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ABSTRACT

Individual-based models provide modularity and structural flexibility necessary for modeling of infectious diseases at the
within-host and population levels, but are challenging to implement. Levels of complexity can exceed the capacity and
timescales for students and trainees in most academic institutions. Here we describe the process and advantages of a
multi-disease framework approach developed with formal software support. The epidemiological modeling software,
EMOD, has undergone a decade of software development. It is structured so that a majority of code is shared across disease
modeling including malaria, HIV, tuberculosis, dengue, polio and typhoid. In additional to implementation efficiency, the
sharing increases code usage and testing. The freely available codebase also includes hundreds of regression tests,
scientific feature tests and component tests to help verify functionality and avoid inadvertent changes to functionality
during future development. Here we describe the levels of detail, flexible configurability and modularity enabled by EMOD
and the role of software development principles and processes in its development.
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INTRODUCTION

In 2007, Bill and Melinda Gates announced support for a new
global commitment to malaria eradication (Bill Gates—Malaria
Forum 2007). Numerous areas of specializationmust converge to
realize this goal, combining knowledge about human demo-
graphics, mobility, immunity, climate and mosquito breed-
ing with current and novel interventions and implementation
strategies. The call for eradication highlighted the need for an
analytical tool to combine insights across these fields (WHO
2008). The same is true for other infectious diseases, which
require interdisciplinary coordination to plan, implement and
monitor programs to achieve disease control and elimination
(Levin et al. 1997). A computational platformwas needed to bring
together insights across these disciplines and estimate their im-
pact on disease transmission.

One approach to bridging disciplines and scales of computa-
tional analysis is the use of individual-based models (IBMs), an
approach that allows for great flexibility in structural assump-
tions, but that has only become computationally feasible in re-
cent decades (Judson 1994). Though flexible, IBMs aremore com-
plex to create than traditional compartmentalmodels (Railsback
and Grimm 2011). Rather than the occupancy of states (for ex-
ample, the number of infected individuals), they track individ-
uals explicitly, allocating computer memory for each individual
and propagating the individual’s state and interactions through
time. The software development requirements for IBMs pose a
challenge, especially if a new framework needs to be developed
from scratch.

Here, we summarize the decade-long development of a freely
available individual-based disease modeling framework, EMOD
(Bershteyn et al. 2012; Eckhoff and Wenger 2016), and how it has
expanded beyond malaria to include other infectious diseases
that share a common framework. We discuss how multiple lay-
ers of detail become intertwined in the dynamics of transmis-
sion and the diverse group of professionals required tomake this
level of software complexity feasible and reliable.

EMOD has been developed over more than a decade by pro-
fessional software developers, and so it has capabilities that
would be very difficult to develop at an academic institutionwith
shorter-duration PhD and post-doctoral trainee positions. By
making the code and documentation openly available, the team
hopes to enable infectious disease researchers, policy-makers,
implementers and funders to access modeling software that is
difficult to produce with the time and staffing more commonly
available in academic and similar organizations.

STRUCTURING IBMs FOR INFECTIOUS
DISEASE DYNAMICS

IBMs, also known as agent-based models or micro-simulation
models, use computer simulation to track interacting individu-
als and their environment to better understand disease trans-
mission on a population level. Individuals are explicitly repre-
sented in computer memory from the time they are initialized
(typically at birth) until the time they are removed from the
population (typically at death), with the individual’s attributes
changing through internal processes and interactions. Themod-
els represent the history of each individual and participants in
each interaction, while also allowing for population-level aggre-
gate statistics to be computed. Suchmodels are especially useful
in fields such as ecology (Grimm and Railsback 2013), economics
(Tesfatsion 2002), and infectious diseases (Garnett et al. 2011)—
areas inwhich autonomous individualsmodify and aremodified

by others and their environment to give rise to population-level
trends.

IBMs are particularly well-suited for creating infectious dis-
ease transmissionmodels and studying intervention impact be-
cause they allow for attributes to be added to infections, individ-
uals and their environments without exponentially increasing
the total number of items (e.g. compartments) to be tracked. It
is important to capture biological attributes of individuals and
the pathogens they harbor, which inform how the individual’s
state propagates forward in time. At the same time, it is crit-
ical to capture the mechanisms by which diseases are trans-
mitted, their environmental determinants, and the effect of
interventions.

