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Abstract

Background: Long interspersed nuclear elements (LINE-Is, L1s) have been recently implicated in

the regulation of mammalian transcriptomes.

Results: Here, we show that members of the three active mouse LI subfamilies (A, Grand Tp)
contain, in addition to those on their sense strands, conserved functional splice sites on their
antisense strands, which trigger multiple exonization events. The latter is particularly intriguing in
the light of the strong antisense orientation bias of intronic Lls, implying that the toleration of
antisense insertions results in an increased potential for exonization.

Conclusion: In a genome-wide analysis, we have uncovered evidence suggesting that the mobility
of the large number of retrotransposition-competent mouse LIs (~2400 potentially active Lls in
NCBIm35) has significant potential to shape the mouse transcriptome by continuously generating

insertions into transcriptional units.

Background

LINE-1 elements (L1s) are by far the most abundant class
of active autonomous transposons in mammalian
genomes [1]. It has been established that active, i.e. retro-
transposition-competent, L1 elements in the mouse
genome [2,3] outnumber by many fold those found in the
human genome [3,4]. This is reflected in more than an
order of magnitude difference in the percentage of spon-
taneous mutations due to L1 activity in mice (~2.5%)
compared to that in humans (~0.07%) [5]. As a result,
based on recent experimental and bioinformatic data, one
might speculate that the high insertional activity of mouse

L1s could play a significant part in shaping the structure
and expression of the mouse transcriptome [6,7]. Impor-
tantly, intronic L1 insertions have been shown to influ-
ence the expression of their host genes in a wide variety of
ways including retardation of transcriptional elongation
[6], transcriptional control [8-10], premature polyade-
nylation [11], and exon skipping [12].

The process by which L1 sequences inserted within
introns are recruited into a mRNA, termed exonization,
has been primarily studied by analysis of the human tran-
scriptome [13-16] but to date little evidence has been col-
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lected for the mouse [15,17]. In this study, we have
assessed the exonization potential of currently active
mouse L1 elements. Through detailed analysis of mem-
bers of active L1 families and cDNA-supported L1 exoni-
zation events, we show this potential to be much more
significant than previously appreciated. This finding, cou-
pled with the much greater activity of L1s in mouse, sug-
gests that not only have these elements dynamically
modified the mouse transcriptome in the past, but con-
tinue to do so.

Results and discussion

Potentially active LINE-Is in the mouse genome

Using L1Xplorer [3], a suite of automated L1 annotation
tools, we identified in the mouse genome sequence
(NCBIm35) 2382 potentially active L1 elements (i.e. ele-
ments that are full-length and possess intact open reading
frames (ORFs) (Fig. 1A, [18]). This contrasts strongly with
the 1501 potentially active L1s obtained when analyzing
the May 2004 genome release (mm5, build 33) [3] and
reflects ongoing finishing of the mouse genome sequence.

Transcription of these open reading frames is driven by
the mouse L1 internal promoter, which is built of a varia-
ble number of ~200 nt long repeats called monomers. The
sequences of active mouse L1s contain related Gy and Ty
monomers (F-type) as well as unrelated A-type mono-
mers. Consequently, mouse L1s are classified into sub-
families based on the type of the monomer they harbor
[2]. Notably we have established, by bioinformatic data
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mining, that whereas the number of potentially active L1s
belonging to the G subfamily agrees with earlier esti-
mates [2], the number of potentially active members of
the T and A subfamilies is ~1.6-fold higher than previ-
ously (Fig. 1A) estimated. As a result, based on our analy-
sis of genomic sequence data, we conclude that perhaps as
many as ~4800 (2*2382) potentially active L1s reside in
the diploid mouse genome.

Since L1 activity is expected to correlate with L1 expres-
sion level and the latter has been shown to correlate with
the length of the internal promoter [19], we aimed to
characterize the promoters of the 2382 potentially active
L1 elements which we had discovered (Fig. 1B). We found
that the G; subfamily has the longest average promoter
size (~5.5 monomers), followed by the A (~4.4 mono-
mers) and Ty (v4.1 monomers) families. The annotation
of promoter regions is available at [18].

