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Alzheimer’s disease (AD) is caused by the hyperphosphorylation of Tau protein aggregation. FKBP52 (FK506 binding protein 52)
has been found to inhibit Tau protein aggregation. This study found six different kinds of anthocyanins that have high binding
potential. After analyzing the docking positions, hydrophobic interactions, and hydrogen bond interactions, several amino acids
were identified that play important roles in protein and ligand interaction. The proteins’ variation is described using eigenvectors
and the distance between the amino acids during a molecular dynamics simulation (MD). This study investigates the three loops
based around Glu85, Tyr113, and Lys121—all of which are important in inducing FKBP52 activation. By performing a molecular
dynamic simulation process between unbound proteins and the protein complex with FK506, it was found that ligand targets
that docked onto the FK1 domain will decrease the distance between Glu85/Tyr113 and Glu85/Lys121. The FKBP52 structure
variation may induce FKBP52 activation and inhibit Tau protein aggregation. The results indicate that anthocyanins might change
the conformation of FKBP52 during binding. In addition, the purple anthocyanins, such as cyanidin-3-glucoside and malvidin-
3-glucoside, might be better than FK506 in regulating FKBP52 and treating Alzheimer’s disease.

1. Introduction

Alzheimer’s disease (AD) is an irreversible degenerative
disease of the brain. As time passes, a patient’s memory,
language, intelligent judgment, and motor skills will grad-
ually deteriorate. In 2010, about 36 million people had AD
worldwide [1], and the medical expenses incurred totaled
approximately $604 billion [2]. Huge medical expenses are
associated with AD, and since AD almost always occurs in
people over 65 years old, this disease becomes a great social
burden in an aging society.

Drugs for Alzheimer’s disease include cholinesterase
inhibitors (such as Aricept (donepezil), Exelon (rivastig-
mine), and Reminyl (galantamine) [3]) and N-methyl D-
aspartate (NMDA) antagonists Memantine (such as Witgen
and Ebixa). These two categories [4–6] of drugs only slow

down or ameliorate the symptoms but do not treat or
prevent the disease [7]. Recent studies have found that the
brains of AD patients appear to have protein aggregations
that cause brain damage. Hyper-phosphorylated Tau protein
aggregation is associated with AD andworsens the symptoms
[8]. There are a lot of treatments based on gene, protein,
enzyme, and pathway association with disease in recent years
[9–14]. Thus, by expressing FKBP52, the aggregation of Tau
protein could be inhibited [15], and such inhibition could
form the basis for a treatment of Alzheimer’s disease [16].

FKBP52 belongs to the FK506-binding protein family,
which has a peptidyl prolyl isomerase (PPIase) functional
domain. This domain will modify amino acids sites 231 and
255 of the Tau protein and make the Tau protein more
readily phosphorylated [17]. An immunosuppressive drug
containing FK506 could bind in this domain and inhibit
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Figure 1: The disorder prediction and binding site detection. The blue curve in figure is the disorder disposition of each amino acid, the
red lines indicate the residues of the important amino acids, and the purple region is the docking region, FK1 domain. The green regions of
the amino-acid sequence show the predicted disordered regions, and the yellow regions, with the amino-acids noted in red mean important
amino acids.

PPIase activity [18]. FKBP52 could bindwith steroid receptors
in FKBPs [19]. FKBP52 contains four domains: a FKBP12
domain 1 (FK1), a FKBP12 domain 2 (FK2), a C-terminal
tetratricopeptide repeat domain (TPR), and a calmodulin
binding domain. The FK1 domain has a proline-rich loop,
which is the PPIase activity domain. Therefore, the FK1
domain is the immunosuppressant binding site of FKBP52.
Although the sequence of the FK2 domain is similar to the
sequence of FK1, this domain lacks PPIase activity and cannot
interact with FK506. The TPR domain helps FKBP52 bind
heat-shock protein 90 (HSP90) as a cochaperone to remove
Tau. Finally, the calmodulin-binding domain can regulate the
phosphorylation of the protein [18, 20, 21].

