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Abstract: A pandemic caused by the novel coronavirus (SARS-CoV-2 or COVID-19) began in December
2019 in Wuhan, China, and the number of newly reported cases continues to increase. More than
19.7 million cases have been reported globally and about 728,000 have died as of this writing
(10 August 2020). Recently, it has been confirmed that the SARS-CoV-2 main protease (Mpro) enzyme
is responsible not only for viral reproduction but also impedes host immune responses. The Mpro

provides a highly favorable pharmacological target for the discovery and design of inhibitors. Currently,
no specific therapies are available, and investigations into the treatment of COVID-19 are lacking.
Therefore, herein, we analyzed the bioactive phytocompounds isolated by gas chromatography–mass
spectroscopy (GC-MS) from Tinospora crispa as potential COVID-19 Mpro inhibitors, using molecular
docking study. Our analyses unveiled that the top nine hits might serve as potential anti-SARS-CoV-2
lead molecules, with three of them exerting biological activity and warranting further optimization
and drug development to combat COVID-19.

Keywords: SARS-CoV-2; COVID-19; Tinospora crispa; natural products; phytochemicals; secondary
metabolites; molecular docking
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1. Introduction

In late December 2019, Severe Acute Respiratory Disorder Coronavirus 2 (SARS-CoV-2) became an
outbreak in China and then spread to other countries. Infected persons exhibit pneumonia indications,
progressing to severe acute respiratory disorder. In January 2020, it was confirmed that an unknown sort
of coronavirus named SARS-CoV-2 (formerly named as 2019-nCoV) had come out. On February 11, 2020,
the World Health Organization (WHO) named the Wuhan pneumonia as Coronavirus Disease-2019
(COVID-19) and declared this infectious disease to be a global pandemic. Certain animals, including
mammals, reptiles, and birds prone to this infectious disease caused by the virus are deadly, while
there have been several deaths by respiratory contamination transmitted from animal to human then
transmitted to humans [1,2].

The virus, known as coronavirus, a single RNA-stranded virus, belongs to the Coronaviridae family.
The RNA is encapsulated in the membrane, and the virion contains phosphorylated nucleocapsid
protein and RNA. By interacting with the angiotensin-converting-enzyme-2 (ACE2) receptor, the virus
enters the host and causes severe respiratory tract infection (RTI) in humans. Viral proteases have
been well documented as potential approved drug targets for several infections, including hepatitis C
virus (HCV) and human immunodeficiency virus (HIV) [3]. Recent studies from Liu and his group
documented the presence of the main protease (Mpro) enzyme in SARS-CoV-2 [4]. Homology modeling
with SARS-CoV Mpro has delineated about a 96% structural similarity with SARS-CoV Mpro [5]. Due to
the structural similarity with the Mpro from other coronaviruses, SARS-CoV-2 Mpro can be considered
to be a prospective target for drug discovery for COVID-19 treatment. SARS-CoV-2 Mpro cleaves the
overlapping pp1a and pp1b polyproteins through proteolytic cleavage, which is considered to be a
critical step for viral replication [6–8]. Additionally, the functioning of replication-essential enzymes,
for instance, RNA-dependent RNA polymerase (RdRp), nsp13 are also dependent on the proteolytic
release [9]. Consequently, SARS-CoV-2 Mpro is responsible for inhibiting SARS-CoV-2 replication.
Therefore, targeting this specific enzyme will lead towards potential therapeutic advantages in drug
discovery for this dangerous virus.

Scientists from all over the world are coming together and working simultaneously to fight
against this deadly disease. However, so far, specific therapies regarding the treatment have been
too little, and measures that have been implied are restricted to limited supportive and preventive
therapies. Experimental trials have been carried out using a combination of lopinavir/ritonavir, which
are commonly used to treat human immunodeficiency virus (HIV) infection [10]. Another experiment
using four FDA approved drugs, including nelfinavir, pitavastatin, perampanel, and praziquantel,
identified nelfinavir as a potent inhibitor for SARS-CoV-2 Mpro enzyme [11]. Although trials have
already been carried out for the treatment of SARS-CoV-2 infection, preliminary investigations remain
unapproved regarding their use.

Researchers have recently been searching for potent therapeutic agents from medicinal plants
for SARS-CoV-2 infection [12]. Different secondary metabolites, including alkaloids, flavonoids,
tannins, glycosides, lignin, and terpenes, are available from medicinal plants. Various studies have
already established the function of phytochemicals in treating various infections and diseases [13–18].
Moreover, compound isolation and further investigation of several pharmacological activities have
been established as a crucial factor in drug discovery [19].

In the present study, we tried to identify the role of some isolated phytochemicals from a medicinal
plant, known as Tinospora crispa Miers., a member of the Menispermaceae family, for the treatment of
COVID-19 using computational biology techniques. The plant is locally known as Gulancha [20]. It is
indigenous to Bangladesh, Eastern China, India, and Malaysia. Our previous work also confirmed
the hepatoprotective, antinociceptive, anxiolytic, antidepressant, and antipyretic activities of plant
extract and fractions of T. crispa [21,22]. Moreover, the ethnobotanical role of the plant has already
been documented, primarily as a tonic, a blood purifier, and for stomach disorders [20]. Importantly,
the plant exhibited significant antimalarial attributes in combination with pyrimethamine, which
corroborates the findings from recent studies providing evidence for the use of the antimalarial
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drug chloroquine and hydroxychloroquine to combat against SARS-CoV-2 [23–25]. In addition, one
study reported the antiviral activity of T. crispa along with other traditional herbs delineated antiviral
activity against fish pathogenic viruses, including infectious hematopoietic necrosis virus, infectious
pancreatic necrosis virus, Oncorhynchus masou virus [26]. The active components from another species
of Tinospora (T. cordifolia) has been shown to represent not only antiviral activity but also protease
inhibitor activity [27]. Therefore, this study rationalizes the role of screened compounds of T. crispa to
combat SARS-CoV-2.