Splice sites in Lls

Clearly any dispersed repeat commonly found in intra-
genic regions has the potential to be exonized due to the
fortuitous occurrence of splicing signals in its sequence
[20]. Because of their high number (2382 in NCBIm35)
and the concomitantly increased potential for insertional
activity, it is of particular interest to establish whether the
sequences belonging to the currently active mouse L1 sub-
families (T Gpand A) contain functional splice sites. We
mined cDNA databases (RIKEN and NCBI) to discover
putative mouse exonization events involving these

A
"Gp
Te
uF
| = N/A
. lIILL-;.;;-
3 4 5 6 7 8 9 10 11 12 13 14+

Number of Monomers

Classification of 2382 potentially active LI elements residing in the mouse genome sequence (NCBI m35). A. Distribution of
LIs among subfamilies. A, Trand G correspond to active mouse LI subfamilies. The small number of L1s that appear related to
the inactivated F subfamily are marked with F and those lacking monomers are marked with N/A. B. Distributions of the
lengths of the internal promoter regions among the three active families. The longest promoter discovered is composed of 28
monomers (here included in the 14+ class) and is a feature of a potentially active L1 element belonging to the A subfamily

located on chromosome 2 (80663469-80649072).
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sequences (see Materials and Methods). An overview of
the different L1 exonization scenarios identified in this
study is presented in Fig. 2.

Fig. 3A contains a summary of antisense (upper) and
sense (lower) splice sites in L1 sequences, as identified by
analysis of cDNA sequences. All of these splice donor sites
(SD) and splice acceptor sites (SA) are consistent with the
classical GT/AG splice junction motifs [21]. For details of
52 fully annotated examples see: [22].

Of the 52 discovered events 43 involved the exonization
of antisense L1 sequences. Similarly, the authors of a very
recent study investigated exonization of transposable ele-
ments and reported the greater number of the antisense
orientation L1 exonization events [23]. The observed
greater number of L1 exonizations in the antisense may
result from the antisense orientation bias of intronic L1s

http://www.biomedcentral.com/1471-2164/8/392

(see Antisense splice sites vs. antisense L1 insertional
bias and Conclusion).

The most frequently used acceptor and donor splice sites
we have identified are SA-154 (located in the antisense
strand of 5' UTR) and SD+52 (in the antisense strand of
ORF1), supported by 13 and 16 different cDNA tran-
scripts, respectively (Fig. 3A).

A classic example of sense orientation L1 exonization was
previously reported when the insertion of a ~1100 bp 3'
fragment of a L1 T element within an intron of the beige
gene caused a disease-specific mutation in mouse [17].
Usage of the two SD sites, BG_SD+4694 and
BG_SD+4903, identified in the latter study, was also evi-
dent in 6 and 3 different cDNAs, respectively, in our data
set (see Fig. 3A and online annotation at [22]).

L1 insertion

SA

intronic SA SD

V.

