simultaneous PSG collection using SOMNOtouch.

Results: We evaluated the performance of the models in both datasets in

terms of Accuracy (A), Cohen’s kappa (K), Sensitivity (SE), Specificity (SP),

Positive Predictive Value (PPV), and Negative Predicted Value (NPV). In the

CinC dataset, the highest value of accuracy was achieved by the 2-levels

model (0.8797), while the 3-levels model obtained the best value of K (0.6025).
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The 4-levels model obtained the lowest SE (0.3812) and the highest SP

(0.9744) for the classification of Deep sleep segments. AHI and biological sex

did not affect scoring, while a significant decrease of performance by age

was reported across the models. In the Z3Pulse dataset, the highest value

of accuracy was achieved by the 2-levels model (0.8812), whereas the 3-

levels model obtained the best value of K (0.611). For classification of the sleep

states, the lowest SE (0.6163) and the highest SP (0.9606) were obtained for

the classification of Deep sleep segment.

Conclusion: The results of the validation procedure demonstrated the

feasibility of accurate HR-based sleep staging. The combination of the

proposed sleep staging algorithm with an inexpensive HR device, provides a

cost-effective and non-invasive solution deployable in the home environment

and robust across age, sex, and AHI scores.

KEYWORDS

artificial intelligence, bio-inspired algorithms, home testing, heart rate variability
(HRV), sleep monitoring algorithm, sleep monitoring devices, sleep state
classification, wearable devices and sensors

Introduction

Sleep is a biological necessity that leads humans to spend
roughly one third of their life asleep (Foster, 2020; Ramar et al.,
2021). The circadian clock plays a crucial role toward ensuring
that biological processes occur in the appropriate temporal
sequence (Foster, 2020). Emerging research has highlighted
the critical role that sleep plays in overall health (Grandner,
2017; Billings et al., 2020; Foster, 2020; Kocevska et al., 2021;
Nochaiwong et al., 2021; Ramar et al., 2021) across the lifespan
(Fatima et al., 2016; Bruce et al., 2017; Matricciani et al., 2019;
Stores, 2022). Healthy sleep encompasses a variety of domains
such as adequate sleep duration, appropriate timing, regularity,
the absence of sleep disorders, and good quality (Grandner,
2017; Foster, 2020; Kocevska et al., 2021; Ramar et al., 2021).
Poor sleep health has been associated with several negative
health outcomes, including increased risk of cardiovascular
disease (Gottlieb et al., 2006; Grandner et al., 2016), obesity
(Fatima et al., 2016; St-Onge, 2017), depression (Alvaro et al.,
2013; Murphy and Peterson, 2015; Nochaiwong et al., 2021;
Nutt et al., 2022), and neurodegenerative disorders (Malhotra,
2018, 2022). Despite these well-known health risks, we are in the
middle of a sleep crisis, with more than 70 million Americans
experiencing sleep related problems (Colten and Altevogt,
2006) and with less than 20% of patients estimated to be
properly diagnosed and treated for sleep disorders (Hossain and
Shapiro, 2002). This sleep crisis had been further exacerbated
by the COVID-19 pandemic. The terms “coronasomnia” or
“COVID-somnia” (Gupta and Pandi-Perumal, 2020) have been
introduced to describe the variety of symptoms of sleep

dysfunction due to stresses related to fear of the virus itself or
the psychosocial impact on daily living (Voulgaris et al., 2020;
Becker, 2021; Nochaiwong et al., 2021; Bhat and Chokroverty,
2022; Stores, 2022).

Polysomnography (PSG) is presently considered the gold
standard method to assess sleep and it is performed in sleep
laboratories and clinical settings (Vaughn and Giallanza, 2008;
Bianchi and Thomas, 2013; Bertoni and Isaiah, 2019; Stowe
and Afolabi-Brown, 2020). It allows the characterization of
sleep architecture and sleep disorders by the analysis of several
physiological signals recorded simultaneously. Limitations of
PSG include the cost of the devices, laborious setup procedures,
the discomfort, and the necessity to have an expert perform the
time-consuming process of coding the data (Hirshkowitz, 2016).
While accelerometer-based actigraphy devices have been used in
the field for decades as an alternative to PSG in patients’ living
environment, estimation is limited to sleep/wake states thus,
insufficient for a full evaluation of sleep architecture (Vulcan
et al., 2021). These limitations highlight the need of noninvasive,
inexpensive, and reliable sleep monitors that could be deployed
in the home to monitor sleep health with automated solutions
to perform reliable sleep stage scoring (Shah and Chircu, 2018;
Bartoletti, 2019; Panch et al., 2019; Panesar, 2019; Adadi and
Berrada, 2020).

Recent technological advancements have led to a
proliferation of consumer-oriented tools to monitor sleep
(Russo et al., 2015). Initially these tools relied mainly
on activity, similarly to actigraphy, but lately they have
started to incorporate additional physiological signals, such
as EEG, heart rate (HR), breathing and pulse oximetry
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(de Zambotti et al., 2020; Fuller et al., 2020; Menghini et al.,
2021). Increasing research indicates that HR and its variability
might be an accurate and accessible physiological proxy for
sleep measurement (Fonseca et al., 2017; Sridhar et al., 2020;
de Zambotti and Baker, 2021; Li et al., 2021). A wealth of
literature has shown profound differences in HR across sleep
stages (Aldredge and Welch, 1973; Versace et al., 2003; Mendez
et al., 2006), primarily comparing REM versus NREM sleep. In
adults, REM sleep has been reported to be associated with an
increment in low frequency power of the HR variability signal,
and a decrement in high frequency power.

