
ORIGINAL RESEARCH
published: 10 December 2019
doi: 10.3389/frobt.2019.00134

Frontiers in Robotics and AI | www.frontiersin.org 1 December 2019 | Volume 6 | Article 134

Edited by:

Carlos Gershenson,

National Autonomous University of

Mexico, Mexico

Reviewed by:

Davide Marocco,

University of Naples Federico II, Italy

Paul Vogt,

Tilburg University, Netherlands

*Correspondence:

Yoshinobu Hagiwara

yhagiwara@em.ci.ritsumei.ac.jp

Specialty section:

This article was submitted to

Computational Intelligence in

Robotics,

a section of the journal

Frontiers in Robotics and AI

Received: 24 May 2019

Accepted: 19 November 2019

Published: 10 December 2019

Citation:

Hagiwara Y, Kobayashi H, Taniguchi A

and Taniguchi T (2019) Symbol

Emergence as an Interpersonal

Multimodal Categorization.

Front. Robot. AI 6:134.

doi: 10.3389/frobt.2019.00134

Symbol Emergence as an
Interpersonal Multimodal
Categorization
Yoshinobu Hagiwara*, Hiroyoshi Kobayashi, Akira Taniguchi and Tadahiro Taniguchi
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This study focuses on category formation for individual agents and the dynamics of

symbol emergence in a multi-agent system through semiotic communication. In this

study, the semiotic communication refers to exchanging signs composed of the signifier

(i.e., words) and the signified (i.e., categories). We define the generation and interpretation

of signs associated with the categories formed through the agent’s own sensory

experience or by exchanging signs with other agents as basic functions of the semiotic

communication. From the viewpoint of language evolution and symbol emergence,

organization of a symbol system in a multi-agent system (i.e., agent society) is considered

as a bottom-up and dynamic process, where individual agents share the meaning

of signs and categorize sensory experience. A constructive computational model can

explain the mutual dependency of the two processes and has mathematical support that

guarantees a symbol system’s emergence and sharing within the multi-agent system. In

this paper, we describe a new computational model that represents symbol emergence

in a two-agent system based on a probabilistic generative model for multimodal

categorization. It models semiotic communication via a probabilistic rejection based

on the receiver’s own belief. We have found that the dynamics by which cognitively

independent agents create a symbol system through their semiotic communication

can be regarded as the inference process of a hidden variable in an interpersonal

multimodal categorizer, i.e., the complete system can be regarded as a single agent

performing multimodal categorization using the sensors of all agents, if we define

the rejection probability based on the Metropolis-Hastings algorithm. The validity of

the proposed model and algorithm for symbol emergence, i.e., forming and sharing

signs and categories, is also verified in an experiment with two agents observing

daily objects in the real-world environment. In the experiment, we compared three

communication algorithms: no communication, no rejection, and the proposed algorithm.

The experimental results demonstrate that our model reproduces the phenomena of

symbol emergence, which does not require a teacher who would know a pre-existing

symbol system. Instead, the multi-agent system can form and use a symbol system

without having pre-existing categories.

Keywords: symbol emergence in robotics, multimodal categorization, multiagent system, semiotic

communication, language evolution, symbol system, probabilistic generative model
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1. INTRODUCTION

Obtaining a computational explanation of a symbol system
emerging in the real-world environment is important and it is
challenging to understand themechanism of sharing and forming
the symbols that represent the sensory experience as a part of
the function of language. Language plays a crucial role in sharing
information between people by using semiotic communication.
However, how the symbol system of the language has emerged
through semiotic communication is still unanswered. In this
study, the semiotic communication refers to exchanging signs
composed of the signifier (i.e., words) and the signified (i.e.,
categories). We define the generation and interpretation of
signs associated with the categories formed through the agent’s
own sensory experience or by exchanging signs with other
agents as basic functions of the semiotic communication. In
order to obtain the computational explanation of a symbol
system emerging in the real-world environment, we aim to
construct a computational model that comprehensively describes
the generation and interpretation of words associated with the
categories formed through the agent’s own sensory experience or
by exchanging words with other agents.

As a study on the origin of words and meanings based
on a computational model, Steels (1999) performed the
Talking Heads experiment to answer the question: how can a
physically embodied autonomous agent arrive at a repertoire
of categories for conceptualizing his world and how can a
group of such agents ever develop a shared communication
system with the same complexity as human natural language.
His studies enabled agents to generate categories and develop
a shared communication system with syntax in real-world
environments. However, simple objects that can be identified
by low-dimensional features based on color and shape, such as
red circles, blue rectangles, spheres, and cubes, were used in
the Talking Heads experiment in order to focus on observing
language emergence phenomena.

In contrast, Nakamura et al. (2014) and Taniguchi A. et al.
(2016) proposed probabilistic generative models that enable a
robot to learn both a language model and a perceptual model
for daily objects (e.g., bottles, cups, and cans) and spaces (e.g.,
toilet, stairs, and elevator) with complex colors and shapes in
the living environments. The probabilistic generative models
perform multimodal categorization and word discovery using
multimodal sensorimotor information obtained by a robot and
speech signals from a human instructor. However, these models
only explain individual agent learning, and implicitly presume
that a human instructor has a fixed and static symbol system.

In this study, we propose a computational model that
is constructed by expanding the probabilistic generative
model (Nakamura et al., 2014) to a multi-agent system and
evaluate the model in an experiment inspired by the Talking
Heads experiment (Steels, 1999) using daily objects (e.g.,
bottles, cups, and cans). The model provides the computational
explanation of the symbol emergence in a multi-agent system
and the category formation in individual agents through semiotic
communication, which is the generation and interpretation of
symbols associated with the categories formed using the agent’s

sensory information. The goal of this paper is to provide a
clear view of symbol emergence as an interpersonal multimodal
categorization using a computational model that not only
categorizes sensory information but also shares the meaning of
signs within the multi-agent system.

The main contributions of this paper are as follows:

• We propose a constructive computational model that
represents the dynamics of a symbol emergence system
by using probabilistic models for multimodal categorization
and message passing based on the Metropolis-Hastings (M-
H) algorithm. The model represents mutual dependency of
individual categorization and formation of a symbol system in
a multi-agent system.
• We show that our model representing a multi-agent system

and symbol emergence among agents can be regarded as
a single agent and a single multimodal categorizer, i.e., an
interpersonal categorizer, mathematically. We prove that the
symbol emergence in the model is guaranteed to converge.
• We evaluate the proposed model of the symbol emergence and

category formation from an experiment by using two agents
that can obtain visual information and exchange signs in the
real-world environment. The results show the validity of our
proposed model.