53808

TE

intronic SB

| SAand SDin L1 —
3  SDflanking first exon K
— SD outside of L1

SA outside of L1
SA flanking last exon
TS/TE Start/End of transcription

) B B Exons included in MRNA

Exons excluded in mRNA

Figure 2

LI exonization scenarios (I-V) involving sequences belonging to active LI subfamilies A, Tr, Grand related inactivated F sub-
family, as identified in this study. The scenarios |-V are supported by 16, 26, 14, 6, and 2 exonization events, respectively (see
Fig. 3 for details of cDNA sequences). SA: splice acceptor, SD: splice donor. In blue: L1-derived exons; in purple and gray:
exons of transcriptional units; in light purple and light gray: exons which are not included in transcript due to LI insertion.
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Multiple splice sites are present in antisense and sense LI sequences (for annotated cDNA examples see [22], for exemplary
cDNA:s see below). LIMda2 sequence M13002 was used as a coordinate reference. A. Diverse exonization patterns as sup-
ported by cDNA evidence. The names of the splice sites incorporate the following information: prefixes of "A_" and "F_" des-
ignate sites within A- and F -type (F, Tr, G;) monomers, respectively; SD: splice donor, SA: splice acceptor; the numbering
indicates the position of the base after which the cleavage occurs, relative to the start of LI ORFI, or relative to the start of
alignments for monomers (for the alignments see [2, 40]); prefix of "BG_" designates sites found in L1 inserted within an intron
of the beige gene, prefix of "S" stands for sense splice sites. The blue boxes mark the monomers making up the internal pro-
moter region. Exemplary cDNAs corresponding to the identified splice sites: F_SA+100: AKOI701 1, BC0O25138; F_SA+142:
Al194597, AKO79058; F_SA+213: AK081008; F_SA+218: AKOI15559; A_SA+191: AK028243; SA-154: BC056642, AF487898,
BQ442932,AK039191,AK043154,BG144807, AK044020, AK 145348, BB6 14554, BY733866, AK076999, AKO15267, AK035725;
SA+106: AK080034, AY167972, BG144807, BY733866, AK015267, AKOO7310; SA+120: AKO06905, SA+1930: NM_177142;
SA+4117: AK034994; SA+5260: AF529222; SA+5614: AK032656; F_SD+24: AK035725; F_SD+213: AK081008; F_SD+218:
AK035725; A_SD+72: AK077067, AKOI5711; A_SD+122: AK032374, BCOI7615, AKOI5277, AK006354; SD+29: BY733866;
SD+52: AK080034, AY167972, BG144807, AK0O06905, AK007235, AKI161293, AK132928, AK135585, BB614554, AKO 16072,
AKO15559, AK076999, AK015267, AKO15548, AKO 15778, AKO15845; SD+106: AKO15524; SD+288: AK076828, AK006905,
AKO15267;SD+350: AKO17011;SD+1881: NM_177142; SD+2036: NM_177142; SD+5094: AF529222; BG_SA+4578: insertion
in beige gene (for sequence see the online annotation); S_SA+1237: AK040102; BG_SD+4903: AK03/201, AK032656;
BG_SD+4694: AK134759, AK0384 18, DV059289, AK015958, AKO34994, insertion in beige gene. B. Insertion of LI Gy element
in the intron of GBP-5 gene introduced a SA site (SA-154) and resulted in creation of a novel exon coding for the C-terminal
and bearing a new stop codon (solid vertical line) (cDNA transcripts GBP-5a, b: gi: 24266664, 26326418).
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Diverse lengths of exonized LIs

Clearly, truncated and rearranged L1s provide different
splice sites. The shortest exonized L1 insertion we have
annotated is only 164 bp long (see online annotation of
AKO032656) and provides the antisense SA+5614 site
located at the polyadenylation signal (notably, the
polypyrimidine tract here is derived from the polyade-
nylation signal of L1). As shown in this study (see [22])
the diverse range of lengths of exonized L1 insertions
renders numerous possibilities for the combinatorial
usage of the splice sites. Conversely, as evidenced by
cDNA AK034994, two separate antisense (237 bp) and
sense (1117 bp) L1 insertions cooperatively provide SD
and SA sites to create a L1-derived exon.

Evidence for an antisense promoter in mouse Lls

As shown in Fig. 3A (scenario II in Fig. 2), we observed an
exonization scenario in which first exons are created from
intronic antisense L1 sequences (see [22] for examples).
In these cases, first exons are spliced to the downstream
exons via SD sites present within antisense L1 sequences.
This might support the existence of regulatory motifs
within mouse antisense L1 sequences that can initiate
transcription, as has been reported for the antisense pro-
moter in human L1s [8-10,24]. We identified a region of
transcriptional start site within the antisense sequence of
ORF1, which is supported by 17 different cDNAs (Fig. 4).
This region could be the site of a novel mouse L1 antisense
promoter, but experimental studies would be required to
confirm this. Transcription of L1-derived first exons, that
subsequently capture downstream exons which encode
intact protein domains, may constitute a mechanism for
the generation of novel functional coding transcripts
through "gene breaking", as has been described in
humans [24]. For example, in one of our annotated cDNA
examples, AK006905, the SD+288 site present in ~6 kbp