Currently, the vast majority of available nearables and
wearables rely on contact photoplethysmography technology to
estimate a continuous or pseudo continuous HR signal (Temko,
2017; Askarian et al., 2019; Jan et al., 2019; Kinnunen et al., 2020;
Rocha et al., 2020, 2021). Technological advancement in non-
contact sensor technologies are expected to bring a paradigm
shift in healthcare monitoring. Most promising non-contact
sensors utilize the signals acquired via ballistocardiography
(Giovangrandi et al., 2011) or doppler radar sensors (Li et al.,
2013) – both of which can be leveraged for extracting HR. Given
these considerations, HR appears as a ubiquitous measurement
across a variety of form factors, environments, and applications.
Nonetheless, at present, ECG-derived HR is considered the
gold standard in most applications. In this work, we validated
the performance of an automated sleep staging algorithm that
utilizes HR parameters derived from a single-channel ECG
namely, Neurobit HRV (Neurobit Inc., New York, NY, USA).
The algorithm solely relies on HR derived from the ECG signal
thus, it results insensitive to the ECG morphology. As above
stated, HR can be estimated at various degrees of accuracy. As
such, the utilization of ECG-derived HR allow us to estimate the
baseline performance of the sleep staging algorithm.

Additionally, the present work addresses another significant
gap in the present state of the art. The results of automated
sleep stage scoring derived from most of the currently available
solutions lack validation against gold standard PSG measures.
As such, the performance of these devices varies widely in
independent validations (Chinoy et al., 2021). Moreover, access
to the raw data is often limited and/or transparent access to the
scoring algorithms is missing (Lee et al., 2019; Depner et al.,
2020). Therefore, reproducibility and independent validation
are severely restricted and unfeasible. This is further exacerbated
by the fact that upgrades in firmware and scoring algorithms
are not transparent to the users hence, limiting longer-term
comparisons either within or between individuals or disabling
the opportunity of leveraging historical open available dataset.
To address these shortcomings, we provide transparent access to
our cloud-based algorithms through a software development kit
(SDK1) and an open application programming interface (API)

1 http://research.neurobit.com/

along with reference code and documentation.2 The algorithms
are versioned and openly accessible through the API.

In this manuscript, we performed validation on a public
dataset [Physionet CinC (Goldberger et al., 2000)] and then
on a secondary dataset with data acquired simultaneously with
PSG and an ECG patch. Results demonstrate the feasibility
of accurate sleep staging based on HR derived from ECG,
obtained from either PSG recordings or wearable devices. The
combination of the proposed sleep staging algorithm with
inexpensive and commonly used ECG patches (∼100$) provides
a cost-effective and non-invasive solution easily deployable in
the home for large-scale sleep characterization in the field.

Material and methods

The sleep staging algorithm

The HR based automated sleep staging software called
Neurobit-HRV was developed by (Neurobit Inc., New York,
NY, USA). The deep-learning architecture was implemented
in Python 3.6 using the Keras3 and Tensorflow 2 library.4

Firstly, the algorithm was trained and tested on private datasets
comprising of ECG extracted from 12,404 PSG recordings
collected at academic sleep centers in South-East Asia (35%),
North America (30%) and Europe (30%). Fifty-nine percent of
the total assessed participants had a suspected sleep disorder
whereas the remaining 41% was contributed by healthy subjects.
The mean age of such aggregated dataset was 42.3 ± 16.8
(mean ± std) years. The observations were randomly split
into training (80%) and testing (20%) data at the participant
level, stratified by the data source. The model which obtained
the smallest test error was selected as the optimal one. Once
the optimal model was obtained, the model weights were
frozen and made available via a versioned API. This API is
publicly available, and it was employed for the purpose of
validating the performance of the algorithm as described in
the following. Figure 1 displays the trends of model accuracy
for the training and testing sets as a function of progressive
iterations. The software can operate on either a single channel
ECG or directly on R-peak locations, given it leverages the
HR signal. To achieve optimal performance, the temporal
precision of the R-peak location must be ± 4 ms or better.
Neurobit-HRV incorporates an extensive wavelet-based ECG
signal quality assessment toolbox for a real-time QRS detector,
followed by a spurious R-peak detector for signal processing and
quality assurance. Then, the processed RR interval tachogram is
fed to the above-described automated sleep staging algorithm.

2 https://gist.github.com/neurobittechnologies/
e1d13e0b59c56f5804af7c127b36d20d

3 https://keras.io/

4 https://www.tensorflow.org/
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FIGURE 1

Trend of accuracy in the training (blue solid line) and testing (orange solid line) datasets as a function of training epochs for the 4-level model.
Following an initialization period (for epoch value < ∼50), the difference in performance between the training and testing sets stabilizes at ∼5%.

Sleep state classification can be performed with different levels
of granularity, namely 2-level (Wake; Sleep), 3-level (Wake:
NREM: N1+N2+N3; and REM) or 4-level (Wake; Light: N1+N2;
Deep: N3; and REM) in 30 s epochs compliant with the
American Academy of Sleep Medicine (AASM) standard. The
2- and 3- level classifications are obtained by appropriately
collapsing the 4- level classification. As such, the figures of merit
for the classification of segments labeled as Wake are identical
across models, while in the 3-level model, Light and Deep Sleep
segments from the 4-level model are collapsed and classified as
NREM segments. Additional information describing the mode
of operation of the algorithm are reported in the Supplement
(see Supplementary Figure 1).