The rest of this paper is structured as follows. Section 2
describes related works. Section 3 describes the proposed
model and inference algorithm for representing the dynamics
of symbol emergence and category formation in multi-agent
systems. Section 4 presents experimental results, verifying the
validity of the proposed model and inference algorithm on the
object categorization and symbol emergence. Finally, section 5
presents conclusions.

2. RELATED WORKS

In studies on language emergence in multi-agent systems,
Kirby (1998) showed that the language exchanged between
agents involving repeated generation alternation is gradually
structured in a simulation model. Morita et al. (2012)
showed in simulation experiments that semiotic communication
systems emerge from interactions that solve collaborative
tasks. Lazaridou et al. (2016) proposed a framework for
language learning that relies on multi-agent communication for
developing interactive machines (e.g., conversational agents).
Lee et al. (2017) proposed a communication game in which
two agents, native speakers of their own respective languages,
jointly learn to solve a visual referential task. Graesser et al.
(2019) proposed a computational framework in which agents
equipped with communication capabilities simultaneously play
a series of referential games, where agents are trained by
deep reinforcement learning. These studies achieved language
emergence in multi-agent systems by using a computational
model. However, interaction with real-world environments
through one’s own sensory information without pre-existing
categories (i.e., internal representations) was not discussed in
these studies.
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In studies on language emergence with categorization based
on one’s own sensory experience, Steels and his group have
performed language game experiments using computational
models (Steels, 2015). In simulation environments, Steels
reported computational experiment in which a group of agents
develop ways to identify each other using vocabularies related
to spatial concepts (Steels, 1995), and proposed models to
examine through which mechanisms autonomous agents could
arrive at perceptually grounded categories, such as color (Steels
and Belpaeme, 2005). In real-world environments, the Talking
Heads experiment (Steels, 1999) is the most widely known
setup for grounding a lexicon to a concept based on visual
information for the purpose of communication among agents.
The experiments demonstrated that the mechanisms worked for
lexicon and concept formation on objects (e.g., red circles and
blue rectangles) among agents.

The Talking Heads experiment has been improved in various
aspects. Robotics sophistication enabled experiments for learning
the words andmeanings of simple objects and spatial words using
mobile robots, such as AIBOs (Steels and Kaplan, 2000; Steels
and Loetzsch, 2008). Spranger also performed language game
experiments for understanding the evolution of grounded spatial
language (Spranger, 2011, 2015), and developed a perceptual
system for Sony humanoid robots (Spranger et al., 2012). There
also exist studies that improved the Talking Heads experiment
regarding the complexity of semantics and grammar (Vogt,
2002, 2005; De Beule et al., 2006; Bleys, 2015; Matuszek, 2018).
Vogt (2002) conducted experiments where robots develop a
symbolic structure from scratch by engaging in language games,
and demonstrated that robots can develop a symbolic structure
with which they can communicate the names of a few objects.
He also proposed a model for the evolution and induction of
compositional structures in the language of a population of
simulated robotic agents (Vogt, 2005). These studies based on
the TalkingHeads experiment focused on symbol grounding with
language games and built the foundation of constructive studies
on language evolution. However, the experiments were limited
to simple objects (e.g., red circles and blue rectangles) and daily
objects (e.g., bottles, cups, and cans) with complex colors and
shapes found in living environments were not considered.

In contrast, as a study of concept formation and word
grounding for daily objects (e.g., bottles, cups, and cans) in
the living environment based on the sensory-motor information
of a robot, Nakamura et al. (2009) proposed a model for
grounding word meanings in multimodal concepts, and Ando
et al. (2013) proposed a model of hierarchical object concept
formation based on multimodal information. Several methods
that enable robots to acquire words and spatial concepts based
on sensory-motor information in an unsupervised manner have
been proposed (Taniguchi A. et al., 2016; Isobe et al., 2017).
Hagiwara et al. (2016, 2018) proposed a Bayesian model to
acquire the hierarchical structure of spatial concepts based
on the sensory-motor information of a robot in real home
environments. Tangiuchi et al. (2019) summarized their studies
and related works on cognitive developmental robotics that
can learn a language from interaction with their environment
and unsupervised learning methods that enable robots to learn

a language without hand-crafted training data. As studies
on developmental robotics (Cangelosi and Schlesinger, 2014),
Cangelosi and his group have proposed computational models
for an iCub humanoid robot to ground action words through
embodied communications (Marocco et al., 2010; Stramandinoli
et al., 2017; Taniguchi et al., 2017; Zhong et al., 2019). Marocco
et al. (2010) proposed a computational model that enables the
iCub humanoid robot to learn the meaning of action words
by physically interacting with the environment and linking the
effects of actions with the behavior observed on an object before
and after the action. Stramandinoli et al. (2017) proposed a
robotic model for grounding abstract action words (i.e., USE,
MAKE) through the hierarchical organization of terms directly
linked to perceptual and motor skills of the iCub humanoid
robot. These studies focused on language acquisition by a
robot from a person who gives speech signals to the robot,
and enables robots to discover words and categories based on
their embodied meanings from raw sensory-motor information
(e.g., visual, haptic, auditory, and acoustic speech information)
in the living environment. They presume that a person has
knowledge about categories and signs representing the categories,
i.e., a symbol system shared in the society. Therefore, these
computational models cannot be considered as a constructive
model of symbol emergence systems. These studies have not
dealt with the dynamics of emerging symbols while agents form
categories based on sensory-motor information.

Taniguchi T. et al. (2016) and Taniguchi et al. (2018)
introduced a concept of symbol emergence system, which is a
multi-agent system that dynamically organizes a symbol system,
for example, by physical interaction with the environment and
semiotic communication with other agents as shown in Figure 1.
The figure represents a symbol emergence system. Note that a
symbol system cannot be controlled by anyone, but all individuals
are constrained by an emergent and shared symbol system.
In addition, all of them contribute to creating the socially
shared symbol system. To understand this phenomena, the
coupled dynamics of both a symbol system shared between the
agents and the internal representation systems of individuals
has to be modeled with a constructive and computational
approach. A computational model for category formation and
lexical acquisition by a robot has been proposed and evaluated
using daily objects (e.g., bottles, cups, and cans) in the living
environment (Nakamura et al., 2014). However, thus far, there is
a lack of a computational model that would describe the mutual
dependency on symbol emergence and would be evaluated in
experiments like the Talking Heads experiment (Steels, 1999).

In this study, we explicitly modeled the dynamics of multi-
agent communication and categorization of each agent as a
symbol emergence system. By modeling the categorization of
each agent and the communication of multi-agents as a symbol
emergent system, the mechanism of symbol emergence can
be explained as the inference process of model parameters,
and an approximate solution is guaranteed by a statistical
inference algorithm (e.g., M-H algorithm and Gibbs sampling).
Mathematical explanations and guarantees of our model in the
categorization of each agent and symbol emergence of multi-
agent systems are described in Chapter 3, and how our model
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FIGURE 1 | Overview of the symbol emergence systems (Taniguchi T. et al., 2016).

works in an experiment likes the talking head experiment
is described in Chapter 4. The experiment demonstrates
the process in which words representing object categories
are shared among agents in a language game using three
communication algorithms.