S

w

[N

Number of cDNAs
N

11

http://www.biomedcentral.com/1471-2164/8/392

L1 Ty insertion is used to link L1-derived sequence with
downstream exons encoding the C-terminus of DNA
directed polymerase iota (gi: 6755273). This mRNA tran-
script, would encode a 254 amino acid (a.a.) protein con-
taining two ubiquitin-binding motifs (UBM) [25]. Also in
this example, two more splice sites originating from the
same ~6 kbp L1 T. insertion, SA+120 and SD+52 generate
an L1-derived exon. A similar exonization pattern, leading
to first exon generation, is also evident in the transcript
AK015267 where another ~6 kbp L1Gy insertion provides
SD+288, SA+106 and SD+52 sites, as well as SA-154. In
the latter case SA+120 is substituted for the SA+106 site
located nearby (see online annotation).

Coding potential of antisense LI-derived exons
Provocatively it has been proposed that, in general, repeat
exonization via alternative splicing may constitute a vehi-
cle for the exaption of repeat sequences into novel func-
tions [20,26,27]. In line with this, a recent experimental
study demonstrated that arbitrary sequences can evolve
towards functionality when fused with other pre-existing
protein modules [28].

Our analyses of cDNAs have revealed that exonized anti-
sense L1 sequences have the potential to code for parts of
OREFs. For example, the alternative transcripts of the GBP-
5 gene (gi: 24266664, 26326418) contain an L1-derived
exon which contains sequences from three Gy monomers.
The antisense sequences of each of the three monomers
can be translated into peptides which are ~60 a.a. in
length yielding a novel 174 a.a. long C-terminus of GBP-5
protein (see Fig. 3B and also [22]). Although, clearly, the
resulting protein variant is mouse-specific, it was noted
that the alternative C-terminus variant of GBP-5 exists in
humans (AF328727) and that both mouse and human
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CATTTCTTGTATTCTGTTGCTGATGCTCGCATCTATGGTTCCAGATCTCTTTCCTAGGGTTTCTATCTC
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Distribution of transcriptional start sites within a region of antisense sequence of the ORFI. The coordinates are with respect
to the start of the ORFI| in LImda2 sequence (M13002). The Y axis represents the number of cDNAs supporting each tran-
scriptional start site location. In total, |7 cDNAs support the TSs in this region: AKOI701 1, AK076828, AK006905, AK007235,
AKO15524, AK161293, AK132928, AK135585, AK077067, AKO16072, AKO15559, AK076999, AKO15267, AKO15548,

AKO015778, AKO15845, AKO15266.
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variants lack the C-terminal CaaX isoprenylation motif
[29,30], which might be of physiological importance.

Exonization potential of active LIs

To examine the exonization potential of active L1 ele-
ments, we analyzed the residues at the positions corre-
sponding to the cDNA-identified splice sites in a set of
2382 sequences of potentially active L1s. For this, we uti-
lized the L1Xplorer annotation pipeline and created a set
of customized modules (see Materials and Methods for
details). Since all of the identified splice sites were classi-
cal GT-AG sites, we defined the presence of these nucle-
otides as a criterion for a functional splice site. In a total
of 2382 full-length intact LINE-1 elements 45471 donor
and 47848 acceptor splice sites were annotated (see Fig.
5B for summary on conservation of antisense splice sites,

M0t|f1 Chr. 2: 150929736-150925258

ACCGAACCTCTCCTOTTTGAC A

http://www.biomedcentral.com/1471-2164/8/392

Additional File 1, for details on conservation of sense
splice sites and for splice site annotation in L1 sequences
see [18]).