The simplest within-host model available for EMOD is the
Generic model, which simply reflects the susceptible-exposed-
infected-recovered (and potential return to susceptible) model
in epidemiology, often referred to as the SEIRS model (May and
Anderson 1979; Keeling and Rohani 2011). Whereas a compart-
mental SEIRS model tracks the number of individuals in each
of the states (susceptible, exposed, infected and recovered), an
IBM implementation of SEIRS moves these states into the mod-
eled individuals, as shown in Fig. 1. This gives the model flex-
ibility to add demographic variables and dynamics, as well as
flexibility determine how transmission might occur, while still
preserving SEIRS as the internal disease states of the individ-
ual. To mimic a typical compartmental SEIRS model, transmis-
sion rates are simply the product of the number susceptible (S)
and the number infected (I) in the population. The IBM equiva-
lent of this calculation is for individuals in the infected popula-
tion (those with internal state I) to deposit their contagion into
a shared pool, and for susceptible individuals (those with state
S) to acquire infectiousness from that pool. Without altering
the internal SEIRS disease process, such a structure allows for
the transmission mechanism to be switched, e.g. by adding an
explicit contact network of remembered relationships between
agents.

More complex modeling of transmission modes can be nec-
essary not just to capture transmission dynamics, but also
to ensure that the impacts of interventions and their inter-
actions can be accounted for. For example, for vector-borne
diseases such as malaria, interventions can target multiple
points in the vector’s life cycle, as illustrated in Fig. 2, a di-
agram of the feeding cycle in the EMOD vector-borne disease
model (Eckhoff 2011). The daily vector survival, feeding, vector-
to-human disease transmission and egg-laying model is it-
self complex, but is just one module of the larger model il-
lustrated in Fig. 3. Other modules include other parts of the
vector life cycle (eggs, larvae and immature mosquitoes), hu-
man demographics, the within-human portion of the malaria
life cycle, human health-seeking behaviors and health care
delivery and human-focused interventions such as drugs and
vaccines.

Because of their complexity, model components such those
in Fig. 3 need to be designed with clear delineation and in-
terfaces between modules so that model developers can make
modifications to one component without disrupting other com-
ponents. Modules also need to be configurable and swappable.
For example, the adult vector model in Fig. 2 offers two op-
tions: the model can be configured to track all vectors (or a
weighted sub-sample of vectors) as individual entities or vectors
can be modeled compartmentally, tracking only categories of
states and their occupancy. Using the individual model enables
additional attributes such as migration preferences for habitat
type and human habitation to be configured. While this level
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Figure 1.Diagram of the Generic transmissionmodel in EMOD, in which the within-host disease process is represented as progression through the states of susceptible
(S), Exposed (E), Infected (I) and Recovered (R). The dynamics of a compartmental SEIRS model can be produced when infected individuals shed infectiousness into a
shared contagion pool (red circle) and susceptible individuals acquire from this pool. The Generic model allows for multiple contagion pools to be created based on
geographic location (node) and modified based on the properties of the node. EMOD allows for individuals to have differential shedding and exposure according to

demographic strata, including user-defined strata called individual properties. By representing SEIRS as internal states of the individual rather than compartments
of the population, EMOD allows the transmission mode to be modified—for example, to a relationship network for sexual transmission—while the individual disease
progression continues to follow the same SEIRS states.

of detail can be useful for specific research questions (Gerardin
et al. 2017; Eckhoff et al. 2017), it requires substantial computa-
tional resources. The compartmental model for vectors speeds
up simulation time by tracking the number or proportion of vec-
tors in each state. Modularity of code ensures that the different
options for modeling vectors (Fig. 2) seamlessly plug in to the
rest of the model (Fig. 3), making detail and configurability more
tractable.

STRUCTURE AND PURPOSE OF A
MULTI-DISEASE MODELING PLATFORM

In infectious disease models, the mechanism of interaction be-
tween individuals is usually specific to the mode of disease
transmission, an attribute shared by multiple diseases. For ex-
ample, airborne diseases depend primarily on the rate at which
infectious and susceptible individuals are co-located for trans-
mission of particles in the air. Susceptibility, pathogenesis and
infectiousness may be influenced by individual age, health and
immune status, as well as environmental factors such as sea-
sons and indoor air circulation. High-resolution environmental
data sets are constructed to be inputs into EMOD simulations
for detailed spatial models (Chabot-Couture, Nigmatulina and
Eckhoff 2014). Vector-borne diseases depend on interactions of
susceptible individuals with infected vectors, as well as infected
individuals with susceptible vectors, in the respective life cy-
cles of the pathogen. Environmental factors such as tempera-
ture and rainfall influence vector populations, whereas socio-
demographic and immune factors influence human exposure
and disease progression. Sexually transmitted diseases depend
on person-to-person sexual interactions, which are structured
into long-term relationships that form and dissolve according

to individual attributes, preferences, living conditions and so-
cial norms.