Several studies have demonstrated that since the FK1
domain can bind PPIase, PPIase cannot modify Tau protein.
Consequently, the calcineurin functionwill decrease, andTau
protein phosphorylation will be inhibited [22–27]. Further-
more, FKBP52 will have a higher binding affinity for HSP90
and steroid receptors (which could act as a cochaperone
[28, 29]) than FKBP51, which has a similar structure to FKBPs
and can make microtubules more stable [20, 30]. Therefore,
this cochaperone can bring about Tau protein degradation
[31, 32]. The ligand binds the FK1 domain, activates FKBP52,

and reduces Tau protein phosphorylation while removing
abnormal Tau proteins, thus preventing AD [18].

Anthocyanidins are a family of vegetable flavonoids and
are the primary components in producing plant color and
are well-known water-soluble dyes.The six common kinds of
anthocyanidin are pelargonidin (red-orange), peonidin (red),
delphinidin, cyanidin, petunidin, and malvidin (different
shades of purple) [33–35]. This study used delphinidin-3-
glucoside (D3G), petunidin-3-glucoside (Pt3G), cyanidin-
3-glucoside (C3G), malvidin-3-glucoside (M3G), peonidin-
3-glucoside (P3G), and pelargonidin-3-glucoside (Pa3G) as
test compounds. In recent years, it has been found that
anthocyanins can regulate immunity [36], have anticancer
[37–40] and anti-inflammatory properties [41], as well as
having preventative functions in cardiovascular disease [42–
44] and diabetes [45, 46]. In addition, they are antioxidants
[47–51], have skin brightening properties [52–55], can aid
erection [56], and contain many other health benefits. The
current literature indicates that the antioxidant capacity of
anthocyanins can prevent the deterioration of beta-amyloid
protein type AD [57–60].

The Computer-Aided Drug Design (CADD) is an in
silico simulation technique containing structure-based and
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Figure 2:The structure of the ligand with (a) FK506 and (b) to (g) is D3G, Pt3G, C3G, M3G, P3G, and Pa3G, respectively, with the blue color
indicating the differences.
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Figure 3: Docking poses of different ligands in the FKBP52 binding site. (a) Unbound protein, (b) FK506, (c) to (h) are D3G, Pt3G, C3G,
M3G, P3G, and Pa3G, respectively.

ligand-based simulation.Themain aspects of structure-based
simulation are molecular docking, and molecular dynamics.
The protein-ligand interactions could be analyzed by the
above technique [61–63].

In this study FK506, an efficacy drug [27, 64–68]
with associated side effects [69–73], is used as a control
drug. Our purpose is to determine whether anthocyanins
influence FKBP52 activation, leading to the reduction of
hyper-phosphorylated Tau protein aggregations, and thereby
relieving Alzheimer’s disease. To analyze the effects of the
different anthocyanins on FKBP52 activation, wewill observe

the transformation of the FKBP52 structure after binding and
molecular dynamic simulation.

Recently report, the personalized medicine and biomedi-
cine are necessary [74, 75] especially in rare diseases [76] and
diagnosis [77]. The TCM is a famous personalized medicine.
In order to compare the effect on FKBP52 with the anthocy-
anins and the compounds of Traditional Chinese Medicine
(TCM), we screened the TCMDatabase@Taiwan (http://tcm
.cmu.edu.tw/) for simultaneous docking. The TCM Data-
base@Taiwan [78] contains 61,000 TCM compounds and
is the largest TCM database in the world. Recently, TCM
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Figure 4: Continued.
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Figure 4: Ligplot illustrating protein-ligand interactions during docking. (a) FK506 and (b) to (g) indicate D3G, Pt3G, C3G, M3G, P3G,
and Pa3G, respectively. Hydrophobic interactions are expressed by red spokes radiating towards the ligand atoms they contact in diagrams.
Ligands are represented in purple. C, N, and O atoms are indicated in black, blue, and red, respectively.
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database applied for stroke prevention [79], inflammation
inhibition [80], pain regulation [81], cancer receptor inhibi-
tion [82, 83], and virus prevention [84, 85] by CADD and
cloud-computing web server [86]. Thus, using CADD to
analyze protein-ligand interaction is feasible in the research.