We rendered sequence logos of the sequences correspond-
ing to the identified acceptor and donor motifs in L1s
(Additional File 2). In analyzing logos of the acceptor sites
we observed polypyrimidine tracts which are typical of
consensus splice sites in mouse genes [31] (see Fig. 5A).
The presence of these motifs supports the putative func-
tionality of annotated acceptor sites in active L1s.

As illustrated for the case of SA-154 site in Fig. 5A, family-

specific patterns of splice motif conservations are
observed in potentially active L1 sequences. More cases,

Motif2. Chr. X: 70938019-70938043
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Figure 5

Annotation of antisense splice sites in different subfamilies of putatively active L|s and antisense intronic FL LI insertions. A.
For illustration the polypyrimidine tracts for the site SA-154 are shown. Here, the splice donor AG motif is present only in a
small fraction of full-length intact elements belonging to the A subfamily (741), whereas it is intact in G subfamily (190). "01"
marks the location of AG splice acceptor motif; "-" designates the position of the polypyrimidine tract. Exemplary Motifl and
Motif2 sequences, containing the functional SA-154 splice site, are evidenced by mapping of cDNAs (AK 145348, BG 144807,
respectively) to the corresponding genomic locations containing LIs (NCBIm35). B. Conservation of antisense GT/AG splice
motifs in potentially active LIs. C. Conservation of antisense GT/AG splice motifs in antisense intronic FL L1 insertions. "n ="
indicates the number of annotated L|s/monomers. Legend: cDNA-identified splice sites.
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such as that of SA+106, SD+288 sites that are AG/GT
intact only in F-type mouse L1s, are highlighted in Fig. 5B.

We also found three splice sites SD+5094, SD+2036 and
SA+1930 that are not intact in any subfamily of the poten-
tially active L1 sequences and have been generated by sin-
gle nucleotide mutations leading to functional "GT" and
"AG" motifs (GG->GT, CT->GT and AT->AG respectively,
see Additional File 2). The SA+1930 acceptor splice site
contains the 11 bp-long polypyrimidine tract which is
present in all sequences of potentially active L1s (Addi-
tional File 2). Thus the single nucleotide T->G mutation
could activate this cryptic acceptor splice site in poten-
tially active L1 sequences.

Splice sites in intronic full-length LI sequences

The amount of L1 sequence residing in mouse introns is
~25% of the total genomic L1 content and as much as 8%
of all intronic sequences are Ll-derived nucleotides
(based on our cumulative analysis of annotated transcrip-
tional units found in Refseq, Known Genes and Ensembl
from the UCSC mm?7 Dataset). This sequence is com-
prised mostly of truncated L1 sequences: according to
RepeatMasker annotation of NCBIm35 (UCSC mm?7)
more than 92% of intronic L1 sequences are less than
1000 nt long. As shown above, even these short sequences
can be subject to exonization. It is expected, however, that
intronic full-length (FL) L1 insertions have a much higher
exonization potential since they contain multiple splice
sites and, for example, only FL L1s will include 5' pro-
moter regions containing splice sites.

We identified 1739 antisense and 1014 sense intronic FL
(greater than 5 kbp in length) L1 insertions. As revealed by
our L1Xplorer annotation, these belong in large part (75%
in sense and 78% in antisense) to the active A, Gyand T
families but some (17% in sense and 16% in antisense)
belong to the inactivated F subfamily (Additional File 3).
Similar to potentially active L1s, splice sites are largely
intact in intronic FL L1 insertions (Fig. 5C, Additional File
1, Additional File 2). Multiple cDNAs confirm exoniza-
tion of antisense sequences of FL elements (see [22]). In
particular, antisense sequences of two intronic potentially
active L1 Ty elements are exonized via the SD+52 site to
create first exons in cDNAs AK132928 and AK007235.