3. PROPOSED MODEL AND INFERENCE
ALGORITHM

3.1. Overview
Conventionally, several studies on concept acquisition based
on multimodal information using a Bayesian generative model
has been performed. Nakamura et al. (2009) proposed a model
in which a robot acquires the concept of an object using a
multimodal latent Dirichlet allocation (mLDA) consisting
of image, sound, haptic, and language information obtained
through human linguistic-instructions. The authors also
proposed a spatial concept acquisition model consisting of
position, image, and language information (Hagiwara et al.,
2016, 2018). These studies model concept acquisition based
on multimodal information including language information
within an individual agent. These models are effective in
concept formation and language acquisition based on linguistic
instructions by a person who has a stable language system.
However, there was a problem how to model the language
emergence through communications between agents who don’t
have stable language systems. As a solution for this problem,
this study proposes a model that considers multiple agents as
a symbol emergence system. This model makes it possible to
explain the process of symbol emergence based on the concept
formation and the language communication between agents as
an inference process of a word by the M-H algorithm.

Figure 2 shows the overview of the proposed model and the
inference process. In the proposed model, the concept formation
in an individual agent and the language communication between
agents are modeled as a symbol emergence system. The inference
process of a word w[i] is as follows.

• Step 1: sampling a word w[i] from the proposal distribution of
words based on an observation oA in agent A.
• Step 2: probably accepting the proposed word w[i] based on

the acceptance rate z calculated from the model parameters of
agent B.
• Step 3: updating the model parameters of agent B when the

proposed word w[i] is accepted.
• Steps 1 to 3 are repeated by changing role between agents.

In this model, a word w[i] is a latent variable in the symbol
emergence system, but can be interpreted as an observation
given from another agent in the inference process. In step
1, the sampling of a word from the proposal distribution
based on model parameters of the speaker agent can be
interpreted as an utterance based on speaker’s observation.
In step 2, the probabilistic acceptance of a proposed word
based on the model parameters of the listener agent can
be interpreted as the acceptance of another agent’s utterance
based on the listener’s knowledge. In step 3, the update of
model parameters in the listener agent based on accepted
words can be interpreted as the update of the listener’s
knowledge by accepting the utterance of another person. Thus,
the proposed model and the inference algorithm explain the
exchange of words between agents based on observations as
the model inference process. The details of the proposed
model and the inference algorithm are explained in the
following sections.
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FIGURE 2 | Overview of the proposed model and inference process. cA and cB show the index of a category in agent A and B. oA and oB show observations in agent

A and B. w shows the index of a word. Symbol emergence system based on categorization and communication is modeled as inference process of a word between

agents by M-H algorithm.

3.2. Expansion of a Multimodal Categorizer
From Personal to Interpersonal
The computational model that we propose in this paper is
based on a key finding that a probabilistic generative model
of multimodal categorization can be divided into several sub-
modules of probabilistic generative models for categorization
and message passing between the sub-modules. This idea of
dividing a large probabilistic generative model for developing
cognitive agents and re-integrating them was firstly introduced
as a SERKET framework (Nakamura et al., 2018). However, their
idea was only applied to creating a single agent. We found that
the idea can be used for modeling multi-agent systems and is very
suitable for modeling dynamics of a symbol emergence system.

We modeled the symbol emergence in a multi-agent system

and the category formation in individual agents as a generative

model by expanding a personal multimodal categorizer (see
Figure 3A) to an interpersonal multimodal categorizer (see
Figure 3B). First, (A) shows a personal multimodal categorizer,
which is a generative model with an integrated category c
as a latent variable and sensor information from haptics and
vision as observations oh and ov. The model is a simple
version of multimodal latent Dirichlet allocation used as an
object categorizer in the previous studies (Nakamura et al.,
2009; Ando et al., 2013). Next, (B) shows an interpersonal
multimodal categorizer in which two agents are modeled as a
collective intelligence, with wordw as a latent variable, and sensor
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FIGURE 3 | The expansion of a multimodal categorizer from personal to interpersonal: (A) shows a generative model of a personal multimodal categorizer between

haptics and vision, and (B) shows a generative model of an inter-personal multimodal categorizer between the agents. Dashed lines in (B) show communication

between agents. The parameters of these models are simplified.

information from agent A and B as observations oA and oB. As
shown in Figure 3, the model generating observations through
categories on each sensor from an integrated concept in an agent
can be extended as the model generating observations through
categories on each agent from a word in a multi-agent system.

Figure 3A represents a graphical model for probabilistic
generative model multimodal categorization (e.g., Nakamura
et al., 2014). It can integrate multimodal information, e.g.,
haptics and visual information, and form categories. Index of
category is represented by c in this figure. Following the SERKET
framework (Nakamura et al., 2018), we can divide the model into
two modules and a communication protocol for a shared node.
Here, c is shared by the two modules and the node is renamed
by w. We regard an index w as an index of word. In this case,
if we regard the two separated modules as two individual agents
(i.e., agent A and agent B), the communication between the two
nodes can be considered as exchange of signs (i.e., words). As we
see later, we found that, if we employ the Metropolis-Hastings
algorithm, which is one of the communication protocols that the
original SERKET paper proposed, the communication protocol
between the nodes can be considered as semiotic communication
between two agents. Roughly speaking, the communication is
described as follows. Agent A recognizes an object and generates
words for Agent B. If the word is consistent to the belief of Agent
B, then Agent B accepts the naming with a certain probability;
otherwise, Agent B rejects the information, i.e., does not believe
the meaning. If the rejection and acceptance probability of
the communication is the same as the probability of the M-
H algorithm, the posterior distribution over w, i.e., symbol
emergence among the agents, is theoretically the same as the
posterior distribution over c, i.e., interpersonal categorization.

3.3. Generative Process on the
Interpersonal Multimodal Categorizer
This subsection describes the generative process of the
interpersonal multimodal categorizer. Figure 4 shows the
graphical model is a single graphical model. However, following
the SERKET framework (see Figure 3), it can be owned by two

different agents separately. The right and left parts indicated with
a dashed line in Figure 4 show the parts owned by agents A and
B, respectively. Figure 4 and Table 1 show the graphical model
and the parameters of a proposed interpersonal multimodal
categorizer, respectively.

