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Abstract: By using the chemical bath deposition approach, binary bismuth sulphides (Bi2S3) and
chromium-doped ternary bismuth sulphides (Bi2−xCrxS3) thin films were effectively produced, and
their potential for photovoltaic applications was examined. Structural elucidation revealed that
Bi2S3 deposited by this simple and cost-effective method retained its orthorhombic crystal lattice by
doping up to 3 at.%. The morphological analysis confirmed the crack-free deposition, hence making
them suitable for solar cell applications. Optical analysis showed that deposited thin films have a
bandgap in the range of 1.30 to 1.17 eV, values of refractive index (n) from 2.9 to 1.3, and an extinction
coefficient (k) from 1.03 to 0.3. From the Hall measurements, it followed that the dominant carriers in
all doped and undoped samples are electrons, and the carrier density in doped samples is almost
two orders of magnitude larger than in Bi2S3. Hence, this suggests that doping is an effective tool to
improve the optoelectronic behavior of Bi2S3 thin films by engineering the compositional, structural,
and morphological properties.

Keywords: chromium-doped; photovoltaic; thin film; solar harvesting; lattice parameters

1. Introduction

To satisfy the need for renewable energy, new efforts are required to efficiently gather
incident photons [1–3]. First-generation photovoltaic devices, such as single-crystal silicon-
based devices, although having an efficiency of up to 15%, are expensive to manufacture
and install. While second-generation devices, i.e., polycrystalline semiconductor thin film-
based solar cells, are cost-effective, their poor efficiency limits their applicability [4–6]. In the
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quest to design efficient, inexpensive solar cell absorbers, dye-sensitized solar cells [7] and
lead halide perovskite, an emerging material with an efficiency ∼30%, have paved the way
for the design of newer materials [8,9]. However, there are two main concerns for the mass
production of conventional perovskite. First is the issue of the intrinsic chemical instability
of lead halide perovskites and second is their toxic constituent, i.e., Pb [10]. To address these
issues, lead-free and non-halide perovskites with earth-abundant constituency can be an
option, although, as yet, no such candidate has demonstrated comparable performance [3].
The capture and transmission of charge carriers inside semiconductor networks have
always been fundamental problems that have to be addressed in order to ensure efficient
charge separation. To increase the overall effectiveness of light energy conversion, several
strategies to enhance photoinduced charge separation and electron transfer processes have
been put forward [11–13]. Additionally, it is a popular issue right now to concentrate future
research efforts on the creation and use of unique nanostructures for the advancement of
next-generation solar cells [14–16].

Metal chalcogenides are a kind of solar energy material with good optical and electrical
characteristics that may be used in photovoltaic applications [5,17]. A number of binary and
ternary chalcogenide semiconductor materials, such as CdSe, CdS1−xSex, CdS, ZnSe, ZnS,
Zn1−xCdxS, Cd1−xZnXS, Sb2S3, Sb2Se3, Bi2Se3, and Bi2S3, have been employed as semi-
conductor electrodes in solar cells [14,18–20]. Bi2S3 (bismuth sulphide) is a semiconductor
material that belongs to the V-VI family. It is known as ‘bismuth glance’ or ‘bismuthinite’
when it occurs naturally in a grey crystalline form. Bi2S3 is a potential semiconducting
material for optoelectronic appliances, with a band gap energy of 1.2–1.7 eV, making it
suitable in thermoelectric and optoelectronic devices with a decent incoming photon to
electron conversion efficiency (5%) [21]. Bi2S3 may be made using a variety of techniques,
including electrodeposition, vapor deposition, sputtering, a solution gas interface, spray,
and a chemical bath [22–24] in both non-aqueous and aqueous media. For the effective,
straightforward, and easy deposition of large surface area thin films, the chemical bath
deposition approach has been used [25]. In the chemical bath deposition method, both
metal ions and chalcogen ions are released in a single bath and are then precipitated onto a
film to form metal chalcogenides [26–28].

D block metals have high stability when used as dopants, decreasing semiconductor
materials’ photo-corrosion restrictions. By causing reticular distortions in the semiconduc-
tor lattice, transition metals increase the percentage of faults, resulting in improved electron
hole charge separation efficiency [29–32]. The dopant concentration and distribution, as
well as the electron configuration and metal ion-electron donor density, all play roles in
deciding the fate of the designed semiconductors [33–35]. Chromium is a lustrous, steely
grey, hard, and brittle transition metal with the atomic number 24, which belongs to group
6. The strong corrosion resistance and hardness of chromium make it a valuable metal. In
the current study, the inclusion of earth-abundant compatible Cr3+ ions into the Bi site of
the orthorhombic crystal lattice is attempted in order to alter and enhance the characteristic
behavior of Bi2S3.

