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Abstract

Determining the functions of human genes is a key objective for understanding disease and

enabling development of new therapeutic approaches. A number of recent studies have

shown that the amount of attention the research community gives to each of the more than

20,000 human genes is dramatically skewed toward specific, well-known genes. In this

issue, Stoeger and colleagues uncover the factors that explain this bias and offer a way

ahead to move more genes into the research limelight.

There is a specific type of observational bias in which we only look for something for which

the search is easiest. Known as the street light effect, it has been recognized in popular anec-

dotes since at least the 1920s [1], as well as being widely illustrated in cartoon form. In these

days of genome sequences and high-throughput biology, surely this couldn’t be happening

when we study human genes, could it? Incredibly, a new study by Stoeger and colleagues [2]

published here suggests that it is.

With the completion of the human genome sequence [3], efforts to itemize human genes

[4] have settled on a set of around 20,000 protein-coding genes [5]. Estimates of the number of

genes that do not code for proteins, particularly long noncoding RNAs, are more fluid, but the

best estimate from a highly curated annotation set is just under 16,000 [5]. So at least for the

protein-coding genes, we have defined a parts list from which to study function. In the prege-

nomics era, determining the sequence of a single gene could be the topic of a whole PhD thesis

or the focus of a single lab, and there is no doubt that detailed hypothesis-driven studies of sin-

gle genes continue. However, new high-throughput technologies to assay transcript and pro-

tein expression, the effects of diverse gene knockdowns and knockouts, or the associations of

natural human population variation with disease have opened up the possibility of unbiased

assignment of function to genes. So all things being equal, we should expect to see comprehen-

sive functional annotation distributed across the full range of human genes. Of course, the

reality is not like that at all.

Several publications over the last 15 years [6–11] have observed that the patterns of publica-

tions on human genes are highly skewed. Certain genes, such as TP53, become fashionable

and then tend to dominate the published literature year after year. This imbalance could be for

a number of reasons, including the intrinsic properties of the genes, technological or reagent
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limitations, medical relevance, or complex social and economic factors affecting research pri-

orities. Stoeger and colleagues set out to unpick these relationships by assembling a set of 430

computed or experimentally determined gene properties and then constructing models that

predict the number of publications and the date of first publication for each of the approxi-

mately 13,000 human genes for which they had full data. Using a machine-learning technique

(gradient boosting regressions with out-of-sample Monte Carlo cross-validation), they could

predict the number of publications per gene with reasonable accuracy (Spearman rank correla-

tion: 0.64). Just 15 of the gene features dominated the model’s accuracy, representing aspects

of RNA and protein abundance, transcript and gene length, protein sequence factors including

the presence of a signal sequence, and the sensitivity of the gene to natural or gene-edited

mutations. Thus, it seems that the overall research activity on each human gene as judged by

the total number of publications is substantially influenced by properties of genes that affect

their tractability by multiple experimental methods.

Remarkably, the authors also show that this skewing of interest toward specific genes is con-

sistent over time and that genes that were initially reported on early tend to continue to accrue

enhanced attention through more publications. For instance, the 16% of human genes with

publications before 1991 generate 49% of publications in 2015. As the authors and others put

it, the rich get richer. What is more, the same factors used to predict the number of publica-

tions on a human gene can, together with information on the initial publication date on its

orthologues in model organism, be used in a model that accurately predicts the first year of

publication on the human gene. These same models can also predict the allocation of National

Institutes of Health (NIH) funding to grants for human gene research and the existence of

approved and preclinical drugs with the gene as the drug target. Taken as a whole, these results

suggest that much of the direction for basic and applied research for human genes and disease

is influenced by favorable characteristics of the genes and the availability of model organism

data, i.e., we are looking under the street light.

One could argue that we are concentrating on the most interesting genes, which are most

likely to be involved in human disease. Indeed, Stoeger and colleagues test this and show that,

to some extent, research is focusing on the genes most likely to be sensitive to loss of function

mutations or to be identified in genome-wide association studies (GWAS) of human disease.

However, after taking this into account, there is still a shockingly disproportionate concentra-

tion on the genes that have already been studied most.

The advent of genome sequences and unbiased approaches to data generation has given us

the ability to survey phenotypic effects across all genes. In certain areas, such as GWAS, this

has succeeded spectacularly [12], but we are all aware of the tendency to cling to what we

know when examining large amounts of data. The slide of an impenetrable network analysis

hairball with a few familiar named nodes picked out to provide validation must be familiar to

many. Despite these advances, Stoeger and colleagues show that the patterns of focusing on

the already well studied has continued over the last decade. However, there is some hope

because single gene studies that refer to unbiased studies across many genes tend to focus on

more understudied genes than would otherwise be expected. Helpfully, the authors also try to

assist us to escape our attention biases with supplementary information that can guide us

toward neglected genes that already have suitable data that might aid their study.

None of this would matter if we knew that we were definitely studying the “right” genes,

but GWAS and studies of rare human disease continue to throw out associations to previously

neglected genes. There is also a pressing need to identify new drugs and, by implication, new

drug targets for a range of unmet need in human disease, while drug targets with genetic vali-

dation are more likely to seed a successful drug discovery program [13]. It doesn’t seem too

fantastic to think that there are potentially rich pickings of drug targets with genetic validation
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lying beyond the street light. The Illuminating the Druggable Genome program has gone some

way down this route by focusing on neglected proteins from the approximately 3,000 members

of protein families of which other members have been successful drug targets (kinases, G-pro-

tein-coupled receptors [GPCRs], and ion channels) [14]. At Open Targets, we have gone fur-

ther by bringing together in a single platform [15], https://www.targetvalidation.org, public

data across all human genes, including genetics pertinent to drug target identification, as well

as performing genome-wide experiments that can identify the causal effect of genes on relevant

phenotypes [16]. We anticipate that these unbiased approaches can shift the focus of drug tar-

get identification and prioritization toward genes with higher chances of underpinning suc-

cessful drug discovery programs beyond the usual suspects.

Of course, we can’t give up on the study of well-studied genes because there is still so much

about their mechanisms that remains to be learned. Many years ago, my graduate study was in

a unit that studied the complement genes, and I contributed in a small way to unpicking some

of the complex structural variation of the complement C4 genes within the human MHC [17].

A great deal was known even then about the role of C4 in the complement pathway of the

innate immune system, and while there were some indications of potential roles in autoim-

mune disease, the genetics, biochemistry, and function of C4 seemed well established [18].

There was no inkling of what remained to be discovered. Skipping ahead nearly 30 years, I was

astonished when McCarroll and colleagues [19] were able to show a new role for C4 gene vari-

ation in schizophrenia. The strongest GWAS signal for schizophrenia lies in the MHC region,

which is notoriously difficult to study because of the strong linkage disequilibrium across the

complex. However, by systematically unpicking the configurations of the C4 genes across

patients and controls, McCarroll and colleagues were able to show the causal role of complex

variation in the C4 genes, implicating a role for increased complement activity in schizophre-

nia. So surprising avenues await even down the more traveled roads, and the lessons learned

from years of research on specific genes in one area can enlighten our understanding when

placed in a new context.

Nevertheless, Stoeger and colleagues provide a timely reminder that the choices we make in

our research on human genes are limiting our understanding of the full complement of the

human genome. Surely, many opportunities are being missed by this omission. It’s time to fol-

low some of the roads less traveled.
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