Index wd (of word w) connects the agents A and B as a
hidden variable to generate the index of a category cd from the
parameter of multinomial distribution θk in each agent. oA

d
and

oB
d
are observations on data point d obtained from the sensors

attached to the agents A and B, respectively. cA
d
and cB

d
are indices

of a category allocated to an observation oA
d
and oB

d
, respectively.

φA
l
and φB

l
are the parameters of multinomial distributions to

generate observations oA
d
and oB

d
based on categories cA

d
and cB

d
.

α and β are the hyperparameters of θ and φ. K is the number of
words in the word dictionary that a robot has. L is the number
of categories. D is the number of observed data points. The
multinomial distribution is denoted as Multi(·), and the Dirichlet
distribution is denoted as Dir(·).

The generative process of the interpersonal multimodal
categorizer is described as follows.

The parameters φA
l
and φB

l
of multinomial distributions on

each category (l ∈ L) are shown as follows:

φA
l ∼ Dir(βA), (1)

φB
l ∼ Dir(βB). (2)

The parameters θA
k
and θB

k
of multinomial distributions on each

word (k ∈ K) are shown as follows:

θAk ∼ Dir(αA), (3)

θBk ∼ Dir(αB). (4)

The following operations from (5) to (8) are repeated for each
data point (d ∈ 1, 2, ...,D):
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FIGURE 4 | Graphical model of the proposed interpersonal multimodal

categorizer.

TABLE 1 | Definition of variables in the proposed interpersonal multimodal

categorizer.

wd Index of the word

cAd , c
B
d Index of the category

oAd , o
B
d Observations of agents A and B

φA
l ,φ

B
l Parameters of the multinomial distribution

θAk , θ
B
k Parameters of the multinomial distribution

α,β Hyperparameters for θ ,φ

K Number of words

L Number of categories

D Number of data points

• Observations oA
d
and oB

d
generated from categories cA

d
and cB

d
are shown as follows:

oAd ∼ Multi(φA
cA
d

), (5)

oBd ∼ Multi(φB
cB
d

). (6)

• Indices of categories cA
d
and cB

d
generated from word wd are

shown as follows:

cAd ∼ Multi(θAwd
), (7)

cBd ∼ Multi(θBwd
). (8)

Theoretically, the generative model is a type of pre-existing
model for multimodal categorization (Nakamura et al., 2014,
2018) for an individual agent. In this study, we designed the
generation process of the interpersonal multimodal categorizer
by interpreting the observations in the multiple sensors of
an agent in pre-existing model as the observations in sensors
of multi-agents. Expansions in the inference process for the
interpersonal multimodal categorizer are described in the
next subsection.

Algorithm 1: Gibbs sampling algorithm

1: Initialize all parameters
2: for i = 1 to I do
3: for l = 1 to L do

4: φ
A[i]
l
∼ Dir(φ

A[i]
l
| OA,CA[i−1],βA)

5: φ
B[i]
l
∼ Dir(φ

B[i]
l
| OB,CB[i−1],βB)

6: end for

7: for k = 1 to K do

8: θ
A[i]
k
∼ Dir(θ

A[i]
k
| OA,W[i−1],αA)

9: θ
B[i]
k
∼ Dir(θ

B[i]
k
| OB,W[i−1],αB)

10: end for

11: for d = 1 to D do

12: c
A[i]
d
∼ Multi(c

A[i]
d
| θ

A[i]

w
[i−1]
d

)Multi(oA
d
| φ

A[i]

c
A[i]
d

)

13: c
B[i]
d
∼ Multi(c

B[i]
d
| θ

B[i]

w
[i−1]
d

)Multi(oB
d
| φ

B[i]

c
B[i]
d

)

14: w
[i]
d
∼ Multi(c

A[i]
d
| θ

A[i]

w
[i]
d

)Multi(c
B[i]
d
| θ

B[i]

w
[i]
d

)

15: end for

16: end for

3.4. Communication Protocol as an
Inference Algorithm on the Interpersonal
Multimodal Categorizer
This subsection describes the protocol of semiotic computation
between two agents and cognitive dynamics of categorization in
individual agents. As a whole, the total process can be regarded
as a model of symbol emergence in the multi-agent system.
Additionally, the total process can be regarded as an inference
process of the probabilistic generative model integrating the two
agents’ cognitive systems (Figure 4).

3.4.1. Gibbs Sampling
First, to introduce our proposed model, we describe an ordinary
Gibbs sampling algorithm for the integrative probabilistic
generative model in Figure 4. Gibbs sampling algorithm is widely
used for multimodal categorization and language learning in
robotics. Gibbs sampling (Liu, 1994) is known as a type of
Markov chain Monte Carlo (MCMC) algorithm for inferring
latent variables in probabilistic generative models.

Algorithm 1 shows the inference algorithm on the model of
Figure 4 using Gibbs sampling. In the algorithm 1, i shows the
number of iterations; OA and OB denote a set of all observations
in agents A and B, respectively; CA and CB denote a set of all
categories in agents A and B, respectively; and W denotes a set

of all words. In line 14 of Algorithm 1, word w
[i]
d

is sampled

from the product of probability distributions P(c
A[i]
d
| θ

A[i]
k

) and

P(c
B[i]
d
| θ

B[i]
k

) based on parameters θ
A[i]
k

and θ
B[i]
k

in agents
A and B.

If an agent can observe both θ
A[i]
k

and θ
B[i]
k

, which are internal
representations of each agent, this algorithm can work. However,

Agent A cannot observe θ
B[i]
k

, or Agent B cannot observe θ
A[i]
k

.
Therefore, no agent can perform Gibbs sampling in this multi-
agent system. In this sense, this is not a valid cognitive model for
representing the symbol emergence between two agents.
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3.4.2. Computational Model of the Symbol

Emergence Based on an Inference Procedure Using

the Metropolis-Hastings Algorithm
A communication protocol based on the M-H algorithm
proposed in SERKET enables us to develop a valid cognitive
model, i.e., updating parameters by an agent does not require
the agent to use cognitively unobservable information (Hastings,
1970; Nakamura et al., 2018). The M-H algorithm is one of
Markov chain Monte Carlo algorithms, and Gibbs sampling is
a special case of it. It is known that both algorithms can sample
latent variables from the posterior distribution. That means that,
theoretically, both of the algorithms can converge to the same
stationary distribution.

Algorithm 2 shows the proposed inference algorithm based
on the M-H algorithm. It can be also regarded as a semiotic
communication between two agents, and individual object
categorization process under the influence of words that are given
by the other agent.

A set of all the words W[i] at ith iteration is calculated by
two steps of the M-H algorithm, as shown in lines 3 and 5.
Basically, the M-H algorithm requires information that an agent
can observe within the dotted line in Figure 4 and wd. In this
model of symbol emergence, word wd is generated, i.e., uttered,
by a speaker agent, either A or B. A listener agent judges if
the word properly represents the object the agent looks at. The
criterion for the judgement should rely on the information the
listener knows, i.e., the probability variables inside the dotted line
in Figure 4.

