
Research Article
Image Processing-Based Detection of Pipe Corrosion Using
Texture Analysis and Metaheuristic-Optimized Machine
Learning Approach

Nhat-Duc Hoang 1 and Van-Duc Tran 2

1Lecturer, Faculty of Civil Engineering, Institute of Research and Development, Duy Tan University, R.809–No.03 Quang Trung,
Da Nang 550000, Vietnam
2Lecturer, International School, Duy Tan University, 254 Nguyen Van Linh, Danang 550000, Vietnam

Correspondence should be addressed to Nhat-Duc Hoang; hoangnhatduc@dtu.edu.vn

Received 27 March 2019; Revised 21 May 2019; Accepted 17 June 2019; Published 11 July 2019

Academic Editor: Juan A. Gómez-Pulido
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To maintain the serviceability of buildings, the owners need to be informed about the current condition of the water supply and
waste disposal systems. .erefore, timely and accurate detection of corrosion on pipe surface is a crucial task. .e conventional
manual surveying process performed by human inspectors is notoriously time consuming and labor intensive. Hence, this study
proposes an image processing-based method for automating the task of pipe corrosion detection. Image texture including
statistical measurement of image colors, gray-level co-occurrence matrix, and gray-level run length is employed to extract features
of pipe surface. Support vector machine optimized by differential flower pollination is then used to construct a decision boundary
that can recognize corroded and intact pipe surfaces. A dataset consisting of 2000 image samples has been collected and utilized to
train and test the proposed hybrid model. Experimental results supported by the Wilcoxon signed-rank test confirm that the
proposed method is highly suitable for the task of interest with an accuracy rate of 92.81%..us, the model proposed in this study
can be a promising tool to assist building maintenance agents during the phase of pipe system survey.

1. Introduction

In high-rise building maintenance, an important objective is
concerned with the integrity of the water supply system and
prevention of water contamination. Cast iron is widely used
in water supply and waste disposal systems due to the ad-
vantage of high strength. Since stainless steel pipes often fall
out of favor in domestic pipework because of their high
expenses [1], corrosion is a widely observed type of struc-
tural damage.

Corrosion (see Figure 1) can be defined as a chemical
process caused by chemical and electrochemical reactions.
.is phenomenon is typically observed in environmental
conditions featuring a high level of moisture. .ere are
different kinds of corrosion such as general corrosion which
occurs as uniformly distributed nonprotective flakes of rust
and pitting which is a localized point of corrosive attack [2].

Corrosion brings about the destruction of metal pipework
surface and consequently leads to reduction in pipe service
life and increase in building maintenance cost [3]. In certain
case, this defect may strongly affect the health of building
occupants due to deterioration of water quality. .us,
corrosion should be identified timely by means of periodic
surveys to ensure the integrity of pipe systems and establish
cost-effective maintenance strategies.

In Vietnam as well as in many other countries, manual
methods performed by human inspectors are commonly
employed for condition assessment of water supply/waste
disposal systems. As clearly pointed out by Liu et al. [4] and
Atha and Jahanshahi [5], these manual approaches are labor
intensive and time consuming. Corroded regions can be
neglected in positions of pipe system that are difficult to
reach and observe visually. Moreover, the processes of data
processing and reporting are also very tedious for human
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technicians. .erefore, there is a practical need to come up
with a more productive and accurate method of pipe con-
dition survey.

Although there is a wide range of existing pipe in-
spection approaches (such as magnetic flux leakage, ul-
trasonic testing, and external corrosion direct assessment),
all of these methods have limitations including high
equipment cost, restricted range of inspection, and in-
capability of detecting small pitting regions [3]. Consid-
ering the large amount of pipe systems needed to be
surveyed and the limited access to sophisticated equipment
in developing countries, there is an urgent need for a
productive and low-cost solution for periodic surveys of
pipe system condition. Recently, digital image processing
has gained a great attention within the field of structural
heath monitoring [6, 7].

Particularly, image processing techniques can be effec-
tively employed to investigate the outer surface for detecting
defects on pipes or other metal structures including cor-
rosion and cracks [8]. Itzhak et al. [9] relied on statistic
measurement of image pixels to quantify pitting corrosion.
Choi and Kim [10] identified corrosion based on the
morphology of the corroded surface; features of image color,
texture, and shape are employed for corrosion recognition.
A model for classifying corroded and noncorroded surfaces
using texture descriptors obtained from gray level co-oc-
currence matrix and image color has been proposed in
Medeiros et al. [11].