It is also necessary at times to addmore structural specificity
pertaining to the disease being modeled, beyond the mode of
transmission and its parameters. This is often the case for the
internal processes that represent disease progression, and for
disease-specific interventions such as diagnostics, treatments
and vaccines that behave in disease-specific ways. For exam-
ple, a generic model of a sexually transmitted infection (STI)
may have simple disease states such as susceptible, exposed,
infected and recovered (SEIR). However, modeling HIV requires
more detailed representation of disease progression, such as of
CD4 + T cell counts, their depletion during infection, reconstitu-
tion during antiretroviral treatment, impact on other infections
such as tuberculosis and measurement for clinical decision-
making. Adding a CD4 + T cell count property to all STI models
would be unnecessary for modeling many other STIs, and thus
should be applied only to HIV-specific models.

In addition to these transmission- and disease-specific con-
siderations, there are major components of IBMs that are not
specific to diseases or transmission modalities. For example,
all IBMs require infrastructure for input of parameters, out-
put of results, disease-independent demographics (initializa-
tion, births, non-disease deaths, migration and stratification
by relevant biological and socio-demographic factors). Spatio-
temporal patterns of health care access and delivery can have
disease-specific components, but if made sufficiently config-
urable, much of this infrastructure can be shared across dis-
eases. The disease-agnostic infrastructure of an IBM is often the
most time-consuming and complex to create initially, but can
be shared across disease models if the code is designed in a re-
usable way, made available and maintained after the initial re-
search applications are complete.
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Figure 2. To illustrate how systems can have multiple points of interaction with interventions, this diagram shows a decision tree representing possible outcomes for
an insect vector such as a mosquito in the EMOD vector model. This branching tree of conditional probabilities is used to determine the proportion of vectors that
die, survive, feed and reproduce each day. Multiple simultaneous interventions can target various branches in the vector feeding tree, and the deterrent and toxic
effects of multiple interventions can be represented simultaneously. For example, both indoor residual spraying (IRS) and insecticide-treated nets (ITN) can be applied

against indoor host-seeking mosquitoes. IRS can discourage mosquitoes from entering the house and also kill mosquitoes before feeding. The fraction of mosquitoes
that survive can be blocked by the ITN, which may also kill a subset of the blocked fraction. Those mosquitoes who survive the feeding attempt may be killed by IRS
post-feed. Vector behavior parameters (blue) can be configured independently for each vector species being modeled, and the interventions (green) can be configured
with multiple parameters such as the distributions of their blocking and killing abilities, duration of effect, duration of use and cost.

While the use of IBMs for infectious disease modeling is
growing, re-usable platforms for modeling different diseases are
uncommon. A recent review of IBMs for infectious disease trans-
mission found nearly 700 published IBM studies, with increasing
publication frequency over time, but little evidence of re-usable
code architectures being applied across disease areas (Willem
et al. 2017). To address this problem, EMOD is architected tomax-
imize sharing of code across disease areas. This not only con-
serves effort, but also increases utilization of the shared code
and test cases, increases code coverage and opportunities to find
bugs and provides features with applications across diseases,
such as detailed demographics and care seeking patterns.

Object-oriented programming (OOP) provides a facile means
of sharing of generic code across disease areas, while still allow-
ing for separation of specific code across disease types. Through
inheritance, OOP classes for disease-specific objects such as
individual humans, environments in geographic locations and
pathogen infections can derive from generic classes. To span
the generic functionality, transmission-mode-specific interac-
tions and disease specificity, the individual human object in

EMOD is architected with OOP using the inheritance structure
shown in Fig. 4. At the generic level, individuals have proper-
ties such as date of birth, current age, sex, location and other
socio-demographic categories. Individuals experience a risk of
mortality due to causes other than the disease being modeled,
and women experience age-specific fertility rates. Generic dis-
ease states include susceptible, exposed, infected and recovered.
Generic interventions include diagnostics with a configurable
sensitivity and specificity, and vaccines with a configurable rate
of take and efficacy.