2. Results

2.1. GC-MS Analysis

In 50 min retention time, the methanol extract of T. crispa contained a total of 309 compounds
eluted between 5.0–40.0 min (Figure 1). Fifty-six (56) bioactive compounds were selected for this
study (Table 1).
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Figure 1. Total ionic chromatogram (TIC) of methanolic extract of T. crispa whole plants by GC-MS.

Table 1. Quantitative compounds identified from methanol extract of T. crispa by GC-MS analysis.

Compound Name Retention Time m/z Area PA (%)

Benzeneethanamine 10.083 73.00 3196250 0.106518
Camphenol 13.761 107.00 431753 0.014389

Strophanthidin 22.159 79.00 334706 0.011154
Retinal 22.159 79.00 334706 0.011154

Trans-Geranylgeraniol 24.911 69.00 4724235 0.15744
3,4-Dihydroxymandelic acid 17.261 73.00 2174852 0.072479

Imidazolidin-4-one,
2-imino-1-(4-methoxy-6-dimethylamino-1,3,5-triazin-2-yl) 25.586 251.00 4374165 0.145774

Cholest-22-ene-21-ol, 3,5-dehydro-6-methoxy 25.771 95.00 5058177 0.168569
d-Mannitol, 1-O-(16-hydroxyhexadecyl)- 26.431 207.00 153759 0.005124

Heneicosanoic acid, methyl ester 26.431 207.00 153759 0.005124
Gorgost-5-en-3-ol, (3.beta)-, TMS derivative 26.431 207.00 153759 0.005124

Retinol 26.414 91.00 1957701 0.065242
Octacosanol 27.969 97.00 3033614 0.101098

Alpha-Santalol 28.532 94.00 3133161 0.104416
Santalol, E-cis,epi-beta- 28.532 94.00 3133161 0.104416

Spiro[4,5]dec-6-en-1-ol, 2,6,10,10-tetramethyl 28.532 94.00 3133161 0.104416
Campesterol 29.551 207.00 243053 0.0081
Cholesterol 29.551 207.00 243053 0.0081

9,19-Cyclocholestan-3-ol, 14-methyl-, (3.beta) 29.551 207.00 243053 0.0081
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Table 1. Cont.

Compound Name Retention Time m/z Area PA (%)

Cholest-5-en-3-ol, 6-methyl-, (3.beta)- 29.551 207.00 243053 0.0081
26-Hydroxycholesterol 29.551 207.00 243053 0.0081

Beta-Sitosterol 29.551 207.00 243053 0.0081
Lathosterol 29.551 207.00 243053 0.0081

Ergost-7-en-3-ol 29.551 207.00 243053 0.0081
Cholest-5-en-3-ol (3.beta)-, carbonochloridate 29.551 207.00 243053 0.0081

Stigmasterol 29.551 207.00 243053 0.0081
Cholesta-5,22-dien-3-ol, (3.beta)- 29.551 207.00 243053 0.0081

Ergosta-5,24(28)-dien-3-ol, (3.beta)- 29.551 207.00 243053 0.0081
Lathosterol 29.551 207.00 243053 0.0081

Cholestane-3,5-diol, 5-acetate, (3.beta,5.alpha 29.551 207.00 243053 0.0081
26,27-Dinorergosta-5,23-dien-3-ol, (3.beta)- 30.145 55.00 2543634 0.084769

Desmosterol 30.145 55.00 2543634 0.084769
5,6-Dihydroergosterol 30.145 55.00 2543634 0.084769

9,19-Cyclolanost-23-ene-3,25-diol, 3-acetate 30.787 207.00 142424 0.004746
Lupeol 30.787 207.00 142424 0.004746

3.beta-Hydroxy-5-cholen-24-oic acid 31.132 43.00 4086523 0.136188
26,27-Dinorergost-5-ene-3,24-diol, (3.beta)- 31.132 43.00 4086523 0.136188

9,19-Cyclolanostan-3-ol, 24-methylene-, (3.beta) 29.551 95.00 3611829 0.120368
Lupeol, trifluoroacetate 31.820 95.00 3611829 0.120368

Lup-20(29)-en-3-ol, acetate, (3beta)- 32.780 207.00 1038162 0.034598
Phosphonoacetic Acid, 3TMS derivative 5.819 73.00 653645 0.021783

Nordazepam, TMS derivative 5.819 73.00 653645 0.021783
2,6-Dihydroxybenzoic acid, 3TMS derivative 10.083 73.00 3196250 0.106518

aR-Turmerone 10.592 83.00 2528243 0.084256
(Z)-.gamma.-Atlantone 10.592 83.00 2528243 0.084256
Verbenylangelate, cis- 10.592 83.00 2528243 0.084256

Tumerone 10.592 83.00 2548801 0.084941
Dibutyl phthalate 13.793 149.00 1573158 0.052427

(−)-Globulol 22.159 79.00 334706 0.011154
Androstan-17-one, 3-ethyl-3-hydroxy-, (5.alpha) 22.159 79.00 334706 0.011154

Eudesma-4(15),7-dien-1.beta –ol 22.159 79.00 334706 0.011154
5.alpha-Cholest-8-en-3-one, 14-methyl- 25.771 95.00 5058177 0.168569
25-Hydroxycholesterol, 3-methyl ether 26.622 207.00 362457 0.012079

26-Homo-25-hydroxycholesterol 29.551 207.00 243053 0.0081
Betulin 32.780 207.00 1038162 0.034598

Yangambin 34.225 207.00 1108879 0.036955

m/z: m stands for mass and z stands for the charge number of ions, PA: Peak Area.