The goal of this study is to evaluate the efficacy of the chemical bath deposition method
to deposit chromium-doped Bi2S3 thin films for solar harvesting. Since impurity-induced
chemical modification in semiconductor networks creates a favorable environment for
the optoelectronic response, in the current study, we attempt to enhance optoelectronic
properties of Bi2S3 thin films via structural and morphological manipulation with the help
of a trivalent cation, i.e., Cr3+.
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2. Results and Discussion

Figure 1 illustrates how an ellipsometeric method was used to gauge the films’ thick-
ness. Film formation often slows as time goes on as a result of reactant consumption in
reactions that typically start off quickly [32]. It is possible that the precipitation process
was altered based on the thickness of the films with various Cr concentrations for the
same deposition duration. The selectivity of EDTA for one metal ion over another and the
ensuing difference in the strength of one metal-EDTA complex over another, i.e., Bi and Cr,
are attributed to variations in the precipitation process and, finally, the film thickness [36].
Figure 1 reveals that Cr addition slowed down the precipitation reaction by strong chelation,
developed between the Cr-EDTA [37–39], which resulted in a slow precipitation process by
slowly releasing the Cr ions for the doped samples for the same period of deposition time,
i.e., six hours.
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The XRD patterns are shown in Figure 2. The polycrystalline structure of the deposited
thin films is evident by sharp and well-defined peaks. XRD analysis shows that both
undoped and doped materials (Bi2S3 and Bi2−xCrxS3) fit the bismuthinite phase of bismuth
sulphide, with an orthorhombic structure (ICSD No: 01-075-1306), as shown by black
vertical lines in Figure 2. The lack of additional peaks matching Cr or Cr-related, as
well as Bi-related, peaks, suggests the formation of a single phase of Bi2S3 with high Cr
homogeneity. For doped samples, a preferred orientation along the 021 plane is observed.
Upon doping, the thin film growth process is influenced, resulting in the shifting of
preferred planes [40].

Defects that are introduced as a result of dopant inclusion cause lattice deformation
and shifts in the XRD peaks. The XRD peak locations move to either a higher or lower angle
as a function of the external entity, i.e., dopant [41]. Change in the preferred orientation of
thin films while transforming into the doped ones, as in the current case instead of the (221)
plane to (021), is a common phenomenon [40]. Slide shifting of diffracted peaks at 2θ~35.0◦

and 49.0◦ towards larger angles give a clear indication of the incorporation of Cr ions in the
Bi2S3 lattice [42]. Grain sizes were found to be decreased with the addition of Cr ions, as
with the addition of Cr, more nucleation centers and sites are created for crystal growth.
As both cations, i.e., Bi and Cr, act as seed nuclei, with the incorporation and increasing
concentration of Cr ions, nucleation cites increased, resulting in a greater number of grains
with a consequent reduction in size [43].
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Lattice factors “a, b, and c”, unit cell volume “Vcell”, Scherrer crystallite size “D” [44],
X-ray density “ρX-ray” dislocation density “δ”, and microstrain “ε” were calculated using
Equations (1)–(6).

1
d2 � =

h2

a2 +
k2

b2 +
l2

c2 (1)

Vcell = abc (2)

D =
kλ

β cos θB
(3)

ρX -ray =
ZM

Vcell NA
(4)

δ =
1

D2 (5)

ε =
4

tanθ
(6)

where β is the full width at half maximum intensity, λ is the X-ray wavelength and is
equal to 0.15406 nm, θ is Bragg’s angle, k is the constant equal to 0.94, Z is the number
of molecules per formula unit, and M is the molar mass. Vcell and NA have their usual
meanings. Crystallographic parameters calculated for both Bi2S3 and Bi2−xCrxS3 thin
films calculated from XRD data are tabulated in Table 1, which seem to be influenced by
Cr addition. Transitions from binary to ternary, elemental to compound, and complex
compounds often result in compositional and positional chaos [45].

Table 1. Crystallographic parameters calculated from XRD data for thin films.