2. Materials and Methods

2.1. Data Collection. The FKBP52 protein structure was
downloaded from the Protein Data Bank (PDB: 1Q1C) [87].
1Q1C is the crystal structure of FKBP52 from amino acids
21 to 257. This structure includes the FK1 domain (amino

acids 33 to 139) and the FK2 domain (amino acids 151 to
254). Current literature identifies the FK1 domain as the
PPIase functional site and the FK506 binding site which is
the FKBP52 activation site. Therefore, the FK1 domain is
the binding site that detects the compounds of Traditional
Chinese Medicine, by comparison with the control drug
FK506. The six common anthocyanins are D3G, Pt3G, C3G,
M3G, P3G, and Pa3G; their compounds and structures can
be obtained from Pubchem [88].

2.2. Disorder Protein Detection. Disordered proteins are
important in drug design, and thus protein structure and the
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Figure 7: The PCA-eigenvector between ligand and unbound protein. The projection to the first two PCA-eigenvectors as 𝑋, 𝑌 axes based
on the backbone of FKBP52 256 amino acids of MD is shown at the bottom of Figures 7(a) to 7(f). The red color indicates unbound protein
and the blue is FKBP52 with ligand. The ligands in Figures 7(a) to 7(f) are FK506, C3G, D3G, M3G, Pa3G, and Pt3G.

ligand-interacting docking site should be detected [89, 90].
The protein sequence of CYP2C9 submitted to the Database
of Protein Disorder (DisProt, http://www.disprot.org/) could
predict the disordered region. Based on the result, the struc-
ture of docking site and drug efficiency could be discussed.

2.3. Docking. The control drug FK506 and anthocyanins
(acting as ligands) were docked to the FK1 domain by
LigandFit [91]. LigandFit, a programwithinDiscovery Studio
2.5 (DS 2.5), is a receptor-rigid docking algorithm that uses a
Monte Carlo simulation tomeasure the engaged position and
orientation of the ligandwhen it targets the receptor of a crys-
tal structure.The results were ranked based on docking score
to assess the compatibility of the ligand and FKBP52 (1Q1C)
crystal structure combination. If the ligand had a higher
docking score than FK506, we could then use hydrophobic
interaction analysis via Ligplot v.2.2.25 [92] to assess the
interaction between ligand and protein amino acids.

2.4. Molecular Dynamics Simulation (MD). Molecular dynam-
ics simulation (MD) is a Discovery Studio 2.5 program
and the protocol used is CHARMM force field [93] with

minimization, heating, equilibration, and production stages.
The interval time of each step was 2 fs in the force field. The
Minimize stage utilized steepest descent [94] and conjugate
gradient [95] to run the maximum 500 steps in two mini-
mizations. Besides Minimizing, other stages were analyzed
using the SHAKE algorithm. The system was heated from
50K to 310K gradually in the 50 ps heating intervals and
then subjected to the 200 ps Balance period. Finally, a 20-
nanosecond production period was used as a canonical
ensemble—meaning that in all systems, 𝑁, 𝑉 (volume) and
𝑇 (temperature) were the same.

After obtaining results from the molecular dynamic
simulation, the root mean square deviation (RMSD) of the
protein-ligand complex and the value of total energy were
calculated using Discovery Studio 2.5. We also used Dis-
covery Studio 2.5 to detect the presence of hydrogen bonds
between the protein and ligand (based on 2.5 Å distance)
and calculated the torsion of the ligand structure during the
molecular dynamics simulation.The H-bond occupancy was
recorded in a table. OriginPro 8.5 used the RMSD, the value
of total energy, and the torsion of ligand structure to analyze
and draw diagrams.
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red triangle in the lower right indicates groups calculated by RMSD variation during MD.
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Figure 9: FKBP52 structure variation. (a) Unbound protein, (b) FK506, and (c) distance variation between unbound proteins with ligand.