Participants and study protocol

You Snooze You Win – The PhysioNet
Computing in Cardiology (CinC) challenge
2018 dataset

The CinC dataset is available at: https://physionet.org/
content/challenge-2018/1.0.0/ and it is comprised of 994
participants (18–90 years old) which were monitored at
Massachusetts General Hospital (MGH) sleep laboratory for the
diagnosis of sleep disorders. Each participant has a complete
set of 30-s annotated segments with corresponding sleep stages

and respiratory events annotated by clinical staff at the MGH
according to the AASM manual for the scoring of sleep. For
this study, the initial preprocessing step consisted of assessing
the quality of the ECG recordings extracted from the ensemble
of recorded signals (EEG, EOG, EMG, respiration, and SaO2).
The signal quality index is an estimate of signal to noise
ratio (SNR). The ECG channel was fed to the Neurobit-HRV
software to extract the RR interval tachogram along with a
signal quality index. A proprietary wavelet-based technique
was utilized to isolate the ECG signal from the background
noise. The amplitude (A) of the ECG signal was computed
via maximum filtering over windows of 3 s. The amplitude of
the background noise was calculated as

√
2∗root mean square

(RMS) amplitude of the background signal over windows of
duration 10 s. The signal to noise ratio is calculated according
to Equation 1:

SNR = 20log
(Asignal

Anoise

)
dB

By progressively sliding the 3-s and the 10-s windows (one
sample at the time), a continuous SNR signal was computed for
each epoch to be scored. An epoch is defined as rejected if 50%
or more samples have an SNR value < 5 dB. A recording was
excluded from the processing steps described in the following if
10% or more of the epochs were rejected. Illustrative examples
of rejected epochs are included in the Supplementary materials
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(see Supplementary Figure 2). For the retained recordings, all
epochs – including those with an associated SNR below the
illustrated rejection criteria – were scored.

Z3Pulse datasets
The Z3Pulse dataset consisted of a set of 52 healthy

adults in the age range of 23–69 years with no known sleep
or psychiatric disorders. All participants provided written
informed consent in compliance with a protocol approved
by the National University of Singapore’s Institutional Review
Board (NUS-IRB) and were compensated for their participation.
The study protocol was carried out over three nights, when
trained research assistants visited participants’ homes. On each
night, participants wore a wearable ECG patch paired with
an Android phone, alongside with simultaneous PSG. PSG
was collected using the SOMNOtouch device (SOMNOmedics
GmbH, Randersacker, Germany). Electroencephalography was
recorded from two channels (C3 and C4 in the international 10–
20 system of electrode placement) referenced to the contralateral
mastoids. The common ground and reference electrode were
placed at Fpz and Cz, respectively. Electrooculography (EOG;
right and left outer canthi) and submental electromyography
(EMG) were also recorded. EEG signals were sampled at 256 Hz
and impedance was kept at less than 5K� for EEG and below
10K� for EOG and EMG channels. Sleep scoring was manually
performed based on the AASM manual (Silber et al., 2007).
Self-reported bed and wake up times were also collected. Each
participant had at least one usable recording, 40 (∼77%) had 2
separate overnight recordings and 19 (∼37%) had 3.

The wearable ECG patch utilized in this study was the
Z3Pulse device (Neurobit Inc., New York, USA), a chest worn,
wireless device capable of recording HR, body position, activity
and temperature. Z3Pulse was developed using the Movesense
open wearable tech platform (Movesense, Finland5). The device
is first connected to a reusable belt worn around the chest
or a one-time Ag-Cl patch. In the latter case, the patch is
directly applied on the skin below the sternum. The Movesense
device consists of a single-channel ECG sensor, a nine-axis
inertial measurement unit (IMU) and a temperature sensor.
The device captures ECG at 128 Hz and IMU at 13 Hz.
The device is operated on a lithium coin cell (CR-2025),
that lasted approximately 400 h of recording. The Z3Pulse
device transmits the data in real-time to a mobile app over
Bluetooth low energy (BLE). Once recording is complete, the
collected data is uploaded to the cloud and analyzed using
Neurobit-HRV. A graphical summary of the different steps of
the methodology, from data collection to automated sleep stage
scoring, is displayed in Figure 2.

The process of aligning the data across PSG and Z3Pulse was
essential to allow accurate comparison on an epoch-by-epoch
basis. The timestamps of both systems were first synchronized

5 www.movesense.com

using an internet time server as reference. Bedtimes for the PSG
were estimated from the sleep diary. For Z3Pulse, position data
were used to derive times on and off the bed. The time recorded
from either the PSG or Z3Pulse, depending on the device with
earlier lights-off time, was used as the reference data point. The
shorter recording was extended to match the longer one by
assuming “awake time” for missing epochs. An example of the
scenario described is summarized in Supplementary Figure 3
in the Supplement.

Data analysis

Firstly, we evaluated the classification performance of the 2-,
3-, and 4-levels models in both datasets considering each scored
epoch as an independent observation. These epoch-level results
are presented in the Supplementary material. The goodness of
fit metrics computed were the following: Accuracy (A), Cohen’s
kappa (K), Sensitivity (SE), Specificity (SP), Positive Predictive
Value (PPV), and Negative Predicted Value (NPV). Then, the
estimates obtained at the epoch level were averaged within each
individual participant to derive subject-level results. Lastly, these
subject-level results were averaged to cohort-level metrics. The
described approach was conducted independently for the two
cohorts analyzed.

The wealth of data within the CinC dataset allowed for
performance evaluation of the algorithm as a function of factors
known to have an impact on HR: age, AHI score, and biological
sex. Participants’ ages and AHI scores were independently
stratified using 3-level categorization; age ≤ 40 years-old,
40 < age ≤ 60 years-old, or age > 60 years-old and AHI ≤ 5
(None/Minimal) or 5 < AHI≤ 15 (Mild) or AHI > 15 (Severe).
Multiple independent linear regression models were used to
estimate the association between age, AHI score, and biological
sex on accuracy, kappa, SE, SP, PPV, and NPV. The limited
sample size of the Z3Pulse dataset did not allow for analyses
stratified by age, AHI score, and biological sex.