Algorithm 3 shows the M-H algorithm, where Sp and Li
are the speaker and listener, respectively. Generation of word

wd from speaker’s observation o
Sp

d
and category c

Sp

d
, which the

speaker regards as the target object, is modeled as a sampling

process using P(w
Sp

d
|c
Sp

d
, θ

Sp

d
). This sampling can be performed by

using the information that is available to the speaker agent. At
line 3 in Algorithm 2, the sampling and judgment of wordsW are
performedwith agent A as the speaker, and agent B as the listener.
At line 5 in Algorithm 2, the sampling and judgment of wordsW
are performed with agent B as the speaker, and agent A as the
listener. In the M-H algorithm, the listener agent can update its
parameters by using information that is available to the listener
agents, i.e., ·Li and wd.

Simultaneous use of Algorithms 2 and 3 performs a
probabilistic inference of the probabilistic generative models
shown in Figure 4. Importantly, the M-H algorithm can sample
words from the posterior distribution exactly the same way
as Gibbs sampling that requires all information owned by
an individual agent in a distributed manner. This gives us a
mathematical support of the dynamics of symbol emergence.

3.4.3. Dynamics of Symbol Emergence and Category

Formation
This subsection describes how the proposed inference algorithm
explains the dynamics of symbol emergence and category
formation through semiotic communication. Figure 5

conceptually shows the relationship between the dynamics
of symbol emergence and concept formation between the

Algorithm 2: Proposed interactive learning process based on the
M-H algorithm

1: Initialize all parameters
2: for i = 1 to I do
3: W[i],CA[i],CB[i], θB[i] = M-H algorithm(OA,WA[i−1],

CA[i−1],OB,WB[i−1],CB[i−1],θB[i−1])
4: WB[i]←W[i]

5: W[i],CB[i],CA[i], θA[i] = M-H algorithm(OB,WB[i],CB[i],
OA,WA[i−1],CA[i],θA[i−1])

6: WA[i]←W[i]

7: end for

Algorithm 3:M-H algorithm

1: M-H algorithm(OSp,WSp,CSp,OLi,WLi,CLi, θLi):
2: for l = 1 to L do

3: φ
Sp

l
∼ Dir(φ

Sp

l
| OSp,CSp,βSp)

4: end for

5: for k = 1 to K do

6: θ
Sp

k
∼ Dir(θ

Sp

k
| OSp,WSp,αSp)

7: end for

8: for d = 1 to D do

9: c
Sp

d
∼ Multi(c

Sp

d
| θ

Sp

k
)Multi(o

Sp

d
| φ

Sp

l
)

10: end for

11: for d = 1 to D do

12: w
Sp

d
∼ P(w

Sp

d
| c

Sp

d
, θ

Sp

k
)

13: z ∼ min

(

1,
P(cLi

d
|θLi
k
,w

Sp

d
)

P(cLi
d
|θLi
k
,wLi

d
)

)

14: u ∼ Unif(0, 1)
15: if u ≤ z then
16: wd = w

Sp

d
17: else

18: wd = wLi
d

19: end if

20: end for

21: for l = 1 to L do

22: φLi
l
∼ Dir(φLi

l
| OLi,CLi,βLi)

23: end for

24: for k = 1 to K do

25: θLi
k
∼ Dir(θLi

k
| OLi,W,αLi)

26: end for

27: for d = 1 to D do

28: cLi
d
∼ Multi(cLi

d
| θLi

k
)Multi(oLi

d
| φLi

l
)

29: end for

30: return W,CSp,CLi, θLi

agents, and the inference process for a word in the proposed
model. The proposed model consists of the categorization
part, where the agents form categories individually, and the
communication part, in which the agents exchange words
between them. The categorization part is modeled based on
latent Dirichlet allocation (LDA). The communication part
connects the categorization parts of agents A and B. We modeled
the communication part as the inference process of hidden

variable w
[i]
d

in the M-H algorithm.

Frontiers in Robotics and AI | www.frontiersin.org 8 December 2019 | Volume 6 | Article 134

https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles


Hagiwara et al. Symbol Emergence as an Interpersonal Multimodal Categorization

FIGURE 5 | Dynamics of symbol emergence and category formation through semiotic communication between the agents in the proposed method.

In line 12 of Algorithm 3, word w
Sp

d
is sampled by a proposal

distribution with parameters of the speaker only (i.e., c
Sp

d
and θ

Sp

k
)

by the following formula:

w
Sp

d
∼ P(w

Sp

d
| c

Sp

d
, θ

Sp

k
). (9)

The process can be regarded as a word utterance from agent A
in observation oA

d
based on its internal parameters, as shown in

Figure 5A. This is a part of semiotic communication.

In line 13, sampled word w
Sp

d
is judged by the listener by using

acceptance rate z calculated by the following formula:

z ∼ min

(

1,
P(cLi

d
| θLi

k
,w

Sp

d
)

P(cLi
d
| θLi

k
,wLi

d
)

)

. (10)

Acceptance rate z of sampled word w
Sp

d
can be calculated from

parameters of the listener only (i.e., cLi
d
, θLi

k
,wLi

d
). Therefore, this

is plausible from a cognitive perspective.

In lines 14–19, sampled word w
Sp

d
is probabilistically accepted

or rejected by the listener using acceptance rate z and uniform
random number u by the following formulas:

u ∼ Unif(0, 1), (11)

w
[i]
d
=

{

w
Sp[i]

d
(u ≤ z)

w
Li[i−1]
d

(otherwise),
(12)

where the continuous uniform distribution is denoted as Unif(·).

Word w
Lp[i−1]

d
of the listener at a previous iteration is used when

sampled word w
Sp

d
is rejected. Roughly speaking, if the listener

agent considers that the current word is likely to be the word that
represents the object that the listener also looks at, the listener
agent accepts the word and updates its internal representations
with a high probability. The process can be explained as a
judgment as to whether agent B accepts or rejects an utterance
of agent A based on self-knowledge, as shown in Figure 5B.

In lines 21–29, the internal parameters of the listener are
updated based on judged wordsW by the following formulas:

φLi
l ∼ Dir(φLi

l | O
Li,CLi,βLi), (13)

θLik ∼ Dir(θLik | O
Li,W,αLi), (14)

cLid ∼ Multi(cLid | θ
Li
wd
)Multi(oLid | φ

Li
cLi
d

). (15)

The process can be explained as the updation of self-
knowledge based on partial acceptance of the other agent’s
utterance. Because both the utterance and acceptance of words
use only self-knowledge, these processes can be rationally
convinced.