The reference-identified eigenvector was used to repre-
sent the protein variation in protein interactions [96]. We
calculated that the projection of the first two PCA (principal
component analysis) eigenvectors would become the 𝑋 and
𝑌 axes, based on the backbone of FKBP52’s 256 amino acids
of theMDdata, to analyze the protein variation.The compar-
ison between an unbound protein and a complex of protein
with a ligand can describe the protein-ligand interaction.

Finally, we finished clustering based on the RMSD varia-
tion with a lapse of time in themolecular dynamic simulation
and a threshold to distinguish the structure group of data.We

identified the structure calculated in the intermediate period
of the last population as the stable structure to determine that
the interaction has been completed and balanced.The results
of clustering can help analyze the variation of FKBP52 (1Q1C)
structure under Docking, MD 0ns and stability stages.

3. Results and Discussions

3.1. The Detection of Disorder Protein. The disordered protein is
an unstructured protein. The docking site consists of a dis-
order protein that will make the complex stabilize difficultly.
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Figure 10: Continued.
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Figure 10: FKBP52 structure variation by anthocyanin target to FK1 domain. (a) D3G, (b) Pt3G, (c) C3G, (d) M3G, (e) P3G, and (f) Pa3G.

Table 1: Scoring functions of six anthocyanins and FK506 docking to FKBP52. The data is ranked by Dock Score.

Name Dock Score Binding Energy# -PLP1 -PLP2
Delphinidin-3-glucoside 120.19 −199.264 31.6 44.69
Petunidin-3-glucoside 114.917 −160.598 62.24 71.86
Cyanidin-3-glucoside 112.451 −175.737 41.9 52.48
Malvidin-3-glucoside 111.318 −172.621 61.93 66.59
Peonidin-3-glucoside 105.531 −165.244 44.68 49.42
Pelargonidin-3-glucoside 94.527 −157.885 58.88 55.96
FK506∗ 62.232 −202.882 58.04 50.16
∗Control.
#Unit: kcal/mol.

The disordered regions are defined as the disposition greater
than 0.5 (Figure 1). The purple region in Figure 1 is FK1
domain which has been defined functional site of FKBP52.
This result indicates that the docking site and important
amino acids do not consist of disorder protein. Thus, the
disorder protein effect on our result is weak and the complex
can stabilize.

3.2. Molecular Docking. The results show the six common
anthocyanins and control drug FK506 docking to FKBP52
(Table 1) ranked from top to bottom based on the docking
score. The docking scores for anthocyanins were about 1.5
to 2 times greater than those for FK506. This indicates
that these ligands had a greater binding force than FK506
for the FK1 domain. We selected the results of screening
the TCM database@Taiwan based on PLP1 and PLP2 being
better than anthocyanin, and then ranked the docking score
(Table 2). There were nine compounds over the threshold,
even bisindolylpyrrole CPB-53-594-5 was better than the
control in all conditions. Although we have these candidates,
anthocyanin can be easily assimilated in the diet and does not
have side effects.

Six anthocyanins as the ligands were arranged by differ-
ences in structure without taking into consideration the Cis
and Trans isoforms which are shown in blue in Figure 2.
Although their main structures are similar, the different
branches ensure that their general structures do not overlap
in the docking process (Figure 3). This result indicates that
the ligands are not similar in docking with the same general

structure and that it is helpful to analyze the interaction with
different anthocyanins docking to FKBP52.