Results

Populations

For the CinC dataset a total of 6 participants were excluded
from the analyses accordingly to the exclusion criteria illustrated
in the previous sections. The final dataset included 988 subjects.
There were 664 (∼67%) males, 324 (∼33%) females; 137
(∼14%), 285 (∼29%) and 566 (∼57%) participants in the
None/Minimal, Mild, and Severe AHI groups, respectively;
157 (∼16%), 456 (∼46%) and 375 (∼38%) participants in the
age≤ 40 years-old, 40 < age≤ 60 years-old, and age > 60 years-
old groups, respectively. In the CinC cohort, participants’ total
sleep time was 369.6 ± 69.2 (mean ± std) minutes, time spent

Frontiers in Neuroscience 05 frontiersin.org

https://doi.org/10.3389/fnins.2022.974192
http://www.movesense.com
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/


fnins-16-974192 September 30, 2022 Time: 16:34 # 6

Pini et al. 10.3389/fnins.2022.974192

FIGURE 2

The Z3Pulse system and processing pipeline – from data acquisition to automated sleep stage scoring. The Z3Pulse sensor is a chest-worn
wearable. It is secured by a one-time Ag-Cl patch or by a reusable belt. It transmits a single channel ECG and inertial measurement unit data in
real-time to the Z3Pulse App. The app is operated via a user-friendly interface and stores the data locally for the entire duration of a recording.
Once a given overnight sleep study is terminated, the collected data is transmitted to the Neurobit Cloud Servers. The data undergoes two
stages of pre-processing. In the Preprocessing Stage 1, the analytics mounted on the Neurobit Cloud Servers enable the calculation of sleep
position and detection of R-peaks (alongside the associated SNR values). Subsequently, these derivatives are pushed forward into the pipeline
(to the Preprocessing Stage 2). At this stage, the noise-corrected RR tachogram, HR, HRV, the derived respiration estimates are calculated.
Additionally, leveraging the position data (derived at the Preprocessing Stage 1), the in bed/out of bed score if obtained for each
available/accepted epoch. The time-series data originated at the Preprocessing Stage 2 is then fed to two-stage deep-learning models. In a
nutshell, the deep-learning model is based on a temporal convolutional model (Lea et al., 2017) with inception-residual networks (Szegedy
et al., 2017). The first stage (DL-Stage 1) has 492,420 parameters and the second stage (DL-Stage 2 has 538,796 parameters. These networks use
temporal convolutional networks along with inception layers. Overall, the two stages combined have a total of 1,031,216 parameters. Benefiting
from the users’ feedback, an updated version of the pipeline mounts the Preprocessing Stage 1 is directly onto the device. Such processed data
is stored locally in device memory. These results are transmitted via Bluetooth to the Z3Pulse App when a given recording is terminated. This
updated architecture virtually prevent any data loss due to disconnections of the Z3Pulse Sensor from the Z3Pulse App during an overnight
sleep recording.
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in NREM sleep was 310.8 ± 59.8 min, and time spent in REM
sleep was 58.8± 35.1 min.

For the Z3pulse dataset, a total of 44 (∼28%) out of 156
records were excluded. Most of the recordings of insufficient
quality had missing data due to issues in data transmission
rather than presenting excessive noisiness of the ECG traces.
There were 27 (∼52%) males, 25 (∼48%) females; 38 (∼73%),
7 (∼13%) and 7 (∼13%) participants in the age ≤ 40 years-
old, 40 < age ≤ 60 years-old, and age > 60 years-old groups,
respectively. In the Z3pulse cohort, participants’ total sleep time
was 402.5 ± 64.6 (mean ± std) minutes, time spent in NREM
sleep was 311.1 ± 49.4 min, and time spent in REM sleep
was 91.4 ± 30.6 min. A total of 112 recordings were included
in the analysis.

Clinical and demographic data of the CinC and Z3pulse
datasets are illustrated in Table 1.

Computing in Cardiology (CinC)
dataset

Results for the 2-, 3-, and 4-levels prediction for the CinC
dataset data are displayed in Figure 3 via confusion matrices
and reported in Supplementary Table 1. The highest value
of accuracy was achieved by the 2-levels classification (wake
vs sleep), whereas the predictions obtained in the 3-levels
model obtained the highest value of kappa. As described in the
Methods section, by design of the algorithm, all the derived
metrics (SE, SP, PPV, and NPV) relative to the classification
of wake segments, are identical across the 2-, 3-, and 4-
levels models. On the other hand, the classification of sleep
segments is achieved by progressively collapsing different sleep
states passing from the 4-levels to the 2-levels model. As
a consequence, values of PPV and NPV were substantially
equivalent across models and sleep states. The granular level

TABLE 1 Summary characteristics of the participants included in CinC
and Z3Pulse datasets.

CinC Z3Pulse

Participants included [count] 988 52

Recordings analyzed [count] 988 112

Biological Sex [male count (%age)] 664 (67.21%) 27 (51.92%)

Age ≤ 40 years-old [count (%age)] 137 (13.78%) 38 (73.08%)

40 < Age ≤ 60 years-old [count (%age)] 285 (28.84%) 7 (13.46%)

Age > 60 years-old [count (%age)] 566 (57.29%) 7 (13.46%)

AHI none/minimal [count (%age)] 157 (15.89%) N/A

AHI mild [count (%age)] 456 (46.15%) N/A

AHI severe [count (%age)] 375 (37.96%) N/A

Total sleep time (mean± std) [min] 369.6± 69.2 402.5± 64.6

Time spent in NREM sleep (mean± std) [min] 310.8± 59.8 311.1± 49.4

Time spent in REM sleep (mean± std) [min] 58.8± 35.1 91.4± 30.6

AHI score was not available (N/A) for participants included in the Z3Pulse dataset.

of classification achieved by the 4-levels model obtained the
lowest value of SE (0.3812) and the highest value of SP
(0.9744) for the classification of DEEP sleep segments. The
comparison of the goodness of fit metrics at the segment
level (Supplementary Table 1) versus the ones obtained at the
participant level (Table 2) revealed a close concordance between
the two approaches.

Table 3 summarizes the performance of the 2-levels model
as a function of participants’ characteristics. AHI and biological
sex groups did not affect the outcome metrics. In contrast, a
significant decrease in A and K were reported for older age
groups when compared to the reference age group (age ≤ 40
years-old). Specifically, the average decrease in A for the age
group 40 < Age ≤ 60 and Age > 60 was 3.02 and 7.45%,
respectively. Similar results were found for the other outcome
metrics such that the mean decrease in performance in the group
of participants age > 60 years old is approximately double that
of the 40 < age ≤ 60 group. Analogous findings were reported
when considering the 3-levels and 4-levels models as reported in
Supplementary Tables 2, 3.