As shown in Algorithm 2, words W, categories C and
parameters φl and θk are inferred by repeating this process
with I iterations while exchanging the agents A and B.
This inference process not only is rationalized as a model
of the symbol emergence and category formation through
semiotic communication between the agents, but also gives
a mathematical guarantee on the inference of the model
parameters. Details of the calculation process on the inference
of model parameters by the M-H algorithm are described in the
Supplementary Material.
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FIGURE 6 | Overview of the experiment: agents A and B observed N objects placed at the front of them. Both agents capture images and suggest words M times for

each object.

FIGURE 7 | Experimental environment: two cameras were set as agent A and B with different angles. Each agent captured a target object placed at the center of two

agents 10 times, and we prepared ten objects as targets.

4. EXPERIMENT

4.1. Experimental Setup
4.1.1. Procedure
We performed an experiment to verify the validity of
the proposed model and algorithm for modeling the
dynamics of symbol emergence and concept formation.
Specifically, we used an experiment of object categorization
in the real world. We also discuss the functions required
for semiotic communication in the category formation
and the symbol emergence in multi-agent systems from
the comparison of three communication algorithms on
the proposed model. Figure 6 shows an overview of
the experiment.

The experiment was performed by the following procedure:

• Step 1: Capture and memorize N objects with M images for
each object on agent A and B with different angles.
• Step 2: Convert a memorized image to a visual feature as

observations oA
d
, oB

d
for agent A and B.

• Step 3: Sampling wd and updating model parameters
from observations oA

d
, oB

d
by the M-H algorithm. This step

corresponds to semiotic communication between agents
A and B based on the opponent’s utterances and self-
organized categories.
• Step 4: Repeat step 3 with I iterations.
• Step 5: Evaluate the coincidence of words and categories

between agents A and B for each object.

In the experiment, objects N, imagesM, and iterations I were set
as 10, 10, and 300, respectively. We performed steps 1–5 with 10
trials for a statistical evaluation.

4.1.2. Capturing and Memorizing Images (Step 1)
Figure 7 shows the experimental environment. Two cameras on
agents A and B captured object’s images from different angles.
Captured images were memorized on a computer. Resolution
of a captured image was 640 pixels on width and 360 pixels on
height. Target objects were a book, can, mouse, camera, bottle,
cup, pen, tissue box, stapler, and scissors, as shown in the right
side of Figure 7.

4.1.3. Converting Memorized Images to Observations

(Step 2)
An object’s image captured by a camera is converted to
a visual feature as an observation by CaffeNet (Jia et al.,
2014), which is a framework for convolutional neural networks
(CNN) (Krizhevsky et al., 2012) provided by Berkeley Vision and
Learning Center. The parameters of CNN were trained by using
the dataset from the ImageNet Large Scale Visual Recognition
Challenge 20121. In this study, CaffeNet is used as an image
feature extractor. Figure 8 shows the conversion process from
an image to a visual feature. In CNN, it is known that as the
layer closer to the input layer approaches the output layer, it is

1ILSVRC2012: http://www.image-net.org/challenges/LSVRC/2012/
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FIGURE 8 | Conversion process from an image to a visual feature with Bag of Feature description.

gradually structured from low-order image features into semantic
features specific to the dataset (Zeiler and Fergus, 2014).

Therefore, layers that are extremely low cannot benefit from
the high discriminatory structure in CNN. In contrast, in a
layer that is too high, it becomes too specialized for the training
data set, and the generalization performance will be reduced.
Therefore, the 6th or 7th layer, which are full connected layers
one or two levels before the output layer, are generally used as
image features in CaffeNet (Donahue et al., 2013; Matsukawa and
Suzuki, 2016). In this study, the 7th layer was empirically used as
an image feature vector. The image feature vector is described
by a 4,096-dimensional vector. This vector is multiplied by a
constant to approximate the frequency of 4,096-dimensional
Bag of Feature description as the visual feature of observation.
Visual feature oi ∈ {o1, o2, · · · , oI} was calculated by the
following equation:

oi =
exp (vi)

∑I
j=0 exp (vj)

× 102, (16)

where vi ∈ {v1, v2, · · · , vI} is a value in the 7th layer of CaffeNet. I
is the number of output units at the 7th layer and was set as 4096
in the experiment.

4.1.4. Communication and Categorization (Steps 3

and 4)
To evaluate the effect of the proposed algorithm on the
symbol emergence between agents and the categorization of
each agent, we designed no communication and no rejection
as the baseline communication algorithms. We conducted the
experiment by employing the proposed model with three
communication algorithms:

• No communication: z = 0 is used instead of Formula (10)
in the inference. In this algorithm, two agents have no
communication. Each agent does the categorization based
on observations only, without word information from the
other agent.

• No rejection: z = 1 is used instead of Formula (10) in the
inference. In this algorithm, two agents accept all words from
the other agent and update model parameters.
• Proposed algorithm: Formula (10) by the M-H algorithm is

used in the inference. In this algorithm, two agents decide
whether to accept or reject a word from the other agent based
on self-organized categories.

The validity of the proposed model in the dynamics of symbol
emergence and category formation and the functions required for
semiotic communication are discussed by comparing the results
between the proposed algorithm and two baseline algorithms, i.e.,
no rejection and no communication.

The hyperparameters of the proposed model were set as
follows: αA = 0.01, αB = 0.001, βA = 0.01, βB = 0.001. The
number of data points D was 100. The number of categories and
words were set as follows: L = 15, K = 15, to cover ten target
objects. As characters corresponding to the word index, we used
the following 15 characters: a, b, c, d, e, f, g, h, i, j, k, l, m, n, and o.

4.1.5. Evaluation Criteria (Step 5)
We evaluated the performance of the proposed model of the
symbol emergence and concept formation using the following
metrics: the kappa coefficient (Cohen, 1960) of words and
adjusted rand index (ARI) (Hubert and Arabie, 1985) of
categories between the agents.

The kappa coefficient was used as an evaluation criteria
indicating the coincidence of words between agents A and B.
Kappa coefficient κ was calculated by the following equation:

κ =
Co − Ce

1− Ce
, (17)

where Co is the coincidence rate of words between agents, and
Ce is the coincidence rate of words between agents by random
chance. The kappa coefficient is judged as follows: Excellent:
(κ > 0.8), Good: (κ > 0.6), Moderate: (κ > 0.4), Poor:
(κ > 0.0) (Landis and Koch, 1977).

The ARI was used as an evaluation criteria indicating the
coincidence of categories between agents A and B. The ARI was
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TABLE 2 | Kappa coefficient on words and ARI on categories between agents A and B: the result is described with mean, standard deviation (SD), p-value, and t-test for

three algorithms: no communication, no rejection, and the proposed algorithm.