Cr Conc.

Calculated Lattice Constant
Average

Crystallite
Size (nm)

X-ray
Density
(gcm−3)

Dislocation
Density cm−2

Average
Microstrain × 10−3a (Å)

11.11 *
b (Å)

11.25 *
c (Å)
3.97 *

Volume of
Cell (106 pm3)

496.42 *

x = 0 11.11 11.71 3.52 457 141 7.4 2.1

x = 1 11.12 11.22 4.16 519 72 8.48 0.65 1.4

x = 2 11.06 10.73 4.03 502 54 3.39 0.68 2.8

x = 3 11.08 11.28 3.94 492 72 19.1 0.69 2.1

* Standard values for the ICSD (Bi2S3) 01-075-1306.
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The surface morphologies of undoped Bi2S3 and Cr-doped Bi2S3 thin films are shown
in Figure 3. A noticeable difference was observed between the morphological properties
of films with the addition of Cr from 0–3 at.%. Figure 3a depicts the surface morphology
of an undoped sample, which has compact, homogenous, and interconnected particles;
Figure 3b depicts the surface morphology of a sample with 1% Cr, which has incredibly
small particles that are comparable to those of pure Bi2S3, while the texture of the particles
was preserved after Cr insertion. Upon further increase in the dopant, Figure 3c,d indicates
irregular-shaped particles with a broad range of sizes. The particle size is in the range of 150
to 80 nm for all the deposited samples, which is in agreement with the XRD findings. Upon
increasing the dopant concentration, the particle size decreased. As both cations, i.e., Bi and
Cr, serve as seed nuclei for the growth of nanoparticles by Ostwald’s ripening, particles were
discovered to grow at the cost of previously deposited particles, resulting in agglomeration
owing to the overgrowth of microscopic grains on previously deposited particles with
uneven boundaries. Higher dopant concentrations resulted in loosely organized, smaller-
particle-sized films on the substrate as evident by both SEM and AFM studies, hence
validating the findings of XRD data. Atomic force microscopic studies (inset figures)
showed that with an increasing doping concentration, the thickness increased from 51
to 57 nm by offering more surface area for photon interactions. The differences in the
compositions of the deposited samples, which are determined by the Cr-to-Bi ratio, are
connected to variations in their morphologies at various dopant concentrations.
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The absorbance-versus-wavelength plot of chromium-doped bismuth sulphide thin
film systems is shown in Figure 4. The strong absorbance region in this figure is between
400 and 800 nm, while in the infrared region, there is noteworthy absorbance. Furthermore,
the absorption in the near-infrared region harvests more photons to invert into photocur-
rent [46]. The position of the absorption edge shifts red as the Cr content increases from
0 to 3 at. Percent. By modifying the ratio of Bi and S atoms, the addition of Cr to the
system changes the average atomization energy, leading to this shift. The red shift in the
absorption spectra will be helpful to enhance the ability of the synthesized materials to
absorb a wider spectrum of light (more in the visible region). Additionally, Table 2 shows
the compositions’ optical absorption coefficients, which ranged from 105 to 106 cm−1, and
confirms their potential as effective absorber materials for solar applications.
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Table 2. Optical parameters of selected samples calculated by UV-vis spectroscopy at 535 nm.

Parameters
Conc. Of Cr (at.%)

0 1.0 2.0 3.0

α × 104 (cm−1) 80.90 333.9 315.59 319.30
€i 0.0008 0.0260 0.0238 0.0230
€r 0.5290 0.4896 0.4810 0.4828
€ 0.5282 0.4638 0.00045 0.4595
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Figure 5 illustrates the band gaps of the thin films, which were calculated using UV-Vis
spectroscopy and the Tauc equation. These band gaps are in good agreement with known
values and are appropriate for applications as visible light absorber materials [47]; the
value of exponent n is 2, indicating a direct and allowed transition.
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To calculate the band gap (Eg) of deposited films, the Tauc equation is used:

(αhν)r = A(hν − Eg) (7)

“h” stands for Planck’s constant (6.62 × 10−34 Js), “υ” stands for light frequency, A is the
constant, and “α” stands for the absorption coefficient calculated from this relationship.