Through ligplot v.2.2.25, Lys121, Tyr113, Glu85, and Arg73
were found to have a high percentage of H-bond and
hydrophobic interactions (Figure 4), thus suggesting that
they are important amino acids in FKBP52. The functional
regions of FKBP52 [21, 87, 97–99] are identified as two
loops containing Tyr113, Glu85, and Arg73 and are different
between FK1 and FK2. This could determine whether PPIase
functions or not, and the loop containing Lys121 will have an
influence on calcineurin activity; therefore, these loops play
an important role in ligand and protein interactions.

3.3. Molecular Dynamics

3.3.1. RMSDs and Total Energy Trajectories. The data gen-
erated from molecular dynamics was analyzed for protein-
ligand RMSD, ligand RMSD, and total energy of ligands-
FKBP52 and unbound FKBP52 (Figure 5). This result shows
that the total energy of unbound FKBP52 is the highest, with
the complex of protein with FK506 being second, and with
anthocyanins being the lowest. A lower total energy implies
a more stable protein-ligand complex; this result indicates
that anthocyanins bound to FKBP52 are more stable than
FK506 or unbound proteins. In Figure 5, based on the gentle
curve of the RMSD and the total energy, the low variation of
protein-ligand interaction can be seen.This result shows that
the interactions had been completed in 20 ns and that the data
is credible for analysis.
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Table 2: Screening the TCM database docking to FKBP52 for results better than those for anthocyanin. The data are ranked by Dock Score.

Name Herb Dock Score -PLP1 -PLP2
Saussureamine C Saussurea Iappa CIarke 189.618 51.33 44.96
Chebulic acid PhyIIanthus urinaria L 136.859 43.81 48.7
Bisindolylpyrrole-3# Lycogala epidendrum 134.391 47.57 45.78
Nodifloridin A Lippia nodiflora (L.) L. C. Rich. 133.342 45.56 55.25
Bisindolylpyrrole-5# Lycogala epidendrum 130.369 60.11 61.34
Shogasulfonic acid A Celastrus paniculatus 128.547 58.33 55.43
Tournefolic acid A Salvia miltiorrhiza 124.716 45.92 50.98
Flazin Delphinium omeiense 124.406 44.33 53.84
Phyllanthusiin E Melicope triphylla 121.443 45.84 52.68
4-Gingesulfonic acid Celastrus paniculatus 119.885 50.65 51.37
FK506∗ 62.232 58.04 50.16
∗Control.
#The bisindolylpyrrole-3 is bisindolylpyrrole CPB-53-594-3, and bisindolylpyrrole-5 is bisindolylpyrrole CPB-53-594-5.

The torsion in MD demonstrates that the base structure
will set appropriate positions quickly, and thus interactions
to change FKBP52 will only occur by a slight twist and offset.
Figure 6 presents the selected ligands that were found to be
suitable in MD.

TheH-bond plays an important role in protein and ligand
interaction. We calculate the H-bond frequency of 1,000
interactions (0.02 ns is recorded as one interaction per 20 ns
MD)while each ligand interacts with FKBP52 (Table 3). After
analyzing the protein and ligand interactions from the dock-
ing process, the hydrophobic interactions, and the MD data,
the results indicate that the amino acids Glu85, Tyr113, Lys121,
Asp68, and Arg73 of FKBP52 formed many H-bonds during
protein and ligand interaction (Table 4). After calculating
the H-bond occupation of 7,000 interactions recorded from
the seven ligands (FK506 and six anthocyanins), the amino
acids with the three highest times ofH-bond occupationwere
Glu85 (3099 times), Tyr113 (2357 times), and Lys121 (2135
times) in FKBP52. These occupations are obviously higher
than the top four Asp68 (1794 times), top 5 Arg73 (1422
times), and others. It is suggested that Glu85, Tyr113, and
Lys121 are important in FKBP52.