Each transmission type inherits the properties of the generic
simulation, but adds features specific to the mode of transmis-
sion. For example, in the STI model, individuals have propensi-
ties to form and break sexual relationships and use general STI
interventions such as condoms. The HIV disease-specific model
extends the STI model by adding within-host attributes specific
to HIV, such as CD4 + T cell counts and clinical stages of AIDS, as
well as HIV-specific interventions such as antiretroviral therapy
and male circumcision. The HIV model also over-writes some
properties of the generic disease, replacing the susceptible/
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Figure 3. Network diagram describing how the components of the malaria model are organized into modules. Modularity ensures that specialists in a particular field,

such as antimalarial drug pharmacokinetics or malaria infection and immunity, can add detail or develop new modules in their area of specialty while reducing the
risk of inadvertently changing other components of the model. Even with modularity, software testing is required to formally show that a change was isolated to
one feature of the model and did not inadvertently change other features. Similarly, it is necessary to check that a change to the common framework made by one
disease specialist did not cause undesirable changes for other diseases supported by the common framework. For this reason, EMOD comes with (as of March 2018)

over 600 regression tests and over 140 SFTs. The tests are run daily with the latest build of the EMOD codebase to automatically flag which model components have
been modified.

Figure 4. Inheritance structure of EMOD, illustrated for four disease types. Simulations can be run at each layer of specificity. In Generic SEIRS, individuals have

generic disease states of susceptible, exposed, infected and recovered (SEIRS) and have properties such as date of birth, current age, sex, location, rates of fertility
and mortality and socio-demographic strata, which are inherited by more specific disease models. Transmission mode models, such as airborne, vector or sexual
transmission, retain the generic SEIRS disease states, but modify how individuals interact to give rise to transmission events. For example, sexual transmission adds
types of sexual relationships and demographically-specific propensities to enter and break them. The HIV model inherits the sexual behavior logic, but over-writes

the generic SEIRS disease and interventions with HIV-specific states and interventions.

exposed/infected/recovered states with HIV-specific states such
as acutely infected, chronically infected and symptomatic with
AIDS. This structure has the advantage of efficiently sharing
features that are applicable for all infectious diseases, and
transmission-specific features for diseases that share a trans-
mission mode.

The EMODmodel provides a flexible framework to build sim-
ulations with different scales and different spatial resolutions
so as to match the policy question of interest. For example, a
polio model of Kano state (built upon the generic code base)
simulated over 1322 nodes to represent the different clusters of
populations across the state so as to capture the dynamics of the

final chains of transmission, and to understand how long after
the last case of the disease was detected could we be sure that
the disease had been eliminated (McCarthy, Chabot-Couture and
Shuaib 2016). In contrast, a polio model of 16West African coun-
tries was also built using the EMOD software where each sub-
national administrative unit (state or province) for each country
was simulated as a single node. The resulting 210 nodes were
used to study the propagation of vaccine infections following
the outbreak response vaccination campaigns during the polio
endgame using live poliovirus vaccine (McCarthy et al. 2017).

Another advantage of the inheritance structure in EMOD is
the ability to add a new disease with less effort, since much of
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Figure 5.Number of lines of code available to different disease models, stratified
by level of the inheritance hierarchy. Code was analyzed in February 2018 using

Code surveyor by Construx Software, omitting lines that were blank or contained
only comments. The common framework, sufficient to implement Generic SEIRS
transmission and inherited by all other disease types, occupies 34 512 lines of
code (dark blue bars). Cross-hatched areas indicate code that specifies trans-

missionmodality. Colored regions show disease specific code, which over-writes
SEIRS with disease-specific states and interventions. As of this writing, no dis-
ease exceeds 50 000 lines of code. The vast majority of model code is devoted to
the common framework, allowing for sharing of features and test cases across

disease research.

the generic framework and transmission-mode-specific logic is
already available. To make it easier to add new disease mod-
els, EMOD also supports a ‘custom’ disease class in which re-
searchers supply a Python script to describe the disease process.
EMOD is written in C++ for computational speed, but Python is
a more commonly used programming language in research and
allows for rapid prototyping on top of the EMOD framework.