2.2. Prediction of Active Site

Using the CASTp server, we sought to identify the active pockets of the PDB protein. The area
was depicted as 304.266, and the volume was 296.682. A total of 27 active site residues were identified
by CASTp server, and the residues were Thr25, Thr26, Leu27, His41, Cys44, Thr45, Ser46, Met49,
Pro52, Tyr54, Phe140, Leu141, Asn142, Gly143, Ser144, His163, His164, Met165, Glu166, Leu167, Pro168,
His172, Asp187, Arg188, Gln189, Thr190, and Gln192.

2.3. Ligand-Based ADME/T Prediction

Lipinski’s rule of five was followed to predict the drug-likeliness properties; the following five
principles must be followed: (i) Molecular weight is not more than 500; (ii) Number of H-bond
acceptors ≤ 10; (iii) Number of H-bond donors ≤ 5; (iv) Lipophilicity (Log P value) < 5; and (v) Molar
refractivity between 40 to 130. Among the fifty-six compounds, twenty-three compounds fulfilled the
rule of five, indicating that those compounds could be suitable for the new drug development process.
The results of the ADME/T prediction of the compounds is exhibited in Table 2.



Molecules 2020, 25, 3936 5 of 16

Table 2. ADME properties of selected compounds methanol extract of T. crispa by SwissADME.

Compound Name Molecular
Weight

Num. H-Bond
Acceptors

Num. H-Bond
Donors Log P Molar

Refractivity
No. of

Violation

Benzeneethanamine 121.18 1 1 1.7 38.92 0
Camphenol 152.23 1 1 2.30 46.38 0

Strophanthidin 404.5 6 3 1.82 106.16 0
Retinal 284.44 1 0 4.39 93.71 0

Trans-Geranylgeraniol 290.48 1 1 4.95 97.52 0
3,4-Dihydroxymandelic acid 184.15 5 4 −0.36 43.19 0

Imidazolidin-4-one,
2-imino-1-(4-methoxy-6-dimethylamino-1,3,5-triazin-2-yl) 251.25 6 1 −0.59 70.28 0

Cholest-22-ene-21-ol, 3,5-dehydro-6-methoxy 498.78 3 0 6.39 151.03 1
d-Mannitol, 1-O-(16-hydroxyhexadecyl)- 422.60 7 6 0.74 115.92 1

Heneicosanoic acid, methyl ester 340.58 2 0 5.58 109.15 1
Gorgost-5-en-3-ol, (3.beta)-, TMS derivative 498.90 1 0 7.49 157.87 2

Retinol 286.45 1 1 4.48 94.67 0
Octacosanol 410.76 1 1 7.07 137.87 2

Alpha-Santalol 220.35 1 1 3.67 68.04 0
Santalol, E-cis,epi-.beta- 220.35 1 1 3.56 69.94 0

Spiro[4,5]dec-6-en-1-ol, 2,6,10,10-tetramethyl 208.34 1 1 3.41 65.35 0
Campesterol 400.68 1 1 6.54 128.42 1
Cholesterol 386.65 1 1 6.34 123.61 1

9,19-Cyclocholestan-3-ol, 14-methyl-, (3.beta) 400.68 1 1 6.68 126.26 1
Cholest-5-en-3-ol, 6-methyl-, (3.beta)- 400.68 1 1 6.54 128.42 1

26-Hydroxycholesterol 402.65 2 2 5.41 124.78 1
Beta-Sitosterol 414.71 1 1 6.73 133.23 2

Lathosterol 386.65 1 1 6.34 123.61 1
Ergost-7-en-3-ol 400.68 1 1 6.54 128.42 1

Cholest-5-en-3-ol (3.beta)-, carbonochloridate 449.11 2 0 6.51 133.73 2
Stigmasterol 412.69 1 1 6.62 132.75 2

Cholesta-5,22-dien-3-ol, (3.beta)- 384.64 1 1 6.23 123.14 1
Ergosta-5,24(28)-dien-3-ol, (3.beta)- 398.66 1 1 6.43 127.95 1

Lathosterol 386.65 1 1 6.34 123.61 1
Cholestane-3,5-diol, 5-acetate, (3.beta,5.alpha 446.71 3 1 5.74 135.03 2

26,27-Dinorergosta-5,23-dien-3-ol, (3.beta)- 370.61 1 1 6.03 118.33 1
Desmosterol 384.64 1 1 6.23 123.14 1

5,6-Dihydroergosterol 398.66 1 1 6.43 127.95 1
9,19-Cyclolanost-23-ene-3,25-diol, 3-acetate 484.75 3 1 6.20 146.08 2

Lupeol 426.72 1 1 6.92 135.14 2
3.beta-Hydroxy-5-cholen-24-oic acid 374.56 3 2 4.62 110.97 0