Z3Pulse dataset

Results for the 2-, 3-, and 4-levels prediction are reported in
Table 4 (at the participant level) and Supplementary Table 4
(at the segment level). The highest value of accuracy was
achieved by the binary classification (wake vs sleep) performed
in the 2-levels model (0.8812 [0.8668–0.8955] and 0.8797, at
the participant and segment levels, respectively), whereas the
prediction obtained in the 3-levels model obtained the highest
value of kappa [0.611 (0.5818, 0.6401) and 0.6117]. Regarding
the classification of the sleep states, the lowest value of SE
[0.6163 (0.5710, 0.6617) and 0.6115] and the highest value of
SP [0.9606 (0.9536, 0.9676) and 0.9605] were obtained across
the classification of DEEP sleep segment. Values of PPV and
NPV were comparable equivalent across models and sleep
states. The comparison of the goodness of fit metrics at the
segment (Table 4) versus that obtained at the participant level
(Supplementary Table 4) revealed a close concordance across
the different metrics.

Discussion

The aim of this study was to validate the performance of
the previously trained and tested Neurobit-HRV deep learning
model for automatic sleep staging, utilizing two datasets,
namely a publicly available collection of PSG recordings [You
Snooze You Win – The PhysioNet CinC Challenge 2018
dataset (Goldberger et al., 2000)], and a proprietary dataset of
simultaneously collected PSG and single lead ECG acquired
using a wearable device (Z3Pulse device). The results of the
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Figure 3

(Continued)
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Figure 3

Full-counts and normalized confusion matrices for results of the 2-, 3-, and 4-levels prediction for the CinC dataset (Left column) and Z3Pulse
dataset (Right column).

Frontiers in Neuroscience 09 frontiersin.org

https://doi.org/10.3389/fnins.2022.974192
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/


fnins-16-974192 September 30, 2022 Time: 16:34 # 10

Pini et al. 10.3389/fnins.2022.974192

TABLE 2 Mean and [95% Confidence Intervals] Accuracy (A), Cohen’s kappa (K), Sensitivity (SE), Specificity (SP), Positive Predictive Value (PPV), and
Negative Predicted Value (NPV) were obtained by firstly collapsing metrics within and subsequently across participants in the CinC dataset.

CinC – Participants

2-levels 3-levels 4-levels

M
O
D
E
L

A
0.8797

[0.8740 0.8846]
0.8206

[0.8150 0.8262]
0.7295

[0.7232 0.7358]

K
0.5754

[0.5634 0.5874]
0.6025

[0.5914 0.6136]
0.5122

[0.5020 0.5226]

SE 0.6604
[0.6469 0.6739]

W
A
K
E

SE 0.6688
[0.6555 0.6820]

W
A
K
E

SE 0.6688
[0.6555 0.6820]

W
A

SP 0.9309
[0.9257 0.9362]

SP 0.9116
[0.9086 0.9231]

SP 0.9116
[0.9086 0.9231]

K
E

PPV 0.7093
[0.6960 0.7227]

PPV 0.7110
[0.6979 0.7143]

PPV 0.7110
[0.6979 0.7143]

NPV 0.9171
[0.9116 0.9226]

NPV 0.9080
[0.9017 0.9143]

NPV 0.9080
[0.9017 0.9143]

S
L
E
E
P

SE 0.9309
[0.9257 0.9362]

R
E
M

SE 0.6494
[0.6304 0.6684]

R
E
M

SE 0.6494
[0.6304 0.6684]

SP 0.6604
[0.6469 0.6739]

SP 0.9671
[0.9644 0.9697]

SP 0.9671
[0.9644 0.9697]

PPV 0.9171
[0.9116 0.9226]

PPV 0.7493
[0.7335 0.7651]

PPV 0.7493
[0.7335 0.7651]

NPV 0.7093
[0.6960 0.7227]

NPV 0.9528
[0.9498 0.9558]

NPV 0.9528
[0.9498 0.9558]

S
L
E
E
P

N
R
E
M

SE 0.8949
[0.8890 0.9008]

L
I
G
H
T

SE 0.8163
[0.8073 0.8253]

SP 0.7042
[0.6927 0.7157]

SP 0.6357
[0.6251 0.6464]

PPV 0.8637
[0.8576 0.8698]

PPV 0.7478
[0.7395 0.7561

NPV 0.7705
[0.7608 0.7802]

NPV 0.7463
[0.7368 0.7559]

S
L
E
E
P

D
E
E
P

SE 0.3831
[0.3628 0.4034]

SP 0.9612
[0.9563 0.9661

PPV 0.6444
[0.6211 0.6677]

NPV 0.9238
[0.9196 0.9281]

Results are reported separately for the 2-, 3- and 4-levels models.

classification performance in the two datasets highlighted high
and consistent accuracy, 88, 82, and 73% for the 2- levels,
3- levels and 4-level models, respectively, in the CinC dataset
and 88, 80, and 70% for the Z3Pulse dataset. In addition, the
agreement of such metrics compared to results obtained in the
training/testing phase (see Figure 1), speaks to the robustness
of the developed framework. In fact, the accuracy of the 4-level
model in the original training (75.15%) and testing set (70.71%)

is comparable to the results obtained in the CinC (72.95%) and
Z3Pulse (70.30%) datasets.

Recent years have seen the surge of automated sleep stage
algorithms leveraging a variety of physiological signals collected
via traditional, semiportable, or wearable devices. While models
trained on the entirety of the physiological signals collected
via PSG are able to achieve performance close to human
scorers (Vallat and Walker, 2021), the interest in quantifying
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TABLE 3 Mean and [95% confidence intervals] of beta estimates of the performance of the 2-levels models as a function of the participants’
characteristics: age, AHI score, and biological sex.