To visualize the relative ease of adding new diseases to the
EMOD framework, compare the number of lines of code devoted
to the generic EMOD, transmission code and disease-specific
code (Fig. 5). The common framework, which is inherited by all
disease types and sufficient in itself to run the generic SEIRS
model, occupies over 34 000 lines of code. The specific diseases
are built on top of this common framework such that no spe-
cific disease model has required over 50 000 lines of code to-
tal. For example, to support vector-based research, about 8000
lines of code are added to the common framework code in or-
der to model vectors—their lifecycle, transmission of the infec-
tion between vectors and humans and interventions that inter-
rupt this transmission. Themalariamodel takes these combined
42 000 lines and adds another 6000 lines to model the specifics
of malaria parasites, the development of partial immunity
(Eckhoff 2012a,b) and other attributes that are not shared with
other vector-borne diseases.

Because the EMOD source code is openly available, institu-
tions are able to leverage the common framework to model dis-
eases not currently included. For example, researchers at the
University of Notre Dame have used the same vector model as
a base for creating a model of dengue transmission. Because
many core capabilities such as demographics and vector dynam-
ics were already available in the generic vector model code, the
dengue-specific model required only about 1000 additional lines
of code. Sharing amajority of code betweenmalaria and dengue
not only reduces the workload of creating the models, but also
increases code usage to further add confidence that the code is
working correctly.

SUPPORTING POLICY AND IMPLEMENTATION
PLANNING THROUGH FLEXIBLE
INTERVENTIONS

One of the most common reasons to modify disease transmis-
sion model code is to change structural assumptions about in-
terventions, especially patterns of health-seeking behavior and
health care delivery. For example, uncertainties about loss to
follow-up from HIV care profoundly influence the estimated im-
pact and cost-effectiveness of treatment programs (Bershteyn
et al. 2015). To constrain these uncertainties and make informed
forecasts, models must to rapidly adapt to incorporate new ev-
idence about the outcomes of those who appear to be lost to
follow-up based on clinic records (Haas Andreas et al. 2018;
Holmes et al. 2018), interventions to retain (Murray et al. 2017)
or re-engage lost patients (Bershteyn et al. 2017; do Nascimento,
Barker and Brodsky 2018), and the impact of other health sys-
tem changes such as decentralization and differentiated care
on patient retention (Bor et al. 2017; Murray et al. 2017). Mak-
ing changes to health care patterns in the EMOD source code
required re-compiling and re-testing the model, which limited
the speed and frequency of updates to the health systemmodel.

To address this problem, the ‘campaign’ framework in EMOD
was developed to allow user input to flexibly configure the se-
ries of triggers, decisions, delays and targeting/filters that repre-
sent the process of providing interventions to individuals. The
framework can also be used to deliver targeted seeding of new
infections (required for initializing the epidemic) and adding
or removing co-factors for transmission. For example, in the
HIV model, the campaign framework is used to both create co-
infections with other STIs that increase HIV susceptibility or in-
fectiousness, and to deliver STI treatment.

A user-defined ‘campaign’ file is formatted as JavaScript
Object Notation (JSON) and consists of individual blocks, each
specifying who, what, when, where and optionally why an in-
tervention is to be applied, followed by the ‘what’ of the in-
tervention itself (Fig. 6a). The ‘who’ includes both filtering on
socio-demographic strata and the ability to select a random pro-
portion of the chosen stratum. The ‘what’ includes the interven-
tion and the parameters to configure it, e.g. the time-course of
efficacy and take rate of a vaccine, or the specificity and sen-
sitivity of a diagnostic. The ‘when’ component may specify an
absolute time in the simulation to model an historical event
or a planned future intervention. The ‘where’ component may
restrict the intervention to specific geographic locations in the
model. The ‘what’ component is not necessarily an interven-
tion; it can also simply cause the individual to broadcast a user-
defined name of the event.