26,27-Dinorergost-5-ene-3,24-diol, (3.beta)- 388.63 2 2 5.21 120.01 1
9,19-Cyclolanostan-3-ol, 24-methylene-, (3.beta) 440.74 1 1 7.12 139.95 2

Lupeol, trifluoroacetate 522.73 5 0 7.36 145.07 3
Lup-20(29)-en-3-ol, acetate, (3beta)- 468.75 2 0 7.08 144,.88 2

Phosphonoacetic Acid, 3TMS derivative 356.58 5 0 1.42 90.71 0
Nordazepam, TMS derivative 342.89 2 0 3.14 105.43 0

2,6-Dihydroxybenzoic acid, 3TMS derivative 370.66 4 0 2.97 103.15 0
aR-Turmerone 216.32 1 0 3.68 69.75 0

(Z)-gamma.-Atlantone 218.33 1 0 3.37 70.88 0
Verbenylangelate, cis- 234.33 2 0 3.35 70.07 0

Tumerone 218.33 1 0 3.37 70.88 0
Dibutyl phthalate 278.34 4 0 3.43 77.84 0

(−)-Globulol 222.37 1 1 3.81 68.82 0
Androstan-17-one, 3-ethyl-3-hydroxy-,(5.alpha) 318.49 2 1 4.15 95.48 0

Eudesma-4(15),7-dien-1.beta–ol 220.35 1 1 3.56 69.94 0
5.alpha-Cholest-8-en-3-one, 14-methyl- 398.66 1 0 6.43 127.20 1

2.4. Molecular Docking

In this study, we are able to delineate the interaction between several isolated compounds of
T. crispa with the Mpro enzyme of SARS-CoV-2 (PDB ID: 6W63). The docking results demonstrated that
all compounds obtained from T. crispa interacted with the SARS-CoV-2 Mpro enzyme. Among these
compounds, a total of seven possess higher docking scores in comparison with the others (Figure 2).
However, some compounds exert a lower binding affinity towards the receptor (Table 3).

Our computational investigation shows that imidazolidin-4-one, 2-imino-1-(4-methoxy-6-
dimethylamino-1,3,5-triazin-2-yl) has the lowest docking score of −7.013 KJ/mol, interacting with
Gly143 and Ser144 residues, respectively (Figure 3).

Additionally, spiro[4,5]dec-6-en-1-ol, 2,6,10,10-tetramethyl exhibits a docking score of −6.369 KJ/mol,
but the interaction occurs with total four amino acids (Met165, His41, Met49, Met165) through
pi-alkyl stacking, unlike imidazolidin-4-one, 2-imino-1-(4-methoxy-6-dimethylamino-1,3,5-triazin-2-yl),
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which interacts through hydrogen bonding (Figure 4). Moreover, 3.beta-Hydroxy-5-cholen-24-oic
acid also tends to interact with the receptor as it has obtained a docking score of −6.251 KJ/mol.
In addition, 3.beta-Hydroxy-5-cholen-24-oic acid possessed the affinity towards the receptor not
only through hydrogen bonding but also pi-alkyl stacking (Figure 5). On the other hand, dibutyl
phthalate (−2.279 kcal/mol) possessed the lowest score (Table 3). In particular, our experiment also
includes the calculation of binding affinity of two antiviral agents, nelfinavir and lopinavir and these
aforementioned compounds exert a score of −7.596 and −8.251 Kcal/mol, respectively, withSARS-CoV-2
Mpro. The molecular docking analysis results are shown in Figures 3–5, Figures S1–S13, and Table 3.

Table 3. Molecular docking study of major bioactive compounds of methanol extract of T. crispa.

Compound Name Docking
Score

Residues Interacting with
Ligand through H-Bonding

(H-Bonds No.)

Hydrophobic Bonds
(pi-Alkyl Stacked)

Hydrophobic Bonds
(pi-pi Stacked)

Camphenol −6.177 His164 His41, Met49 (3),
Met165

Strophanthidin −5.8 Gln189 Met165
Benzeneethanamine −6.022 His41 His41

Retinal −5.591 His163 His41, Cys145,Cys44,
Met49

Trans-geranylgeraniol −3.393 His163, Ser144 Met49 (2), Arg188
3,4-Dihydroxymandelic acid −5.51 Gly143,Ser144

Imidazolidin-4-one,
2-imino-1-(4-methoxy-6-

dimethylamino-1,3,5-triazin-2-yl)
−7.013 Glu166 (2), Gln192

Retinol −5.576 Thr24 Cys145, Met165, His41,
Cys44, Met49

Alpha-Santalol −5.595 Gln192 His41 (2), Met49 (3),
Pro168, Met165

Santalol, E-cis, epi-beta- −5.664 Gln192 His41, Met49 (2), Pro168,
Spiro[4,5]dec-6-en-1-ol,
2,6,10,10-tetramethyl −6.369 Met165 (3), His41 (4),

Met49 (2), Cys145
3.beta-Hydroxy-5-cholen-24-oic

acid −6.251 Thr25, Thr190,Gln192 Met49 (3), His41,
Met165 (2)

Phosphonoacetic Acid, 3TMS
derivative −4.273 Glu166 Cys145 (2), His41 (2),

Met165, His163
Nordazepam, TMS derivative −6.122 Glu166 Met165

2,6-Dihydroxybenzoic acid,
3TMS derivative −4.696 Met165 (2), His41 (3),

Cys145

aR-Turmerone −5.452 Cys44 Met165, Pro168, His41 (2),
Met49

(Z)-gamma.-Atlantone −5.708 Gln189 Met49, Met165, His41,
Pro168 (2)