A method based on watershed segmentation has been
employed in [12] for rating of corrosion defects; the per-
centage area of corroded region was used for determining
the grade of defects. Idris and Jafar [13] used image filter-
based image enhancement and neural network for corrosion
inspection. Son et al. [14] proposed a model based on de-
cision tree algorithm for identifying rusted surface area of

steel bridge. A model based on image color analysis and
K-means clustering for bridge rust identification has been
constructed and verified by Liao and Lee [15].

Petricca et al. [16] compared standard computer vision
techniques and deep neural network for rust and nonrust
detection. Deep neural networks have also been employed
for corrosion detection by Liu et al. [4] and Atha and
Jahanshahi [5]. Safari and Shoorehdeli [17] applied artificial
neural network, Gabor filter, and entropy filter for pipe
defect detection. Cheriet et al. [18] incorporated expert
knowledge and field data to construct a knowledge-based
system for assessing corrosive damage on metallic pipe
conduits. Gibbons et al. [19] relied on a Gaussian mixture
model for probabilistic classification of corroded and
noncorroded areas. Bondada et al. [3] detected and quan-
titatively assessed corrosion damages on pipelines by
computing the mean of saturation value of image pixels; by
image analysis, the corroded areas on pipelines can be
segmented.

From the above literature, it can be seen that image
processing and machine learning have been a feasible al-
ternative for replacing the tedious process of manual survey.
Based on a recent review work of Ahuja and Shukla [20],
there is an increasing trend of applying computer vision
techniques for corrosion detection. Moreover, due to the
importance of the research theme, exploring other image
processing and machine learning methods used for pipe
corrosion detection can be highly meaningful in both aca-
demic and practical aspects.

As reported in the literature, although image texture
analysis has been applied, few previous studies have
employed a combination of image texture descriptors for
pipe corrosion recognition. Hence, this study is an attempt
to fill this gap in the literature by proposing a method used
for analyzing texture of water pipe surface that integrates
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Figure 1: Corroded areas on pipe surface.

2 Computational Intelligence and Neuroscience



statistical measurement of color channels, gray-level co-
occurrence matrix, and gray-level run length matrix. Based
on the features extracted by the above texture descriptors,
the support vector machine (SVM) [21] is employed to
categorize image samples into two classes: noncorrosion
(negative) and corrosion (positive). SVM is utilized in this
study due to the fact that it has been confirmed to be a robust
tool for pattern classification in various studies [22–24]. In
addition, to optimize the training process of SVM-based
corrosion detection model, differential flower pollination
(DFP) metaheuristic is employed. A dataset consisting of
2000 image samples has been collected to train and verify the
proposed method.

.e rest of the study is organized as follows. Section 2
reviews the research material and methods used to con-
struct the water pipe corrosion detection approach. Sec-
tion 3 reports experimental results and discussions.
Section 4 provides several concluding remarks of this
study.

2. Material and Methods

2.1. Image Texture Analysis. Identifying corroded areas
based on two-dimensional image samples is a challenging
task due to the complex and deceptive features of pipe
surfaces containing various irregular objects such as dirt
and paints. .erefore, using information provided by one
pixel is definitely not sufficient for corrosion detection. It is
because a pixel having similar color values can belong to
both categories of noncorrosion and corrosion. Hence,
texture information extracted from a certain region of pipe
surface can be used for recognizing the defect of interest.
.is section of the study describes the employed texture
descriptors used for computing the features of water pipe
surface.

2.1.1. Statistical Properties of Color Channels. Herein, the
statistical properties of three color channels (red, green, and
blue) of an image sample can be employed to represent
image texture. .us, an image is described in a RGB color
space. It is noted that besides RGB, there are other color
spaces such as HSV which can also be useful in the task of
corrosion detection. However, in this study, we rely on the
original RGB color model obtained from the employed
digital camera. Let I be a variable representing the color
levels of an image sample. .e first-order histogram P(I) is
calculated as follows [25]:

Pc(I) �
NI,c

W × H
, (1)

where c denotes a color channel,NI,c is the number of pixels
with intensity value I of the channel c, and H and W
represent the height and width of an image sample,
respectively.

.us, the mean (μc), standard deviation (σc), skewness
(δc), kurtosis (ηc), entropy (ρc), and range (Δc) of color value
are calculated as follows:

μc � 
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(2)

where NL� 256 denotes the number of discrete color values.