Kappa coefficient ARI

Algorithm Mean SD P-value T-test Mean SD P-value T-test

No communication 0.01 0.04 8.9× 10−18 ** 0.89 0.07 2.2× 10−1 n.s.

No rejection 0.57 0.06 1.0× 10−9 ** 0.88 0.03 3.0× 10−3 **

Proposed algorithm 0.88 0.05 – – 0.92 0.02 – -

In the t-test, **p < 0.01, n.s. (not significant) p ≥ 0.05.

calculated by the following equation:

ARI =
Index− Expected Index

Max Index− Expected Index
. (18)

Welch’s t-test was used for statistical hypothesis testing between
the proposed algorithm and two baseline algorithms, i.e., no
communication and no rejection.

4.2. Experimental Results
Table 2 shows the experimental results: the kappa coefficient and
ARI for the proposed algorithm and two baseline algorithms, i.e.,
no communication and no rejection.

For the kappa coefficient on words between agents A and B,
the proposed algorithm obtained a higher value than the baseline
algorithms, and there were significant differences between the
proposed algorithm and baseline algorithms in the t-test.
The result implies that the agents used the same words for
observations with a very high coincidence (of 0.8 or more) in the
proposed algorithm.

The ARI for the proposed algorithm was higher than
for the baseline algorithms, and there were significant
differences between the proposed algorithm and no rejection.
In case of no rejection, the word has a negative effect on
categorization between the agents, comparing with the result
of no communication. On the other hand, in the proposed
algorithm that stochastically accepts the other agent’s word based
on self-knowledge, the word positively acts on the categorization
between agents. This result suggests that a rejection strategy in
the semiotic communication works as an important function
in the language evolution. Naturally, our result suggests it is
biologically feasible and mathematically feasible.

Figure 9 shows transitions in the kappa coefficients of words
between agents A and B by the proposed algorithm, no
rejection, and no communication in ten trials. In case of no
communication, because all words of the opponent were rejected,
the coincidence of words was at the level of random chance.
In case of no rejection, although the coincidence of words is
increasing in the initial iterations, it drifts and stagnates at∼ 0.55,
which is a moderate value. In case of the proposed algorithm,
the kappa coefficient is higher than for the baseline algorithms,
and the sharing of words accompanying the increase in iterations
was confirmed.

Figure 10 shows transitions for the ARIs of categories between
agents A and B by the proposed algorithm, no rejection,
and no communication in ten trials. The ARI evaluates the

FIGURE 9 | Transition on the kappa coefficient of words between agents: a

line shows an average value, and top and bottom of each color show a

maximum and minimum values in ten trials.

similarity of categorization for object data among agents. A
higher ARI indicates that similar categories are formed between
agents. In this experiment, solely the viewpoint is different
between agents. Therefore, it can be easily predicted that
similar categories are formed between agents when categories
are formed without semiotic communication. As a baseline,
the ARI of no communication indicates that similar categories
are formed between agents. However, in the result of no
communication, words for sharing categories between agents
are not formed. Words that share categories are formed in
the proposed algorithm and no rejection. The ARI of the
proposed algorithm is confirmed to exceed the ARI of no
rejection in 150 iterations compared with the result of the
proposed algorithm and no rejection. In the algorithm of no
rejection, it is considered that learning progressed rapidly in
the early part by utterances from other agents and their own
observations, while utterances that did not match other agents
for some observations caused confusion in category formation
in the latter part. The proposed algorithm exhibited a higher
ARI than no communication in the average, despite receiving
utterances from other agents and sharing words, as well as no
rejection. This indicates that the proposed algorithm effectively
uses the utterances of others to form a common category
among agents.
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The result suggests the dynamics of symbol emergence and
concept formation, where a symbol communication slowly affects
the category formation in an agent and promotes sharing of the
categories between the agents. It is a cognitively natural result:
repetition of semiotic communication in the same environment
gradually causes the sharing of categories between the agents.

For qualitative evaluation, we showed words assigned to each
of the three objects: bottle, can, and book. Figure 11 shows the
examples of object’s images observed from the viewpoints of
agent A and B. Table 3 shows the words sampled by agents A and
B for three example objects on three algorithms: the proposed
algorithm and two baseline algorithms (no rejection and no
communication). The sampled words are described as three best
results out of ten sampled words for each object. (·) shows the rate
of a word to ten sampled words. In case of no communication, a
word representing an object was not shared between the agents.
In case of no rejection, words representing an object, such as “i,”
“b,” and “c” (for the bottle) were shared, but the probabilities of
words are not high. In case of the proposed algorithm, it was
confirmed that a word representing an object was shared between
the agents with a high probability.

To evaluate the accuracy of categorization of actual objects,
the ARI between the object labels and categories formed by the
proposed algorithm is shown in Figure 12. The ARIs in the

FIGURE 10 | Transition on the ARI of categories between agents: a line shows

an average value, and top and bottom of each color show a maximum and

minimum values in ten trials.

three communication algorithms were above 0.9, which means
that categories similar to actual objects have been formed in
each agent. Focusing on the difference in the ARIs between
agent A and B at the 300th iteration, the difference in no
communication, no rejection, and the proposed algorithm was
0.023, 0.033, and 0.003, respectively. The ARI difference between
agents in the proposed algorithm was small compared with the
baseline algorithms. This is because the categorization results
for objects are similar between agents by sharing categories
through communication using words. This result demonstrates
that the mechanism of category sharing through semiotic
communication by the proposed algorithm works effectively,
even in the categorization of actual objects.

The learning process of the correspondence relationship
between words and objects for each agent is shown in Figure 13

as a confusion matrix. As the number of iterations increases,
words corresponding to object labels were learned from random
to one-on-one relationship. Each word was allocated to describe
an object at the result of 300 iterations.

Figure 14 shows the result of principal component analysis
(PCA) between the confusion matrices for agents A and B in
Figure 13. The results are described from 30 to 300 iterations
at 30 iterations intervals on two and three dimensions. As
the number of iterations increases, the results of PCA on the
confusion matrices of two agents are getting closer. This can be
interpreted as a process in which the interpretation system of
words and objects between the agents approaches by the iteration
of the semiotic communication.

4.3. Discussion
We evaluated the validity of the proposed model and algorithm
as a model of the dynamics on symbol emergence and category
formation from the experiments using daily objects in the
real-world environment. In the experiment, we compared the
process of symbol emergence and category formation of objects
between the agents by using three communication algorithms:
the proposed algorithm, no rejection, and no communication.
The experimental results demonstrated the following three events
in the communication algorithms.

• In case of no communication, when the agent rejects all the
other agent’s utterances, the coincidence of categories was high
but the coincidence of words was not shared between the
agents. This result is understood as the following event: similar
categories are formed when two agents have similar sensors
that individually observe the same object.