Verbenyl angelate, cis- −5.579 Met165 (2), Pro52, Arg188,
Cys44 (4), Met49 (4)

Tumerone −5.131 Met165 (2), His41 (2),
Cys44

Dibutyl phthalate −2.279 Gly143, Asn142 His41, His163, His172

(−)-Globulol −6.165 Met49 (2), His41(4),
Cys44 (2), Met165 (3)

Androstan-17-one,
3-ethyl-3-hydroxy-(5.alpha) −6.218 Thr26 Cys145, Met49, His41 (3)

Yangambin −6.162 Thr25 Met49, Met165 His41

Nelfinavir −7.596 His41,
Glu166 (2) His41 Met165

Lopinavir −8.251 Gln189, Glu166, Cys141,
Thr26

Pro168,
His41 (2) Arg188, His41
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2-imino-1-(4-methoxy-6-dimethylamino-1,3,5-triazin-2-yl). The ligand in the active site is shown
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carbon–hydrogen interaction.
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Figure 5. Molecular docking interaction between the SARS-CoV-2 Mpro and 3.beta-Hydroxy-5-
cholen-24-oic acid ligand in the active site is shown in purple color, and ligand interacting with the
residues is shown in blue color, green color illustrates the residues forming hydrogen bonds, pink
color illustrates the residues with hydrophobic (pi-pi/pi-alkyl) stacking, and white color illustrates the
residues with carbon-hydrogen interaction.
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2.5. Prediction of Biological Activity

The selected compounds of the plant T. crispa were subjected to biological activity calculations with
the help of Molinspiration software and compared with the standard drugs nelfinavir and lopinavir.
The results are shown in Table 4.

Table 4. Biological activity prediction of methanol extract of T. crispa.

Compounds GPCR
Ligand

Ion Channel
Inhibitor

Kinase
Inhibitor

Nuclear Receptor
Ligand

Protease
Inhibitor

Enzyme
Inhibitor

Benzeneethanamine −1.71 −1.16 −1.95 −2.61 −1.85 −1.43
Camphenol −0.66 −0.43 −1.53 −0.62 −1.06 −0.37

Strophanthidin 0.08 0.07 −0.46 0.52 0.01 0.79
Retinal −0.15 0.15 −0.23 0.90 0.09 0.52

Trans-Geranylgeraniol 0.12 0.20 −0.22 0.40 −0.08 0.41
3,4-Dihydroxymandelic acid −0.28 −0.18 −0.69 −0.06 −0.61 −0.05

Imidazolidin-4-one, 2-imino-1-(4-methoxy-
6-dimethylamino-1,3,5-triazin-2-yl) 0.15 −0.15 −0.20 −0.63 −0.55 0.08

Retinol −0.01 0.32 −0.25 1.02 −0.16 0.66
Alpha-Santalol −0.04 0.03 −0.43 0.12 −0.22 0.37

Santalol, E-cis,epi-.beta- −0.09 −0.04 −0.65 0.23 −0.42 0.39
Spiro[4,5]dec-6-en-1-ol, 2,6,10,10-tetramethyl −0.23 0.00 −0.79 0.40 −0.27 0.43

3.beta-Hydroxy-5-cholen-24-oic acid 0.20 0.03 −0.57 0.87 0.07 0.64
Phosphonoacetic Acid, 3TMS derivative 0.43 0.59 0.12 −0.05 0.71 1.08

Nordazepam, TMS derivative 0.48 0.58 −0.22 −0.07 0.33 0.35
2,6-Dihydroxybenzoic acid, 3TMS derivative 0.34 0.12 −0.03 −0.06 0.42 0.72

aR-Turmerone −0.68 −0.46 −1.36 −0.14 −0.80 −0.25
(Z)-gamma.-Atlantone −0.38 0.15 −1.17 0.37 −0.58 0.46
Verbenyl angelate, cis- −0.09 −0.08 −0.98 0.32 −0.35 0.28

Tumerone −0.35 −0.13 −1.19 0.54 −0.44 0.41
Dibutyl phthalate −0.16 −0.09 −0.27 −0.12 −0.25 −0.07

(−)-Globulol −0.50 −0.29 −0.82 −0.22 −0.48 −0.13
Androstan-17-one, 3-ethyl-3-hydroxy-, (5.alpha) 0.19 0.41 −0.35 0.83 0.17 0.66

Yangambin −0.03 −0.25 −0.19 −0.10 −0.16 0.01
Nelfinavir 0.19 −0.25 −0.28 −0.25 0.58 −0.02
Lopinavir 0.04 −0.78 −0.55 −0.66 0.42 −0.37

3. Discussion

Currently, with an acute progression rate, it has been revealed that the clinical manifestations
of SARS-CoV-2 infection start with a fever with a dry cough, which continues to alveolar edema,
ultimately resulting in difficulty in breathing; however, mild symptoms might not include high
fever [28–30]. Nevertheless, as the death counts are rising alarmingly, the respiratory infection
triggered by SARS-CoV-2 has been classified as more critical in progressing the disease state in contrast
with two other coronaviruses, SARS and MERS (Middle East Respiratory Syndrome), with a large
number of infections and variations that spread rapidly while exhibiting minimal symptoms in the
lungs. The organism can depreciate the normal functioning of the kidney, heart, liver, and other vital
organs, leading to systemic exhaustion [31–33].