By analysing three groups of gene annotations (cDNA and
corresponding DNA), we identified as many as 1259
Ensembl Genes, 1436 UCSC Known Genes and 858 Ref-
Seq Genes with at least one FL antisense intronic L1 inser-
tion and 718 Ensembl Genes, 797 UCSC Known Genes
and 464 RefSeq Genes that contained at least one intronic
FL sense L1 insertion. Hence, the prediction of potential
splice sites within FL intronic L1s may be an important
consideration for researchers studying transcripts of par-

http://www.biomedcentral.com/1471-2164/8/392

ticular genes. We have added the annotation of intronic FL
L1 elements to L1Base, which is available at [18].

Antisense splice sites vs. antisense LI insertional bias

The existence of antisense splice sites is highly intriguing,
particularly in the light of ~2 fold antisense orientation
bias of L1s located in introns of transcriptional units [32].
This orientation bias is especially evident when compar-
ing regions immediately flanking transcriptional start sites
(TSS) and transcriptional end sites (TES) (Additional File
4).

However, this global picture, which is based on all L1
insertions, does not provide information on whether the
bias results from processes acting on a long time scales or
rather is already reflected in young L1 insertions. To gain
insight into this issue we specifically looked at young
intronic FL L1 insertions.

The ratio of antisense to sense FL intronic insertions is
~1.7 and chi-square testing established that this ratio is
significantly different from random insertion orientation
model (chi2: p < 0.0001), where either orientation is
equally likely.

We set out to investigate, if this insertional bias is still evi-
dent among younger intronic insertions. For this analysis
we utilized the set of the potentially active L1s (i.e. full-
length elements with intact ORFs) that were inserted
within introns. This is more stringent than analysing FL
insertions with disrupted ORFs, since elements with intact
OREFs are likely to be younger due to the L1 proteins' cis-
preference towards their encoding RNA [33]. ~28% (657)
of putatively active sequences reside in introns (393 in
antisense, 270 in sense, 6 both in sense and antisense,
ratio ~1.46). The chi-square test indicated that this is
again highly significantly different from a random inser-
tion model (chi2: p < 0.0001). This result suggests that if
insertion orientation is random for de novo insertions, and
the observed bias towards antisense insertion occurs due
to selection against sense insertions, this selection process
is rapid.

The family distribution for the antisense intronic L1 inser-
tions (Additional File 3A) is very similar to the FL L1s in
intergenic regions (Additional File 3B). This is what one
would expect to see under the assumption that the
sequences of all L1 families equally impact the genes they
insert into (i.e. there is no negative selection against any
particular subfamily). However, we did observe a differ-
ence in the distribution of T and A subfamilies between
intronic sense FL insertions (Additional File 3B) and intra-
genic FL insertions (chi2: p < 0.0001). One might argue
here that negative selection appears to have acted specifi-
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cally on the intronic sense L1 insertions belonging to the
A subfamily, but it is not clear why this might be.

Conclusion

We have shown that active mouse L1 elements contain
functional splice sites within their antisense sequences
using evidence from exonization events in mouse cDNA
libraries. This is especially interesting in the light of the
antisense insertional bias of de novo L1 insertions. A recent
experimental study addressed the molecular nature of this
phenomenon by showing that sense insertions of mouse
L1 T; element reduce transcript levels and impair their
structure. By contrast antisense intronic insertions have
little or no effect on transcript elongation and abundance
[32]. These data suggest that the apparently benign nature
of antisense intronic insertions and the presence of func-
tional antisense splice sites can lead to the frequent exoni-
zation of L1 sequences, as we have observed in our
dataset. Further, the conservation of these splices sites in
L1 families known to be currently active in the mouse
genome strongly implies that generation of L1-exonized
transcripts is ongoing, and thus represents a driver of tran-
scriptome evolution. However, it has to be said that this
picture is complicated by many factors, particularly since
the combination of intronic environment, the size and
exact structure of the L1 insertion can impact upon its
exonization potential, resulting in gene and insertion spe-
cific patterns of exonization. With this caveat, the evi-
dence for inclusion of L1 sequences in transcripts and the
high activity of the many LINE-1s in the mouse genome,
suggests that their integration into introns has significant
ongoing potential to shape the structure of the transcrip-
tome, and ultimately, the proteome [26], in the course of
evolution.