According to the PCA-eigenvector of the FKBP52 back-
bone atoms of residues 21–257 (Figure 7) and the different
distributions of the first eigenvector between control (blue)
and unbound protein (red), FK506 is described as a ligand
and made the first eigenvector distribution move left com-
pared to unbound proteins, but their distributions are still
similar. The results of C3G and M3G are similar to FK506.
The direction of Pa3G and Pt3G first eigenvector distribution
is from minus to plus and this direction is different from
other ligands (which go from plus to minus). This shows that
C3G and M3G may cause FKBP52 structural variations to be
the same as FK506 when the protein and ligand interact. On
the other hand, Pa3G and Pt3G may have different effects on
FKBP52, especially out-lying data from the first eigenvector
of 0–5 ns in MD.

After protein and ligand interactions were finished, suit-
able protein structures were determined at 20 ns MD based
on the curve of RMSD and the flattening of the total energy

variation. After clustering, the data generated fromMD in the
same group indicate that their RMSD variation and structure
are similar. The data generated from the calculations of the
median of the last group period could be identified as stable
structures (Figure 8).The results of clustering displaying C3G
as ligand have the lowest RMSD variation and form the
smallest group (only two groups) among unbound FKBP52
and seven ligands.One group ofC3G andFKBP52 interaction
in MD occurs in only the first twenty-eight out of 1000
data points, the others consist of the second group. This
result indicates that if C3G performs as a ligand, FKBP52
will become stable in 0.58 ns and maintain the stability of
the structure. Taking an analysis of clustering, the structures
become stable in order of speed: C3G > (unbound protein) >
Pt3G > Pa3G > D3G > FK506 > P3G >M3G.

Different FKBP52 stable structures in the docking pro-
cess, at zero ns in MD, are observed, and this variation could
be a result of protein and ligand interactions. The divergence
of FKBP52 protein structure during MD between unbound
protein and FK506 as a ligand was found to contain four
loops in the FK1 domain, with each of them containingArg73,
Glu85, Tyr113, and Lys121, which would change their position
during the MD period.

The result of ligplot and H-bond analysis shows that
Glu85, Tyr113, and Lys121 had a more functional effect than
the other amino-acids of FKBP52. Some references identify
the two loops containing Glu85 and Tyr113 as the difference
between the FK1 and FK2 domains, which function in PPIase
immunosuppressive drug binding [21, 87, 97–99]. The loop
with Lys121 has an influence on calcineurin activity, and the
amino P119L of this loop is different in the FK1 domain
between FKBP52 and FKBP51 [98]. Accordingly, it is feasible
to describe the functional structure of FKBP52 by the distance
variation of the three loops with Glu85, Tyr113, and Lys121
during docking, MD 0ns, and stable stages.

There were obvious variations in the amino centroid
positions of Glu85, Tyr113, and Lys121. Variations were found
in the distance between Glu85/Tyr113 and Glu85/Lys121 but
not between Tyr113/Lys121 (<1 Å). It was found that the
distance between Glu85/Tyr113 increased from 13.581 Å to
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Table 3: H-bond occupancy for FKBP (1Q1C) with six kinds of
anthocyanin and FK506 for a simulation time of 20 ns.

Name H-bond interaction Occupancy

FK506
Tyr113:HH/O9 3.70%
Tyr57:HH/O1 61.30%
Tyr57:HH/O2 0.30%

Delphinidin-3-glucoside

Asp72:OD1/H37 3.00%
Asp68:OD1/H38 1.10%
Asp68:OD2/H38 0.20%
Glu85:O/H43 51.80%

Arg73:HH12/O7 1.50%
Arg73:HH21 2.30%

Arg73:HH22/O7 99.40%
Lys121:HZ/O9 28.20%
Lys121:HZ2/O9 26.40%
Lyd121:HZ3/O9 22.60%

Petunidin-3-glucoside

Asp68:OD1/H45 2.80%
Phe67:O/H45 2.30%
Glu85:O/H56 100.00%

Arg73:HH21/O22 1.10%
Lys121:HZ1/O21 35.00%
Lys121:HZ2/O21 43.90%
Lys121:HZ3/O21 46.30%
Trp90:HE1/O9 92.60%
Tyr113:HH/O29 1.90%
Tyr113:HH /O32 98.00%