Regarding the dependence of the composition of thin films on the band gap, a decrease
in the band gap as shown in Figure 6 is credited to manifestation in the band structure
by introducing discrete impurity levels [48]. Crystallinity, an important factor, might also
speculate its role in the decrement in the band gap [49].
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A = −log (T) (8)
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The absorption coefficient (α) is calculated by the following equation:

α(cm−1) =
1
d

ln
(1 − R)2

T
(9)

The value of the extinction coefficient is calculated using the absorption coefficient (α)
and optical wavelength (λo).

k =αλo/4π (10)

Equation (11) demonstrates how to use the reflectance (R) and extinction coefficient (k)
data to obtain the refractive index (n).

n =

(
1 + R
1 − R

)
+

√√√√( 4R

(1 − R)2 − k2

)
(11)

The refractive index (n) and extinction coefficient are related to the dielectric constant (k).

ε = (n − i k) (12)

The dielectric constant is connected to certain substances, such as those used in capacitors,
printed circuit board substrates, and cable insulation. It is a complex number, with the
imaginary component corresponding to dielectric losses and the real part (εr) indicating the
degree of the polarizability of a material. They were calculated by the relations:

εr = (n2 − k) (13)

εi = (2n − k) (14)

Electrical conductivity (σe) is estimated from the values of the wavelength (λ), re-
fractive index (n), and speed of light (c = 2.8 × 108 m/s). Equation (15) may be used to
determine it mathematically.

σe (Ωcm−1) = 2π/λnc (15)

Thermal conductivity (σt) is assessed by Equation (16).

σt (W/mK) = LT σe (16)

L is the Lorentz number, 2.45 × 10−8 W Ω K−2 and T is the temperature.
Table 2 shows absorption coefficient values that are suitable for use as an absorber

layer in photovoltaic applications [50]. The real portion (εr) of the complex dielectric
constant describes how much light is retarded in the material, while the imaginary part (εi)
describes how much energy is absorbed from an electric field owing to the dipole signal.
The real component of the dielectric constant is bigger than the imaginary part in this
case, suggesting that the material’s reaction to light is visible and distinct [51]. Hence, the
dielectric properties (ε) of materials contribute to mainly dipolar or orientation polarization,
which arises from molecules that change their dipolar orientation when an electric field
is applied. Values of both real and imaginary dielectric constants lie in the visible region,
and this behavior leads to increased electronic transfers through the material from the
valence band to the conduction band [50]. The Urbach energy, another critical optical
characteristic of the material, is related to the width of the band tail of the localized states
in the bandgap (Eu

o). The Urbach energy value is determined by the degree of defect in
the chalcogenides [52]. The Urbach slope is calculated by plotting the logarithm of alpha
versus photon energy and fitting a line after determining the linear zone. The width of
tail states into the forbidden gap is quantified by Eu

o, which is the inverse of that slope.
Table 2 shows the Eu values determined for undoped and doped thin films. The value
of Eu

o is zero in a perfect semiconductor. The Urbach energy was found to increase from
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0.26 to 0.35 eV when the bandgap region below the bandgap became wider and included
more tail-absorbing states. Eu

o’s behavior is shown to be influenced by Cr content, since Cr
incorporation resulted in an increase in the number of abnormalities and diseases.

Figure 6 shows the considerable compositional dependence of doping and doping
concentration on the refractive index and extinction coefficient. Values of the refractive
index (n) decreased from 0.72 to 0.62, while an enhancement of the values of the extinction
coefficient (k) was observed, i.e., from 0.001 to 0.012.

The incorporation of the Cr dopant strongly influenced the resistivity and conductivity
of thin films, as shown in Figure 7a,b. The conductivity of binary thin films was enhanced
up to 1.54 × 10−2 ohm−1 cm−1, and a consequent decrease in the resistivity of films from
299.9 to 59.0 Ω cm upon transforming the binary compound to a ternary compound is
observed (Table 3). The value of sheet carrier mobility (µs) is calculated and found to
be 47.7 cm2/V s, which is considered to be higher than those published before in the
literature (i.e., 28 cm2/V s) [53]. The value of carrier concentrations (Ns) decreases while µs
increases with an increasing concentration of Cr, as shown in Figure 7. Recombination of
the stimulated carriers by the traps, which may be a shadow or deep, led to a decrease in
mobility [54]. The behavior of thin films in the present study is n-type.
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Figure 7. Dependence of (a) carrier concentration and (b) sheet carrier mobility on dopant concentration.

Table 3. Hall studies of undoped and Cr-doped Bi2S3 films.