Methods

Identification of splice sites

We screened mouse cDNA databases (FANTOM3 [34] and
NCBI) with RepeatMasker to identify cDNAs containing
L1 sequences. The splice sites within L1 sequences were
identified using a combination of the following tools. We
used BLAT [35] to identify the genomic localization of the
cDNAs on the mouse genome (NCBIm35). The genomic
regions were extracted either from ENSEMBL [36] or the
NCBI Nucleotide Database [37]. SPLIGN [38] was used to
split the cDNAs into exons. RepeatMasker was used to
identify the repeats in genomic regions corresponding to
the mapped cDNAs. Family classifications of L1s were car-
ried out with RepeatMasker and a customized version of
the monomer search module of L1Xplorer, which uses
Matcher from the EMBOSS package [39] and template
sequences for A- and F-type monomers [2,40]. This
allowed us to specifically identify the candidate splice
sites that occur in sequences belonging to active L1 fami-
lies. Because of their sequence similarity to the active G

http://www.biomedcentral.com/1471-2164/8/392

and Ty subfamilies, we also included in our analysis cases
of exonization of sequences from the inactivated F sub-
family. To expedite the splice site annotation process we
developed, using PHP [41] and MySQL [42], a web inter-
face which allowed for manual data curation. Further-
more a set of perl scripts has been developed to interact
with the data and compute statistics. The online database
containing annotations of c¢DNA transcripts with
exonized L1 sequences [22] is a read-only version of the
annotation system.

Annotation of Splice Sites in potentially active LIs and
intronic FL L1Is

We used a set of potentially active L1s, as identified in
NCBIm35 [18], to examine the potential location of splice
sites. In order to compile a set of FL intronic L1 insertions
we extracted L1s residing in introns and spanning more
than 5000 nt using the RepeatMasker annotation present
in Ensembl (Mus musculus v38.35 [36]). The data was
then split into sense and antisense L1s. To automatically
annotate the presence or absence of the splice sites two
L1Xplorer modules were developed: the first module uti-
lizes the alignment-based search as determined by
Matcher [39] for splice sites within monomers and the
second utilizes a HMMer-based search [43] for splice sites
within remaining parts of L1s.
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Additional File 1

Annotation of sense splice sites in different subfamilies of potentially active
L1s and sense intronic FL insertions. Conservation of AT/GT splice motifs.
"n = " indicates the number of annotated L1s.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2164-8-392-S1.pdf]

Additional File 2

Logos of annotated splice sites motifs in sequences of potentially active L1s
and FL intronic L1 insertions. Motif: sequences of functional splice sites
identified via mapping of cDNAs to the mouse genome (see Fig. 3 and
[22] for cDNA sequences).

Click here for file
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Additional File 3

Distribution of antisense (1739) and sense (1014) intronic full length
L1s (A) and full length intergenic L1s (10671) (B) among subfamilies.
See online annotation at [18].

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2164-8-392-S3.pdf]

Additional File 4

Distribution of Line-1 elements around the transcriptional start sites
(TSS) and transcriptional end sites (TES) of ~80000 transcriptional
units (combined Ensembl, Refseq, UCSC mm7 annotations). A. L1 inser-
tions found at +/-50 kbp from TSS and TES of transcriptional units. B.
Intronic-only L1 insertions. X-axis of the left-hand chart in A and B: dis-
tance from TSS, X-axis of the right-hand chart in A and B: the distance
from TES. The primary (leftmost) Y-axis shows the number of nucleotides
(base pairs) of L1 sequence in sense (red) and antisense (yellow) orienta-
tion. The secondary (rightmost) Y-axis: shows the ratio of antisense to
sense insertions (black line). Data are plotted in bins of 100 bp. Web
data: Annotation of 52 exemplary cDNAs is available at [22]. The data-
base containing the sequences and annotations of potentially active L1s
and full length (FL) intronic L1s is available at [18].

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2164-8-392-54.pdf]
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