Although several kinds of research are being carried out in famous laboratories in several countries,
vaccine development for disease is usually time-consuming. Despite there being plenty of experimental
trials associated with COVID-19 treatment and medications, as of yet, scientists are still on the hunt for
specific therapeutic drugs [34].

About 80% of certain Asian and African countries depend on traditional medicine for their
major health care needs [35]. Several endogenous receptors responsible for prominent biological
functions are triggered by numerous plant-derived phytochemicals [36]. Medicinal plants are endowed
with plenty of phytocompounds, and since ancient times, plant-derived compounds have been used
for treatment in numerous diseases [15,37,38]. Diverse secondary metabolites, including alkaloids,
terpenoids, lignans, glycosides, amino acids, are crucial for the growth and functioning of plants
and have numerous pharmacological aspects of fighting against several abnormal conditions [39–41].
Archaically, plant-derived chemicals were considered to be a prolific fount for drug discovery. Several
previous studies have already documented the essentiality of phytochemicals in numerous diseases,
including cardiovascular diseases, cancer, diabetes, hepatic disorders, etc. [42–44]. Many of these
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phytochemicals are generally not involved in the normal functioning of plants; nonetheless, they
are modified by various biochemical processes and are further required for various environmental
responses, including stress, protection from ultraviolet damage [45]. The extraction of phytochemicals
has recently been established as a phenomenal subject matter in lead compound identification for
active pharmaceutical moieties. More detailed information about various pharmacologically active
medicinal plants’ crude extracts could be obtained using separation techniques, which involves the
separation of active phytoconstituents [46,47]. In this experiment, we used the GC-MS technique for
qualitative analysis of the plant extracts of T. crispa and confirmed more than 300 compounds.

Recently, researchers from different parts of the world have been working extensively to find
certain potential lead compounds from medicinal plants that are active against several enzymes and
other proteins responsible for viral replication and growth [33,48,49]. In line with this, we planned
in silico experiments using the isolated constituents from methanol extract of T. crispa against the
SARS-CoV-2 Mpro enzyme. Significantly, we have already mentioned the role of T. crispa extracts
against malaria and the recent successful usage of anti-malarial drugs in combatting COVID-19, which
leads the foundation for our hypothesis.

Nowadays, drug design using various bioinformatics tools has been proven as groundbreaking
methods in drug discovery not only due to promptness and accuracy but also its low cost [50].
Molecular docking simulation, a form of bioinformatics analysis, signifies the binding affinities of
ligand molecules with a specific receptor, in which the lower binding energy predicts the higher binding
affinity [51–53]. A recent study from Yamamoto et al. has already shown that nelfinavir can inhibit
SARS-CoV-2 replication in vitro [54]. Previously, another study from Yamamoto et al. reported the
inhibitory effect of nelfinavir on the replication of SARS-CoV [55]. In addition, another in vitro analysis
showed that lopinavir/ritonavir exhibited potential inhibitory effects on SARS-CoV-2 [56]. Hence, we
selected nelfinavir and lopinavir as positive controls in the present study. In this study, our selected
phytocompounds, along with two antiviral drugs, nelfinavir and lopinavir, were able to dock with the
active pockets of SARS-CoV-2 Mpro enzyme, which was confirmed by our analysis through CASTp web
server. Despite showing lower binding affinities than nelfinavir and lopinavir, our selected compounds
interacted with the active pockets of the SARS-CoV-2 Mpro enzyme like the standard compounds.
Additionally, imidazolidin-4-one, 2-imino-1-(4-methoxy-6-dimethylamino-1,3,5-triazin-2-yl) not only
has a docking score almost the same as nelfinavir, but also, like nelfinavir, interacts with Glu166
residue through H-bonding. On the other hand, the interactions between spiro[4,5]dec-6-en-1-ol,
2,6,10,10-tetramethyl and 3.beta-hydroxy-5-cholen-24-oic acid with SARS-CoV-2 Mpro enzyme were
found to be more than both the standard drugs. Additionally, other compounds, including
androstan-17-one, 3-ethyl-3-hydroxy-, (5.alpha), camphenol, (−)-Globulol, yangambin, nordazepam,
TMS derivative, and benzeneethanamine, also represented greater interaction with the abovementioned
enzyme. Previously, it was found that the His41 and Cys145 residues belong to the catalytic dyads
of the SARS-CoV-2 Mpro [57]. In the current study, the results of the docking analysis revealed
that retinal, retinol, spiro[4,5]dec-6-en-1-ol, 2,6,10,10-tetramethyl, phosphonoacetic Acid, 3TMS
derivative, aR-turmerone, androstan-17-one, 3-ethyl-3-hydroxy-, (5.alpha) interacted with Cys145
residue through hydrophobic interaction. Furthermore, the two standard drugs, along with most
of the selected compounds, interacted with His41 residue. Like nelfinavir, benzeneethanamine also
yielded interaction with His41 residue by forming hydrogen bonds. Although neither nelfinavir nor
lopinavir interacted with Met49 residues, most of the targeted compounds interacted with Met49
residues, and this residue, along with His41, is crucial for substrate-binding [57]. In addition, Gly143,
Ser144, His163, His164, Met165, Glu166, Leu167, Asp187, Arg188, Gln189, Thr190, Ala191, and Gln192
residues are also crucial for substrate binding in SARS-CoV-2 Mpro [58,59]. Our analysis showed that
3,4-dihydroxymandelic interacted with His163, Ser144 from the substrate-binding domain through
hydrogen bonding. In addition, camphenol, possessing a greater docking score, formed a hydrogen
bond with substrate-binding His164 residue. Moreover, most of the selected compounds as well as
nelfinavir interacted with Met165 residue by forming a hydrophobic interaction.