This broadcast ability underlies the power of the cam-
paign framework: it enables users to chain together series of
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Figure 6. Conceptual illustration of how the EMOD campaign framework links together building blocks to enable a user-defined health care system and health-seeking
behaviors. Individual building blocks specify the time that the intervention becomes available; the target population based on socio-demographic strata such as age,

sex, location and user-defined characteristics such as risk group or accessibility; and the triggering condition for the intervention to be applied, if any. The building
blocks are specified in JSON format read in by EMOD. The blocks are connected through broadcasts and triggers to build up series of events such as decisions, delays,
diagnostics and interventions. The campaign framework can also be used to initialize new infections and to define the dynamics of co-factors for transmission, such
as acquisition and treatment of STI co-infections that influence HIV transmissibility and susceptibility. Image credit for photograph in (a): ‘ Brand new bricks ’ by

fdecomite, CC BY 2.0.

custom-defined steps. To do so, the user can also add a ‘why’
component of the intervention block, which listens for a speci-
fied broadcast and only delivers an event when triggered by that
broadcast. When the broadcast of one campaign block matches
the trigger of another, it links the two events together in a chain.
As illustrated in Fig. 6b, the broadcast can originate from dy-
namic events within the model, such as births, deaths, migra-
tion, pregnancies, new infections or formation of new relation-
ships. Alternatively, the trigger can be a user-specified broadcast
coming from another campaign block. Thus, without modifying
the source code, users can build up complex logical flows of de-
cisions, delays, diagnostics and interventions, all with config-
urable timing, probabilities and targeting to sub-populations.

As an example of a complex care system that can be fully
user-defined, Fig. 7 shows a typical ‘cascade of care’ used in the
EMOD HIV model, and zooms into one component (infant HIV
testing) to show how health seeking patterns are user-specified.
The baseline model and resulting epidemic and treatment pat-
terns have been systematically compared to country-specific
data and other model estimates (Eaton et al. 2012, 2014, 2015),
and the ability to flexibly target sub-populations has been used
to explore strategies for efficient resource allocation and in-
terrupting onward transmission (Klein, Eckhoff and Bershteyn
2015; Bershteyn, Klein and Eckhoff 2016). The triggerable cam-
paign framework has also been used to configure reactive case
investigation in a spatial malaria model, where treatment of an
index case in a household broadcasts the signal for case inves-
tigation only to neighboring households (Gerardin et al. 2017).

The flexible campaign framework allows for rapid response
to policy and implementation questions by adding de novo struc-
tures to health-seeking and health delivery models without the
need to modify model code. However, other structural changes
to model assumptions, such as addition of new features or new
disease types, do require code modifications. In the following
section, we describe the software processes and quality assur-
ance measures used validate and maintain EMOD.

SOFTWARE DEVELOPMENT PROCESSES IN
DISEASE MODELING

The Institute for Disease Modeling has an innovative organiza-
tional structure.Working alongside teams of disease researchers
are professional software developers, testers and documenta-

tion specialists, most having years of experience at software
companies such as Microsoft. This unique combination of spe-
cialists brings software discipline to the process of model devel-
opment, including the individual-based infectious diseasemod-
eling framework, EMOD. As a shared resource among disease
specialists and sub-specialists, the software team enables re-
use and coordination of software components across disease
applications. For example, the triggerable care cascade frame-
work was originally developed for HIV, but has since been ap-
plied in other disease areas such as malaria and tuberculo-
sis; detailed vaccine framework was originally developed for
polio and malaria modeling, but has been leveraged for HIV
modeling. The source code for EMOD is available online at
https://github.com/InstituteForDiseaseModeling/EMOD.

To develop new features or disease applications using EMOD,
researchers from the team and collaborating institutions may
choose to contribute code to the model, or to provide detailed
specifications to a software developer who will implement the
new feature or change. Code changes are subject to code review
by a designated maintainer of the code repository. After a fea-
ture is added, the researcher who requested it is tasked with de-
signing a test case to ensure that the feature works as specified
from a scientific perspective. In addition, professional software
testers perform further testing to assess technical adherence to
the specification, as well as other factors such as informative
error messages and handling of corner cases.

The size and collaborative development of the EMOD code-
base necessitates a more formal level of testing, including
automation of testing. Software developers generally perform
some degree of testing in the course of model development, en-
suring that new feature is behaving as expected. The simplest
form of testing consists of ‘trying out’ the new feature with a
set of EMOD input files and inspecting the output files for the
anticipated result. However, it is also necessary to ensure that
the changes did not inadvertently alter some other aspect of the
model—potentially in a different disease area than the one for
which the feature was intended.