40 < Age ≤ 60 Age > 60 5 < AHI ≤ 15 AHI > 15 Sex (M)

M
O
D
E
L

A
–0.0302***

[–0.0449 -0.0156]
–0.0745***

[–0.0897-0.0593]
–0.0009n.s. –0.0103n.s. –0.0025n.s.

K –0.0657***
[–0.0998 -0.0315]

–0.1091***
[–0.1446 -0.0736]

–0.0124n.s. –0.0335n.s. 0.0055n.s.

W
A
K
E

SE –0.0453*
[–0.0841 -0.0066]

–0.1042***
[–0.1443 -0.0638]

–0.0016n.s. –0.0120n.s. 0.0126n.s.

SP –0.0158*
[–0.0312 -0.0005]

–0.0267**
[–0.0426 -0.0108]

–0.0057n.s. –0.0140n.s. –0.0051n.s.

PPV –0.0394*
[–0.0782 -0.0005]

0.0099n.s. –0.0017n.s. –0.0407n.s. –0.0089n.s.

NPV –0.0220**
[–0.0370 -0.0070]

–0.0767***
[–0.0924 -0.0611]

0.0079n.s. 0.0026n.s. 0.0045n.s.

The reported estimates for beta were obtained by independently testing the association between age, AHI score, biological sex, and each figure of merit. In the conducted linear regression
models, the reference groups were Age ≤ 40, AHI ≤ 5, and female biological sex. n.s. = not significant, p-value ≥ 0.05; *p-value < 0.05; **p-value < 0.01; ***p-value < 0.001.

and tracking human sleep by means of less invasive and easy
deployable devices has increased exponentially. Therefore, the
demand for automated, accurate, and highspeed algorithms
working with a reduced set of features has scaled accordingly.
Proposed models have evolved from simple binary detection of
sleep–wake to a more fine-grained sleep classification. Examples
are automatic frameworks utilizing a single lead EEG, either
isolated from PSG recordings or collected using the Zmachine

R©

sleep monitoring system (Wang et al., 2015; Yoon et al., 2017b;
Olesen et al., 2021), or a single lead ECG either isolated
from PSG studies or acquired using a variety of strategies
(Li et al., 2018; Walch et al., 2019; Sridhar et al., 2020)
potentially complemented by respiratory effort (Fonseca et al.,
2015; Bakker et al., 2021). The model validated in this study
provides a significant contribution toward the methodological
advancement of automatic sleep stage scoring relying solely
on a single lead ECG signal, acquired via a wearable patch.
In addition, the algorithm solely utilizes HR hence it is
independent of the ECG morphology. As such, the proposed
solution algorithm can easily work with other sensor modalities
which are capable of measuring HR, irrespective of the original
acquired signal. This is an important consideration, given the
rapid proliferation of internet of things (IoT) devices capable
of measuring HR through various contact and non-contact
sensors. Furthermore, to fully describe the performance of the
algorithm, we calculated several goodness of fit in addition to
accuracy, such as kappa, SP, SE, NPV and PPV not only for
the overall models but for each of the predicted sleep states.
Although these values are inextricably linked, they do provide
complementary information (Trevethan, 2017) and allow for a
better assessment of the performance of the algorithm.

In this work, we show that the proposed model can not only
achieve high accuracy, but also obtained adequate performance
on other metrics across multiple datasets not employed for

training nor testing. The achieved results are comparable with
previous work by other research groups. Sridhar et al. developed
an automated sleep staging algorithm using instantaneous heart
rate (Sridhar et al., 2020). Analogously to our approach, the
CinC dataset was utilized to validate their previously trained
and tested architecture. Values of accuracy and kappa are
substantially equivalent to our results; accuracy was equal to
0.72 in both methods, and we obtained a 0.01 lower value
of kappa (kappa was equal to 0.54 in the reported analysis).
Furthermore, both algorithms displayed the worst performance
in the classification of light and deep sleep epochs. One possible
explanation for the reported low value of sensitivity in deep
sleep could be the inter-rater reliability of expert raters, since
agreement in scoring deep sleep has been reported be the lowest
and to vary significantly with age and biological sex (Danker-
Hopfe et al., 2004; Rosenberg and Van Hout, 2013). Another
relevant architecture was proposed by Radha et al. (2019).
This solution utilizes parameters extracted from the heart rate
variability signal. Whilst the obtained results of accuracy and
kappa are slightly higher than those reported in this manuscript,
it should be noted that the algorithm was validated on a
considerably smaller sample size and not using an independent
dataset. In addition, authors report a decrease in performance
by age which is significantly more pronounced that the results
reported in Table 3. Lastly, distributions of accuracy and kappa
across sleep states reported by Radha et al. are characterized
by a significantly higher variability compared to our findings.
Interestingly, the model proposed in this manuscript achieved
equivalent performance or even outperformed models utilizing
ECG in combination with other physiological signals. As an
example, the solution proposed by Sun et al. (2020) achieved
similar performance despite pairing ECG with abdominal
respirator effort. A similar approach was proposed by Rahimi
et al. (2019) which combined heart rate variability parameters
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TABLE 4 Mean and [95% confidence Intervals] Accuracy (A), Cohen’s kappa (K), Sensitivity (SE), Specificity (SP), Positive Predictive Value (PPV), and
Negative Predicted Value (NPV) were obtained by firstly collapsing metrics within and subsequently across participants in the Z3Pulse dataset.