Cyanidin-3-glucoside

Ser69:O/H39 97.80%
Tyr113:OH/H48 2.30%
Glu85:O/H49 55.20%
Pro120:O/H53 93.30%
Arg73:HE/O17 0.10%
Arg73:HH11/O17 16.40%
Tyr113:HH/O27 0.40%
Tyr57:HH/O27 2.40%

Malvidin-3-glucoside

Tyr113:OH/H41 0.60%
Tyr113:OH/H58 5.50%
Glu85:O/H58 0.10%

Arg73:HH12/O22 0.30%
Arg73:HH21/O22 7.40%
Arg73:HH22/O22 0.10%
Tyr113:HH/O10 4.30%
Tyr113:HH/O32 1.10%

Peonidin-3-glucoside

Tyr113:OH/H44 59.3%
Val86:O/H44 60.2%
Tyr113:OH/H52 57.7%
Val86:O/H52 4.1%
Glu85:O/H53 95.8%
Glu85:O/H54 2.3%

Arg73:HH12/O2 0.30%
Tyr113:HH/O29 0.30%
Tyr57:HH/O18 0.10%

Table 3: Continued.

Name H-bond interaction Occupancy

Pelargonidin-3-glucoside

Asp68:OD1/H39 89.40%
Asp68:OD2/H39 85.90%
Tyr113:OH/H48 0.10%
Glu85:O/H49 4.40%

Arg73:HH21/O17 0.50%
Arg73:HH22/O17 13.10%
Lys121:HZ1/O17 1.70%
Lys121:HZ2 /O17 8.40%
Lys121:HZ3/O17 1.00%
Tyr113:HH/O27 0.50%
Tyr57:HH/O19 0.10%

H-bond occupancy cutoff: 2.5 Å.

14.015 Å, while the distance between Glu85/Lys121 shortened
from 20.783 Å to 19.916 Å in unbound protein during three
designed stages (Figure 9(a)). But in the case of FK506 as a
ligand, the distances between Glu85/Tyr113 and Glu85/Lys121
decreased from 13.306 Å to 11.799 Å and from 19.162 Å
to 17.974 Å (Figure 9(b)). From the differences from the
unbound protein and FK506 as a ligand inMD, it is suggested
that the ligands docking to the PPIase functional site will
shorten Glu85/Tyr113 and Glu85/Lys121 during the three
designed stages (Figure 9(c)).

In Tables 5 and 6 we calculate these two distances from
the docking, MD 0ns, MD stable, andMD 20 ns. To compare
the variation from 20 ns and stable protein structure of
each condition (unbound, FK506, and anthocyanins), all the
differences are less than the threshold. The above description
presents the structure of the stable condition, with the 20 ns
group being similar. The variations of Glu85/Tyr113 and
Glu85/Lys121 are thought to dock to the PPIase functional
site and activate FKBP52; these variations may provide a
crediblemethod of detection.We find the average variation of
anthocyanin as a ligand shortened by about 2 Å. Glu85/Tyr113
and Glu85/Lys121 decreased from 13.306 Å to 11.391 Å and
from 19.162 Å to 17.134 Å. These distances obviously shorten
after anthocyanins dock to FK1, especially to D3G, C3G, and
M3G. When D3G is a ligand, Glu85/Tyr113 and Glu85/Lys121
are −1.581 Å and −3.584 Å. The variation distances presented
in the case of C3G are −2.334 Å and −3.129 Å and of M3G
are −3.068 Å and −2.675 Å. The results of P3G and Pa3G
were similar as FK506. Although Pt3G as a ligand had the
smallest variation, the distances were still shorter than in the
unbound protein (Figure 10). The above results illustrate that
ligand docking to FK1 domain will affect Glu85/Tyr113 and
Glu85/Lys121 explicitly, and anthocyanin could target PPIase
functional site to activate FKBP52.