Molecules 2020, 25, 3936 11 of 16

Moreover, the selected compounds also followed Lipinski’s rule of five for drug-likeness properties.
Furthermore, the ion channel inhibitor property of spiro[4,5]dec-6-en-1-ol, 2,6,10,10-tetramethyl were
found more than standard compounds. Additionally, imidazolidin-4-one, 2-imino-1-(4-methoxy-6-
dimethylamino-1,3,5-triazin-2-yl) possessed closer kinase inhibitor attributes in comparison with the
standards. In addition, 3.beta-Hydroxy-5-cholen-24-oic acid exerted greater nuclear receptor ligand
than nelfinavir and lopinavir. Interestingly, both spiro[4,5]dec-6-en-1-ol, 2,6,10,10- tetramethyl,
3.beta-Hydroxy-5-cholen-24-oic acid and 3.beta-Hydroxy-5-cholen-24-oic acid presented greater
enzyme inhibition than either antiviral drug, whereas imidazolidin-4-one, 2-imino-1-(4-methoxy-6-
dimethylamino-1,3,5-triazin-2-yl) exhibited greater protease blocking activity.

4. Materials and Methods

4.1. Plant Collection

The whole plant of T. crispa was collected at the mature stage from the Lawachara National Park,
Moulavi Bazar, Bangladesh, in January 2018. The plant parts were cut into small pieces that were
washed under tap water and then dried in the dark at 21–30 ◦C for 15 days. The whole plant material
was ground by a mechanical grinder and passed through a size of 60 mesh sieve to obtain a fine powder
that was stored in an air-tight container.

4.2. Preparation of Extracts

The dried T. crispa plant powder (600 g) was macerated in 4 L methanol (Merck, Darmstadt,
Germany) for 15 days at room temperature with occasional shaking and stirring. Following filtration,
first with a cotton plug, then with a Whatman No. 1 filter paper, the filtrate was evaporated to dryness
under vacuum at 40 ◦C to obtain a concentrated extract (30.55 g dry weight, 5.09% w/w). The extract
was preserved for further analysis.

4.3. Gas Chromatography–Mass Spectroscopy (GC-MS) Analysis

The GC-MS analysis was evaluated using a model 7890A capillary gas chromatography along
with a mass spectrometer (Agilent Technologies, Santa Clara, CA, USA). The column was a fused silica
capillary column of 95% dimethyl-poly siloxane and 5% phenyl (HP-5MSI; length: 90 m, diameter:
0.250 mm and film: 0.25 µm, Merck, Darmstadt, Germany). Parameters for GC-MS detection were
an injector temperature of 250 ◦C, and the initial oven temperature of 90 ◦C was gradually raised to
200 ◦C at a speed of 3 ◦C/min for 2 min and with a final increase to 280 ◦C at 15 ◦C/min for 2 min.
The total GC-MS run time was 36 min, using 99.999% helium as a carrier gas, at a column flow rate
of 1 mL/min. The GC to MS interface temperature was fixed at 280 ◦C, and an electron ionization
system was set on the MS in scan mode. The mass range evaluated was 50–550 m/z, where MS quad
and source temperatures were maintained at 150 ◦C and 230 ◦C, respectively. The NIST-MS Library
2009 was used to search and identify each component, and to measure the relative percentage of each
compound, relative peak areas of the TIC (total ionic chromatogram) were used, with calculations
performed automatically.

4.4. Active Site Prediction

Potential ligand binding sites/pockets (active sites) on the 3D structure of protein were identified
by the CASTp web server (http://sts.bioe.uic.edu/castp/) [60]. CASTp uses the recent algorithmic and
geometrical analysis of computational chemistry for the analytical validation pockets and cavities.

4.5. In Silico ADME Analysis

The pharmacokinetic properties of all major identified compounds were evaluated using Lipinski’s
rule of five [61]. Lipinski stated that a compound could show drug-like behavior if it does not fail
more than one of the following criteria: (i) Molecular weight is not more than 500; (ii) H-bond donors

http://sts.bioe.uic.edu/castp/
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≤ 5; (iii) H-bond acceptors ≤ 10; (iv) Lipophilicity < 5; and (v) Molar refractivity between 40 and 130.
The web tool Swiss ADME was used to assess the ADME parameters of all compounds. Compounds
obeying the Lipinski rule are considered as ideal drug candidates [62].

4.6. Computational Molecular Docking Analysis

4.6.1. Ligand Preparation

The selected isolated compounds of T. crispa were subjected to Maestro v 10.1 (Schrödinger suite,
LLC New York, NY, USA), and ligand preparation was done using the LigPrep tool. The parameters
were set to neutralize at pH 7.0 ± 2.0 using Epik 2.2, and minimized by force field OPLS_2005.

4.6.2. Protein Preparation

3D crystal structure of SARS-CoV-2 Mpro (PDB ID: 6W63) was downloaded from the Protein Data
Bank and prepared using the protein preparation wizard of the Schrödinger Suite—Maestro version 10.1.
Charges and bond orders were assigned, hydrogens added to heavy atoms and selenomethionines
and selenocysteines converted into methionines and cysteines, respectively, followed by removing all
water molecules. Using force field OPLS_2005, minimization was performed to set a maximum heavy
atom RMSD to 0.30 Å.