To address this issue, the feature-specific tests (model in-
put and the expected output) that are created in the course of
development are stored over time and aggregated into a set of
test cases known as regression tests. EMOD currently includes
over 600 tests producing over 1200 output files, available online
at https://github.com/InstituteforDiseaseModeling/EMOD/tree/
master/Regression. When a new feature is added, it is

https://github.com/InstituteForDiseaseModeling/EMOD
https://github.com/InstituteforDiseaseModeling/EMOD/tree/master/Regression
https://github.com/InstituteforDiseaseModeling/EMOD/tree/master/Regression
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Figure 7. Example of a typical user-defined set of health-seeking and health care patterns. These components, sequences of flow between them, and parameters
governing their effects are provided by the user and fully configurable. Panel (a) shows a schematic of the HIV interventions related to HIV testing and treatment,
which are provided as input into the EMOD model for HIV in South Africa. It is composed of many individual building blocks, diagramed here as purple boxes in (b)
and encoded as JSON objects as in (c). The sub-section of (a) that is expanded in (b) and (c) is HIV testing of children. The building blocks specify the time that the

intervention becomes available (Start Year); the target population based on socio-demographic strata such as age, sex, location and user-defined characteristics such
as risk group or accessibility (‘Accessibility’: ‘Yes’); and the triggering condition for the intervention to be applied, if any. The triggering condition can be one arising
from the internal dynamics of the model (such as becoming six weeks of age, as in the example above, ‘SixWeeksOld’) or can be a user-defined event arising from
another building block (such as the output of the example above, ‘ARTStagingDiagnostic Test,’ which will trigger the next event to happen as shown by the red arrow

in (b)). Building blocks may act as probabilistic decisions, delays, diagnostics and interventions. Some building blocks allow for additional user input, for example, the
probabilistic decision of whether to be tested for HIV in (b) and (c) allows user to input a time-series for the probability of HIV testing. EMOD will linearly interpolate
the time-series to assign a probability at each simulation time step, as shown in the orange graph in (b).

recommended to run the entire batch of regression tests in or-
der to check whether the code changes have altered the output
of any previous test case. At IDM, the tests are automatically run
nightly with the latest version of the EMOD code. After a nightly
run, the files are compared against the previous day’s output and
changed files are flagged for further investigation.

The regression test system alerts the team to any test for
which the output files are non-identical to the previous day’s
output, regardless of whether the changes to the output files
are substantive. It is not uncommon for these differences to be
‘false alarms.’ In the case of Monte Carlo agent-based models,
a change to the number or sequence of calls to a random num-
ber generator can alter the output of a given simulation run, but
would not change the scientific behavior of the model, e.g. aver-
age result of multiple stochastic replicates.

To enable model testing when random number streams
have changed, and more generally, to provide a more thorough
comparison of themodel’s behavior relative to its scientific spec-
ification, the team has developed more intensive tests termed
Scientific Feature Tests (SFTs), of which over 140 are currently
available at https://github.com/InstituteforDiseaseModeling/
EMOD/tree/master/Regression (a separate folder of SFTs is
available for each disease type). An example of an SFT is
checking whether random draws from a specified probability
distribution really do follow the expected distribution, e.g. by
repeatedly sampling from the distribution and ensuring that it

is statistically unlikely to differ from the expectation. SFTs can
sometimes be thought of as ‘black-box testing’ because they
test the model’s behavior based on its outputs, regardless of the
internal implementation.

In contrast to the ‘black box testing’ approach of SFTs, a
‘white box testing’ approach is also taken to examine the inter-
nal workings of the software itself, including implementation-
specific aspects of the software that are not user-facing. Such
tests are typically referred to as ‘component tests’ or ‘unit tests’
and sometimes require separate code, known as test harnesses,
to instantiate and examine individual components of the model
in isolation. Available component tests for EMOD can be found
at https://github.com/InstituteforDiseaseModeling/EMOD/tree/
master/componentTests. Component tests allow for verification
of model functionality when subtle problems with a feature
might not be evident from the output of the overall epidemic
simulation. For example, such a test might generate a popu-
lation of individuals with unique identifiers, and then check
whether the correct numbers of unique identifiers were created
in memory. Other examples include verifying whether diagnos-
tics appropriately exhibit the configured specificity and sensitiv-
ity, or whether sexual relationships interact appropriately with
migration.