Cr Conc (at.%) I (µA) Resistivity
Rho (ohm cm) × 101

Conductivity Con
(1/ohm cm) × 10−2

Carrier Concentration
Ns (/cm2) × 1011

Sheet Carrier Mobility
µs (cm2/Vs) × 101

0 0.1 29.9 0.00393 0.016 47.7

1 0.1 21.2 2.14 0.950 26.9

2 0.1 6.48 2.12 3.19 10.6

3 0.1 5.90 1.54 62.6 1.01

Figure 8 depicts the IV behavior of undoped and selected Cr-doped thin films. It is
clear that with an increasing Cr content, the diode behavior of the film is enhanced, hence
making the ternary material more suitable for photovoltaic applications. An improvement
in the photocurrent signal of treated Bi2S3 compared to that of pure Bi2S3 under visible-light
irradiation has also been reported previously [55].
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Figure 8. IV study of (a) 0 at.% Cr, (b) 1. 0 at.% Cr, and (c) 3.0 at.% Cr.

3. Materials and Methods

Well-cleaned commercially available soda-lime microscopic glass slides were used
as substrates. The chemicals used were Bi(NO3)3·5H2O, chromium nitrate pentahydrate
(Cr(NO3)3·9H2O, Sigma, Schnelldorf, Germany, 98%), thioacetamide (CH3CSNH2, Aldrich,
99%), nitric acid (HNO3, Sigma), and ethylene-diamine-tetra-acetic-acid, (EDTA, Sigma,
99%). To deposit pure and chromium-doped samples in the range of 1–3 at%, four baths
with varying concentrations of Cr(NO3)3·9H2O and Bi(NO3)3·5H2O were prepared to
deposit undoped and doped films, labeled as 0 at.% Cr, 1.0 at.% Cr, 2.0 at.% Cr, and 3.0 at.%
Cr. Equal-volume and equimolar (10 mL of 0.10 M) bismuth nitrate and EDTA solutions
for the pure sample were mixed in a bath at pH 2. To synthesize the doped derivative
samples, different concentrations of the chromium solution were added to the same bath.
Thioacetamide (10 mL of 0.1 M) was added to the resultant mixture as the sulphur source.
Pre-cleaned-glass films were placed vertically in the resultant mixture beaker for six hours
at room temperature.

In order to assess how the planned material will behave, synthetic samples were
exposed to various characterizations. Using a PANalytical Xpert’ Pro (Holland) X-ray
Diffractometer, the phase composition of the deposited thin films was investigated using
an X-ray diffraction study in the 20–700 range with Cu K irradiation (k = 0.15406 nm).
Optical analysis was performed using the Perkin Elmer Lambda 25 spectrophotometer.
Investigation of the morphology and content of samples was carried out using the JSM-
6360A SEM and the ‘Contact mode AFM’ nasoscope digital equipment with a silicon nitride
cantilever. Using a nano-chip dependability grade Hall effect device, the Hall experiments
were examined. The optical properties of thin films were verified using the Systronics-



Molecules 2022, 27, 6419 11 of 13

117 spectrophotometer’s ellipsometry method (sensor). Additionally, the Keithley-2635A
source meter was used to assess IV behavior while in ohmic contact with an Ag electrode.

4. Conclusions

Low bandgap energy, preferably in the visible range, high surface area, and conduc-
tivity are prerequisite properties for an efficient photocatalytic material. In the current
study, chromium-doped bismuth sulphide thin films with good lateral homogeneity and an
energy bandgap between 1.3 and 1.15 eV were successfully deposited in an acidic medium
via the chemical bath deposition technique. The optical characteristics of the films were
modified by dopant incorporation by modifying the lattice parameters and thickness of the
films, according to a correlation between the optical band gap and lattice parameters of
the films. According to the films’ optical properties, almost all of them were found to be
efficient absorbers in the targeted UV-Vis range. Top-view scans and AFM observations
indicate that the surfaces of the films were affected by the Cr contributions. We determined
that the Cr concentration in the ternary chromium-doped bismuth sulphide chalcogenide
had an effect on all of the distinctive characteristics of the deposited films without disrupt-
ing the crystal lattice. It is necessary to relate the influence of the dopant concentration
on the distinctive characteristics at the same thickness by altering the deposition duration,
since all optoelectronic properties rely on the thickness of the film.
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