4. Conclusions

This research shows that the structure generated from the
largest number of a final clustering group can become a
stable condition for the final structure. The function of the
PPIase inhibition and the FKBP52 activation can be suggested
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Table 4: Summary of interaction type, location, and frequency of test ligands following docking and MD simulation.

Interaction location/type/frequency∗
Ligand Glu85 Tyr113 Lys121 Asp68 Arg73 Ser69 Pro120 Trp90 Val86 Tyr57
FK506 docking
FK506 ligplot Y Y
FK506 MD H HH
D3G docking H H HH
D3G ligplot H H Y H
D3GMD H HHH HH HHH
Pt3G docking H H H
Pt3G ligplot H H H Y Y Y
Pt3G MD H HH HHH H H H
C3G docking H H H𝜋 H
C3G ligplot H H Y H H
C3GMD H HH HH H H H
M3G docking H HH H 𝜋

M3G ligplot H H Y Y Y
M3GMD H HHHH HHH
P3G docking H H H
P3G ligplot H H
P3G MD HH HHH H HH H
Pa3G docking H HH H
Pa3G ligplot H H Y Y
Pa3G MD H HH HHH HH HH H
∗Each letter denotes one interaction.
𝜋: pi-interaction.
Y: Hydrophobic interaction.
H: H-bond.

Table 5: Comparing amino distance variation from Lys121 to Glu85
while the protein is in an unbound condition and targets the ligand
during docking and MD.

Docking 0 ns Stable 20 ns
121/85 121/85 121/85 121/85

Unbound 20.783 20.783 19.916 20.215
(0) (−0.867) (−0.568)

506 19.162 18.861 17.974 17.990
(−0.301) (−1.188) (−1.172)

D3G 19.162 18.327 15.578 15.450
(−0.835) (−3.584) (−3.712)

Pt3G 19.162 19.597 19.111 19.033
(0.435) (−0.051) (−0.129)

C3G 19.162 16.356 16.033 16.199
(−2.806) (−3.129) (−2.963)

M3G 19.162 17.792 16.487 16.567
(−1.37) (−2.675) (−2.595)

P3G 19.162 17.714 17.519 17.587
(−1.448) (−1.643) (−1.575)

Pa3G 19.162 18.642 18.078 18.102
(−0.52) (−1.084) (−1.060)

Anthocyanin
average 19.162 18.071 17.134 17.156

(−1.091) (−2.028) (−2.006)

Table 6: Comparing amino-acid distance variation from Tyr113 to
Glu85 while the protein is in an unbound condition and targets the
ligand during docking and MD.

Docking 0 ns Stable 20 ns
113/85 113/85 113/85 113/85

Unbound 13.581 13.581 14.015 14.398
(0) (0.43) (0.817)

506 13.306 11.994 11.799 11.690
(−1.312) (−1.507) (−1.616)

D3G 13.306 11.335 11.725 11.626
(−1.971) (−1.581) (−1.680)

Pt3G 13.306 12.024 11.698 11.522
(−1.282) (−1.608) (−1.784)

C3G 13.306 11.276 10.972 10.945
(−2.03) (−2.334) (−2.361)

M3G 13.306 12.817 10.238 10.041
(−0.489) (−3.068) (−3.265)

P3G 13.306 12.795 11.735 11.891
(−0.511) (−1.571) (−1.415)

Pa3G 13.306 11.626 11.975 11.897
(−1.68) (−1.331) (−1.409)

Anthocyanin
average 13.306 11.979 11.391 11.320

(−1.327) (−1.915) (−1.986)
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according to the variation of Glu85/Tyr113, and Glu85/Lys121
indicates the FKBP52 structural variation. Anthocyanins
might regulate FKBP52 to prevent Alzheimer’s disease based
on the structure variation of FKBP52, especially the purple
anthocyanins C3G and M3G. According to these results,
these two anthocyanins could be predicted to have a better
effect than the others. Due to their greater efficiency and
fewer side effects, anthocyanins may become a more appro-
priate medicine than FK506.
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