Z3Pulse – Participants

2-levels 3-levels 4-levels

M
O
D
E
L

A
0.8812

[0.8668 0.8955]
0.8035

[0.7871 0.8199]
0.7030

[0.6869 0.7192]

K 0.5882
[0.5558 0.6206]

0.6110
[0.5818 0.6401]

0.5254
[0.5000 0.5508]

SE 0.7125
[0.6796 0.7454]

W
A
K
E

SE 0.7125
[0.6796 0.7454]

W
A
K
E

SE 0.7125
[0.6796 0.7454]

W
A

SP 0.9240
[0.9113 0.9368]

SP 0.9240
[0.9113 0.9368]

SP 0.9240
[0.9113 0.9368]

K
E

PPV 0.6672
[0.6287 0.7057]

PPV 0.6672
[0.6287 0.7057]

PPV 0.6672
[0.6287 0.7057]

NPV 0.9314
[0.9160 0.9468]

NPV 0.9314
[0.9160 0.9468]

NPV 0.9314
[0.9160 0.9468]

S
L
E
E
P

SE 0.9240
[0.9113 0.9368]

R
E
M

SE 0.6163
[0.5710 0.6617]

R
E
M

SE 0.6163
[0.5710 0.6617]

SP 0.7125
[0.6796 0.7454]

SP 0.9606
[0.9536 0.9676]

SP 0.9606
[0.9536 0.9676]

PPV 0.9314
[0.9160 0.9468]

PPV 0.7765
[0.7419 0.8111]

PPV 0.7765
[0.7419 0.8111]

NPV 0.6671
[0.6287 0.7057]

NPV 0.9177
[0.9075 0.9278]

NPV 0.9177
[0.9075 0.9278]

S
L
E
E
P

N
R
E
M

SE 0.8917
[0.8771 0.9063]

L
I
G
H
T

SE 0.8009
[0.7824 0.8194]

SP 0.7264
[0.7007 0.7521]

SP 0.6728
[0.6490 0.6965]

PPV 0.8505
[0.8332 0.8678]

PPV 0.7203
[0.7002 0.7403]

NPV 0.7956
[0.7742 0.8170]

NPV 0.7665
[0.7474 0.7855]

S
L
E
E
P

D
E
E
P

SE 0.4755
[0.4214 0.5297]

SP 0.9544
[0.9451 0.9638]

PPV 0.6102
[0.5544 0.6659]

NPV 0.9254
[0.9143 0.9365]

Results are reported separately for the 2-, 3- and 4-levels models.

and ECG-derived respiration. Accuracy for the 2-level and 3-
level models are approximately 10% lower compared to the
results obtained in our validation study which solely utilized the
ECG signal to derive sleep state classification. A summary of the
comparisons between the proposed architecture and previous
work published in the literature is reported in Table 5.

Concurrently, recent years have seen the exponential
growth of PPG-based wearables aimed to perform sleep stage

classification in the natural/home environment. As recently
summarized in a comprehensive systematic review (Imtiaz,
2021), PPG-based solutions are on average easier to use and
better suited for wearable/nearable monitoring but often unable
to reliably characterize the full spectrum of sleep stages. A recent
manuscript by Zhao and Sun (2021), proposed an approach
similar to our work despite limited to a significantly smaller
sample size. The reported results for accuracy and Cohen’s
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TABLE 5 Summary of articles cited in the discussion section for the purpose of comparing the proposed solution with the existing literature.

Research study Signal(s) Signals/features Sleep stages classified Accuracy Kappa Validation Participant Age Location Data source

Abou Jaoude et al., 2020 EEG 4 channels Wake-N1-N2-N3-REM 77.3% 0.69 PSG 243 >18 Hospital HomePAP Database

Bakker et al., 2021 ECG + RIP HR + Respiration Wake-N1-N2-N3-REM 78.00% 0.64 PSG 296 50-90 Hospital National Sleep Research Resource

Fonseca et al., 2016 ECG + RIP RRI + Respiration Wake-REM-Light-Deep 87.40% 0.41 PSG 180 20–95 Hospital Multiple Databases

Fonseca et al., 2017 ACC + PPG HRV + Movement Wake-N1-(N2+N3)-REM 59.3% 0.42 PSG 51 41–60 Home Alice PDx

Fonseca et al., 2020 ECG + ACC HRV + Movement Wake-N1-(N2+N3)-REM 75.9% 0.60 PSG 389 – Hospital SOMNIA Dataset

Li et al., 2018 ECG HRV + EDR Wake-REM-Light-Deep 75.4% 0.54 PSG 16 32–56 Hospital MIT-BIH

Li et al., 2020 ACC Movement Wake-Sleep 84.7% 0.45 PSG 43 45–84 Sleep Lab MESA Sleep Dataset

Long et al., 2013 RIP + ACC Effort + Movement Wake-Sleep 95.7% 0.66 PSG 15 23–58 Sleep Lab Actiwatch

Quante et al., 2018 ACC Movement Wake-Sleep 85.0% – PSG 22 20–45 Home GT3X

Shen et al., 2019 EEG 1 channel Wake-N1-N2-N3-REM 81–92% 0.89 PSG 48 20–65 Hospital Sleep EDF + DREAMS

Sridhar et al., 2020 ECG HR Wake-REM-Light-Deep 77% 0.66 PSG – – Sleep Lab MESA sleep + SHHS

Walch et al., 2019 PPG + ACC HR + Movement Wake-NREM-REM 72% 0.27 PSG 31 19–55 Hospital Apple watch

Wang et al., 2012 ECG HRV Wake-NREM-REM 73.50% – PSG 7 (OSA) 42–68 Hospital Unknown

Wang et al., 2015 EEG 1 channel Wake-REM-Light-Deep – 0.72 PSG 99 18–60 Sleep Lab Zmachine

Wei et al., 2018 EEG 1 channel Wake-NREM-REM 77% 0.56 PSG 16 32–56 Hospital MIT-BIH

Wei et al., 2019 ECG HRV + RRV Wake-N1-N2-N3-REM 71.16% 0.52 PSG 373 22–56 Hospital SOLAR 3000B

Yoon et al., 2017a ECG RRI N3 90% 0.56 PSG 45 (OSA) – Hospital NI DAQ 6221

Zhang et al., 2012 PPG + ACC HRV + Movement Wake-NREM-REM 75% – PSG 48 22–71 Hospital Research Device