FIGURE 11 | Examples of object’s images: captured images of a bottle, can, and book from the viewpoints of agents A and B.
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TABLE 3 | Sampling results of words for three example objects by three communication algorithms, i.e., no communication, no rejection, and the proposed algorithm: the

sampling results are described as 1st, 2nd , and 3rd words in 10 sampled words for each object.

No communication No rejection Proposed algorithm

Object Word Agent A Agent B Agent A Agent B Agent A Agent B

1st h, l (0.2) j, l (0.2) b (0.7) i (0.5) c (1.0) c (1.0)

Bottle 2nd – – i (0.2) b (0.4) – –

3rd b,d, f , i,m, o (0.1) b,d, e, h, i, k (0.1) c (0.1) c (0.1) – –

1st h, i (0.3) l (0.3) j (0.6) g (0.5) f (1.0) f (1.0)

Can 2nd – e (0.2) g, k (0.2) k (0.3) – –

3rd a, e, k, n (0.1) b,g, h, j, o (0.1) – j (0.2) – –

1st m, o (0.2) a (0.3) n (0.5) h (0.4) b (0.6) b (0.6)

Book 2nd – g, k (0.2) c (0.4) c, n (0.3) k (0.4) k (0.4)

3rd c,d, g, i, k, l (0.1) – h (0.1) – – –

The rate of a word to 10 sampled words is described in (·).

FIGURE 12 | ARI between object labels and categories formed by the proposed algorithm in ten trials with agents A and B. The horizontal axis and vertical axis show

the iteration and ARI, respectively. (A) Agent A, (B) Agent B.

• In case of no rejection, when the agent unconditionally
accepts the other agent’s utterances and updates the internal
parameters, the coincidence of words drifts and stagnates, and
the coincidence of categories decreases, compared with no
communication. This result is understood as the following
event: other agent’s utterances that use different symbols
interfere with categorization within the agent’s individual as
a noise.
• In the proposed algorithm, which probabilistically

accepts the other agent’s utterances based on the
internal parameters, the coincidence of words was
very high, and the coincidence of categories also had
a high value compared with other algorithms. This
result is also convincing as a mechanism of the symbol
emergence and category formation based on the human
semiotic communication.

Furthermore, it was suggested that the semiotic
communication needs the function of rejecting
other’s utterances based on one’s knowledge in the
dynamics of symbol emergence and category formation

between the agents. Evaluation of the validity of this
suggestion in human semiotic communication will be a
future work.

In addition, it is important whether the proposed model

works in linguistic communication with practical robots and

people. In the study of the hierarchical spatial concept (Hagiwara

et al., 2018), the author implemented multimodal categorization

based on feature extraction and mLDA model based on CNN,

which is the basis of the proposed model. In this research, the
robot [Toyota Human Support Robot (Yamamoto et al., 2019)]
has achieved online learning through language instructions
with a user in the practical world. The robot takes a few

seconds for feature extraction and inference by GPU-equipped
computer. Even in the proposed model of this study, there is
no significant difference in the size of data used for feature
extraction and inference, and it will scale to language learning
using robots in the practical world. Additionally, in this
study, CNN is used as a feature extractor for observations.
Generally, the CNN needs training of a large-scale data set
according to the target objects. However, feature vectors in an
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FIGURE 13 | Confusion matrix between words and object’s labels in each agent. The horizontal axis and vertical axis show the index of object’s label and word,

respectively. The order of the words was sorted according to the frequency of each object at agent A with 300 iterations. (A) Agent A, 1 iteration, (B) Agent A, 50

iterations, (C) Agent A, 300 iterations, (D) Agent B, 1 iteration, (E) Agent B, 50 iterations, (F) Agent B, 300 iterations.

FIGURE 14 | Results of PCA on the confusion matrix for agents A and B. The results are described from 30 to 300 iterations with a 30 iteration interval. (A) Two

dimensions, (B) Three dimensions.

intermediate layer as used in this study are low-order image
features that are less dependent on the target objects in the
dataset and can be directly used for other objects and scenes
as well.

5. CONCLUSIONS

This study focused on the symbol emergence in a multi-
agent system and the category formation in individual agents
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through semiotic communication that is the generation and
interpretation of symbols associated with categories formed from
the agent’s perception. We proposed a model and an inference
algorithm representing the dynamics of symbol emergence and
category formation through semiotic communication between
the agents as an interpersonal multimodal categorizer. We
showed the validity of the proposed model and inference
algorithm on the dynamics of symbol emergence and concept
formation in multi-agent system from the mathematical
explanation and the experiment of object categorization and
symbol emergence in a real environment. The experimental
results on object categorization using three communication
styles, i.e., no communication, no rejection, and the proposed
algorithm based on the proposed model suggested that semiotic
communication needs a function of rejecting other’s utterances
based on one’s knowledge in the dynamics of symbol emergence
and category formation between agents.

This study did not model an emergence of a grammar.
However, the proposed model and algorithm succeeded in
giving a mathematical explanation for the dynamics of symbol
emergence in multi-agent system and category formation
in individual agents through semiotic communication. This
means our study showed a certain direction for treating
multi-agent system logically in the symbol emergence and
category formation.

As future work, we are extending the proposed model based
on a mutual segmentation hypothesis of sound strings and
situations based on co-creative communication (Okanoya and
Merker, 2007).

The extension will be achieved through the following
research process.

• The extension for a mutual segmentation model of sound
strings and situations based on multimodal information
will be achieved based on a mLDA with nested Pitman-
Yor language model (Nakamura et al., 2014) and a
spatial concept acquisition model that integrates self-
localization and unsupervised word discovery from spoken
sentences (Taniguchi A. et al., 2016).
• To reduce development and calculation costs associated

with the large-scale model, “Serket: An Architecture for
Connecting Stochastic Models to Realize a Large-Scale
Cognitive Model” (Nakamura et al., 2018), will be used.
• Experiment with N agents will be performed on symbol

emergence and concept formation by expanding the proposed
model. We can design an experiment as a communication

structure based on human conversation, because human
conversation is usually performed by two people. In a related
study, Oshikawa et al. (2018) proposed a Gaussian process
hidden semi-Markov model, which enables robots to learn
rules of interaction between persons by observing them in an
unsupervised manner.
• Experimental results have shown the importance of a rejection

strategy, but the evidence for the human brain to use
such a strategy is not shown. We are planning to conduct
psychological experiments.
• As an exploratory argument, mapping category c to

observation o is theoretically possible for a neural network.
A future study can develop a deep generative model, which
integrates deep learning and generative model, by application
of multimodal learning with deep generative models (Suzuki
et al., 2016).
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