The development team also includes software documenta-
tion professionals. Technical documentation is available online
at www.idmod.org/documentation and training materials are in

https://github.com/InstituteforDiseaseModeling/EMOD/tree/master/Regression
https://github.com/InstituteforDiseaseModeling/EMOD/tree/master/Regression
https://github.com/InstituteforDiseaseModeling/EMOD/tree/master/componentTests
https://github.com/InstituteforDiseaseModeling/EMOD/tree/master/componentTests
http://www.idmod.org/documentation
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development and have been piloted in university courses, on-
site trainings and trainings held at collaborating institutions. In
addition, the EMOD executable can generate a schema, or list of
all parameters available in the version of the software being run.
The schema includes parameter names, data types, defaults,
ranges and short descriptions. A frontier for EMOD is learning
the most effective way to support new users with a variety of
goals, timelines and experience levels.

The configurability of EMOD makes the model suitable for
multiple purposes: it can be used to triangulate baseline data
for estimates of disease trends, to forecast impact of interven-
tions with detailed patterns of uptake and to connect with eco-
nomic models to address resource allocation questions. The
model can output both individual-level event histories and
population-level trends, allowing for examination of epidemic
drivers and testing of ideas for efficient interruption of disease
transmission.

However, EMODalso presents challenges and limitations that
make it less suitable for somepurposes. Configurability comes at
the cost of ease-of-use, especially for the health care and health-
seeking patterns that can be re-structured by users with innu-
merable possible configurations, rather than being selected from
a fixed list of options. The effort required to become and re-
main familiar with the model and how to configure parameters
is significant, often taking weeks or months depending on the
task. This makes EMOD less suitable for producing results very
rapidly (days to weeks) in new settings where the model has not
already been configured and fit to baseline epidemic or endemic
data.

The data and effort required to parameterize and fit EMOD to
specific settings also make it more suitable for settings in which
detailed data are available, particularly data stratified by popu-
lation categories such as age groups and geographic regions. In
principle, most forms of model detail can be disabled or con-
figured to mirror a simple assumption (for example, birth rates
can be made proportional to population size andmortality rates
can be age, sex and time invariant). However, computational
and ease-of-use limitations make EMOD an unlikely choice for
simulations that could be conducted with simpler compart-
mental models. Instead, EMOD is typically applied in data-rich
settings.

Considering the effort required to fit EMOD to a new setting,
it is unlikely that EMOD will be applied systematically to all set-
tings affected by diseases, as has been done with other mod-
eling software in order to produce estimates in all countries of
the world with a systematic and harmonized approach. To date,
applications of EMOD have favored detailed examination of set-
tings in which rich and emerging data provide insights into epi-
demic drivers and intervention impact, and heuristics from such
detailed modeling can then be applied elsewhere, but usually
without re-fitting the model to all settings where the heuristic
may apply.

Efficient, automated approaches to model calibration are an
area of active development at IDM. Challenges of calibrating
EMOD include the large number ofmodel parameters that can be
modified through calibration, the computation time required to
run the model (typically on the scale of minutes to tens of min-
utes, depending on how the model is configured) which limits
the number of times the model can be run as part of calibra-
tion, and the stochastic nature of the model, which adds further
uncertainty to model outputs that requires more model runs to
be quantified. Improved efficiency and ease of calibration would
allow EMOD to be applied to more settings and more easily up-
dated as data become available.

CONCLUSIONS

Dynamic modeling of infectious diseases using IBMs brings to-
gether a diverse set of disciplines at different scales of detail,
from within-host biological processes to between-host inter-
actions to population-level patterns. The interaction of these
components brings about a level of complexity that requires
software discipline and formal testing and benefits greatly
from sharing of code across disease applications to maximize
code usage for efficiency and debugging. We have described
the experience of developing EMOD, a multi-disease modeling
framework that uses a modular approach to define interactions
between model components, and OOP to maximize sharing of
features across disease applications.

With support from Bill andMelinda Gates through the Global
Good Fund, EMOD is available free of charge, and source code is
openly available. The model can be compiled to run on recent
versions of Windows and multiple Linux distributions, and can
be run on a laptop or, particularly for large spatial simulations,
on a supercomputer or cloud computing environment. EMOD is
a unique resource to the disease modeling community, both for
those who wish to work with currently available disease mod-
els, and for those seeking to build upon the common framework
to model different infectious diseases, including those that may
emerge in the future.
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