ACC, accelerometer; ECG, electrocardiography; EDR, ECG-derived respiration; EEG, electroencephalography; HR, heart rate; HRV, heart rate variability; PPG, photoplethysmography; RIP, respiratory inductive plethysmography; RRI, R-R Intervals.
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kappa of the 3-level and 4-level models are aligned with
our findings. Compared to most of the available PPG-based
solutions for sleep classification, the model presented by Zhao
et al. only uses a single-channel PPG signals as classification
data and does not require the use of complementary information
from other signals. However, the authors do not report
other metrics of goodness of fit nor performance of the 2-
level classification. An additional insightful approach into the
PPG-based approaches is presented by Li et al. (2021). The
authors developed a sleep staging method using wrist-worn
accelerometry in combination with PPG, leveraging transfer
learning from a large database of ECG recordings (5,793
participants). Transfer learning was applied to train a PPG-
based model by taking advantage of the extant approaches
built from massively available data type such as ECG. When
considering PPG data only, the values of accuracy for the
2-, 3- and 4-level models are approximately 0.10 lower
compared to the presented model, whereas the values of Cohen’s
kappa are 1.5 times lower. Similar results are obtained when
models were trained by combining PPG and actigraphy data.
A comprehensive review of the most recent developed ECG- and
PPG-based models is presented in (Imtiaz, 2021).

One additional advantage of the proposed algorithm is that
it does not require contextual information, such as start time of
the recording, thus being agnostic and removing any potential
sources of bias. This type of bias is known to affect algorithms to
analyze actigraphy data (Paquet et al., 2007) and manual PSG
scoring. We also tested if other demographic factors known
to be associated with sleep characteristics, namely biological
sex, age, and AHI, would affect algorithm performances.
We showed the insensitivity of the algorithm to both AHI
and biological sex. Such characteristics have been previously
reported to affect classification performance (Redline et al.,
2004) thus, our methodology is seen as an advancement toward a
universally applicable sleep scoring model. However, our results
showed that the performance of the algorithm was associated
with participants’ age. One explanation for this finding may
be attributed to the differences in age group distributions
between the training/testing versus the validation sets. Extensive
literature has shown that HR indices parameters change with age
(Voss et al., 2015), thus for future development we anticipate
additional data collection across various age groups to optimize
the algorithm.

Lastly, the algorithm and datasets utilized in this manuscript
are publicly available. This is an essential step to support
wide adoption of automatic sleep staging algorithms within the
research and clinical communities.

Limitations

The main limitation of the proposed algorithm is the
lack of interpretability of the information extracted from the
input HR signal due to the black box nature of deep-learning

methods (Samek et al., 2017; Shah and Chircu, 2018; Bartoletti,
2019; Panch et al., 2019; Panesar, 2019; Adadi and Berrada,
2020; Stiglic et al., 2020). Given that HR segments are directly
fed into the model, it is non-trivial to gain insight onto the
features extracted at the level of encoding/decoding layers nor
identify those contributing the most to predicting the sleep
stage membership of each scored segment. While advances in
machine learning have enables visualization, interpretability,
and explicability of the trained architectures (Samek et al.,
2017; Panch et al., 2019; Panesar, 2019; Stiglic et al., 2020),
an in depth characterization of the features extracted by the
network is beyond the scope of the present study. In future
work, it would be desirable to compare such features with time,
frequency, and nonlinear features widely employed in the HRV
literature. Recent years have seen the development of a variety of
artificial intelligence architecture characterized by interpretable
knowledge representations (without any additional human
supervision) (Seo et al., 2017; Zhang et al., 2018; Adadi and
Berrada, 2020). Experiments have shown that our interpretable
artificial intelligence and machine learning methodologies
encoded more semantically meaningful knowledge in high
dimensional convolutional layers than traditional architectures
(Zhang et al., 2018; Kuo et al., 2019). Dimensionality reduction
techniques have been proposed to gain insight into the complex
sequence of spatial-spectral filtering operations performed by
the convolutional layers. A widely exploited transformation is
called Saab (Subspace approximation with adjusted bias) (Kuo
et al., 2019). The Saab method is a variant of PCA, and it
contributes to dimension reduction. This operation enhances
discriminability of some dimensions by deriving dimensions
with a larger receptive which are intrinsically less granular and
easier to characterize.

Further technological improvement of Z3Pulse system is
warranted. As the scenarios of utilization rapidly expand, the
system may undergo additional modification of the hardware,
firmware, and software. In fact, the current version of the
system has benefited immensely from the testing conducted
outside of traditional clinical settings. The initial version of
the Z3pulse relied exclusively on a continuous BLE connection
between the device and the phone. This characteristic presented
a significant limitation, as multitude of instances may terminate
such connectivity. Examples are the mobile operating system
terminating the app without notice due to power or resource
constraint, the connection interrupted in instances when the
participants were outside of phone’s Bluetooth range. This
resulted in a considerable portion of the recordings failing
quality checks. Informed by the data collected in low-middle
income settings as well as the consideration above-listed, the
RR detection and SNR calculation algorithms were moved
into the device firmware. As such, the device can record the
HR, SNR, and position directly on the device itself. In the
current configuration, the phone is used to signal the device
for starting the recording and retrieve the data once data
acquisition is completed.
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Conclusion

In conclusion, the solution illustrated in this manuscript
highlight the opportunity of utilizing an inexpensive and widely
available ECG wearable devices paired with automated sleep
staging algorithms to characterize sleep architecture rapidly
and inexpensively with high levels of accuracy. Moreover,
the reported findings set the foundation for a HR-operated
(derived from gold-standard ECG) algorithm. By benefiting
from the open and accessible nature of the algorithm,
the proposed solution can be virtually integrated with any
sensors capable of estimating HR. In the future, we anticipate
utilizing the described algorithm on HR data derived from
other sensors as well as comparing the robustness of the
proposed solution. This work offers the opportunity to enable
innovative scalable and accessible modalities for monitoring
sleep in the home environment, increasing equitable access
to sleep health.
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