4.6.3. Receptor Grid Generation and Molecular Docking

Receptor grid generation and molecular docking experiments were performed using Glide
(Schrödinger Suite—Maestro version 10.1) [63,64]. A grid was produced for each protein using the
following default parameters: van der Waals scaling factor 1.00 and charge cut-off value 0.25, subjected
to the OPLS_2005 force field. A cubic box of definite dimensions centered on the centroid of the active
site residues was generated for the receptor, and the box size was set to 14 Å × 14 Å × 14 Å for docking.
Docking experiments were carried out using the standard precision (SP) scoring function of glide,
and only the best scoring fit with docking score was noted for each ligand.

4.7. Biological Activity Prediction

The targeted compounds were assessed for potential bioactivity by calculating their activity scores
as GPCR ligands, ion channel modulators, kinase inhibitors, nuclear receptor inhibitors, and enzyme
inhibitors. All the parameters were checked with the aid of the software Molinspiration (www.
molinspiration.com, Nova Ulica, Slovensky Grob, Slovak Republic) [21]. Calculated drug-likeness
scores of each compound were compared with each compound’s specific activity and were compared
with the standard drugs (nelfinavir and lopinavir).

5. Conclusions

COVID-19 created a devastating global crisis impacting thousands of people every day, taking
thousands of lives and hampering the global economy. Virtual molecular docking was conducted to
identify new compounds that could bind the SARS-CoV-2 Mpro. The isolated compounds obtained
from the methanol extract of T. crispa were investigated in silico, which concluded that some selective
compounds are potentially enough to alter the activity of the SARS-CoV-2 Mpro enzyme. Our analysis
indicates phytochemicals from the methanolic extract of T. crispa such as imidazolidin-4-ne, 2-imino-
1-(4-methoxy-6-dimethylamino-1,3,5-triazin-2-yl), spiro[4,5]dec-6-en-1-ol, 2,6,10,10-tetramethyl, 3.beta-
hydroxy-5-cholen-24-oic acid, androstan-17-one, 3-ethyl-3-hydroxy-(5.alpha), camphenol, (−)-Globulol,
yangambin, nordazepam, TMS derivative, benzeneethanamine have a better binding affinity to Mpro

of SARS-CoV-2 compared to nelfinavir and lopinavir. Further research and development will pave the
way for identifying possible SARS-CoV-2 Mpro inhibitors. We anticipate that the insights obtained in
this study can be useful for the potential discovery and development of new natural anti-COVID-19
therapeutic agents.

www.molinspiration.com
www.molinspiration.com
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Supplementary Materials: The following are available online. Figure S1: 2D and 3D interactions of Benzeneethanamine
(A) and Camphenol (B) with the active site of SARS-CoV-2 Mpro (PDB ID: 6W63); Figure S2: 2D and 3D
interactions of Strophanthidin (C) and Retinal (D) with the active site of SARS-CoV-2 Mpro (PDB ID: 6W63);
Figure S3: 2D and 3D interactions of Trans-geranylgeraniol (E) and 3,4-Dihydroxymandelic acid (F) with the
active site of SARS-CoV-2 Mpro (PDB ID: 6W63); Figure S4. 2D and 3D interactions of Imidazolidin-4-one,
2-imino-1-(4-methoxy-6-dimethylamino-1,3,5-triazin-2-yl) (G) and Retinol (F) with the active site of SARS-CoV-2
Mpro (PDB ID: 6W63); Figure S5: 2D and 3D interactions of alpha-Santalol (I) and Santalol, E-cis,epi-.beta- (J) with
the active site of SARS-CoV-2 Mpro (PDB ID: 6W63); Figure S6: 2D and 3D interactions of Spiro[4,5]dec-6-en-1-ol,
2,6,10,10-tetramethyl (K) and 3.beta-Hydroxy-5-cholen-24-oic acid (L) with the active site of SARS-CoV-2 Mpro

(PDB ID: 6W63); Figure S7: 2D and 3D interactions of Phosphonoacetic acid, 3TMS derivative (M) and Nordazepam,
TMS derivative (N) with the active site of SARS-CoV-2 Mpro (PDB ID: 6W63); Figure S8: 2D and 3D interactions of
2,6-Dihydroxybenzoic acid, 3TMS derivative (O) and aR-Turmerone (P) with the active site of SARS-CoV-2 Mpro

(PDB ID: 6W63); Figure S9: 2D and 3D interactions of (Z)-.gamma.-Atlantone (Q) and Verbenyl angelate, cis- (R)
with the active site of SARS-CoV-2 Mpro (PDB ID: 6W63); Figure S10. 2D and 3D interactions of Tumerone (S) and
Dibutyl phthalate (T) with the active site of SARS-CoV-2 Mpro (PDB ID: 6W63); Figure S11: 2D and 3D interactions
of (-)-Globulol (U) and Androstan-17-one, 3-ethyl-3-hydroxy-, (5.alpha) (V) with the active site of SARS-CoV-2
Mpro (PDB ID: 6W63); Figure S12: 2D and 3D interactions of Yangambin (W) with the active site of SARS-CoV-2
Mpro (PDB ID: 6W63); Figure S13: 2D and 3D interactions of Nelfinavir (X) and Lopinavir (Y) with the active site
of SARS-CoV-2 Mpro (PDB ID: 6W63).
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