2.1.2. Gray-Level Co-Occurrence Matrix (GLCM). .e
GLCM [26] is also a commonly used texture descriptor. To
employ this technique, a color image must first be converted
to a gray scale one. .e GLCM discriminates different image
textures based on the repeated occurrence of some gray-level
patterns existing in the texture [27]. Let δ � (r, θ) be a vector
in the polar coordinates of an image sample. For each δ, the
joint probability of the pairs of gray levels that occur at the
two points separated by the relationship δ is computed [28].
.is joint probability is compactly displayed in a GLCM Pδ
within which Pδ(i, j) represents the probability of the two
gray levels of i and j occurring according to δ. .e original
Pδ(i, j) is often normalized via the following equation:

P
N
δ (i, j) �

Pδ(i, j)

SP
, (3)

where PN
δ (i, j) denotes the normalized GLCM and SP is the

number of pixels.
Based on the suggestion of Haralick et al. [29], four

GLCMs with r� 1 and θ� 0°, 45°, 90°, and 135° can be
established. Accordingly, angular second moment (AM),
contrast (CO), correlation (CR), and entropy (ET) for each
matrix can be computed to serve as texture descriptors as
follows [28, 29]:

AM � 
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(4)
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where Ng is the number of gray-level values and μX, μY, σX,
and σY are the means and standard deviations of the marginal
distribution associated with a normalized GLCM [29].

2.1.3. Gray-Level Run Lengths (GLRL). GLRL is a texture
description method proposed by Galloway [30]. .is
method is highly effective in discriminating textures fea-
turing different fineness and has been successfully applied in
various fields of study [31, 32]. It is because GLRL is con-
structed based on the fact that relatively long gray-level runs
are observed more frequently in a coarse texture and a fine
texture typically has more short runs [33]. A run-length
matrix p( i · j ) in a certain direction is defined as the number
of times that a run length j of gray level i is observed [30].

Using this matrix, the short run emphasis (SRE), long
run emphasis (LRE), gray-level nonuniformity (GLN), run
length nonuniformity (RLN), and run percentage (RP)
[30, 33] can be computed. Additionally, Chu et al. [34] put
forward the indices of low gray-level run emphasis (LGRE)
and high gray-level run emphasis (HGRE). Dasarathy and
Holder [35] proposed to compute the short run low gray-
level emphasis (SRLGE), short run high gray-level em-
phasis (SRHGE), long run low gray-level emphasis
(LRLGE), and long run high gray-level emphasis (LRHGE).
.e above indices are summarized in Table 1. It is noted
that one run length matrix is computed for each of di-
rection in the set of 0°, 45°, 90°, 135°{ } and each matrix
results in 11 GLRL-based features. .erefore, the total
number of features obtained from GLRL matrices is
11× 4 � 44.

2.2. Computational Intelligence Methods

2.2.1. Support Vector Machine (SVM). SVM, described in
[21], is a robust pattern recognition method established on
the theory of statistical learning. Given the task at hand is to
classify a set of input feature xk into two categories of yk �−1
(noncorrosion) and yk �+1 (corrosion), a SVM model
constructs a decision surface that separates the input space
into two distinctive regions characterizing the two different
two categories. .e SVM algorithm aims at identifying a
decision boundary so that the gap between classes is as large
as possible [36]. In addition, SVM employs the kernel trick
to convert a nonlinear classification task into a linear one. A
SVMmodel first maps the input data from the original space
to a high-dimensional feature space within which the data
can be separated by a hyperplane (see Figure 2).

.e SVM training process can be formulated as the
following constrained optimization problem [36]:

minimize Jp(w, e) �
1
2
w

T
w + c

1
2



N

k�1
e
2
k

subjected to yk wTφ xk(  + b( ≥ 1− ek, k � 1, ..., N, ek ≥ 0,

(5)

where w ∈Rn is a normal vector to the classification hy-
perplane and b ∈R is the model bias; ek≥ 0 is called a slack

variable; c denotes a penalty constant; and φ(x) is a non-
linear mapping from the input space to the high-di-
mensional feature space.

During the construction of a SVM model, it is not re-
quired to obtain the explicit form of φ(x). Instead of that,
only the dot product of φ(x) in the input space is required
and expressed via a kernel function shown as follows:

K xk, xl(  � φ xk( 
Tφ xl( . (6)

.e radial basis function (RBF) kernel function [37] is
often employed for data classification; its functional form is
given below:

K xk, xl(  � exp −
xk −xl

����
����
2

2σ2
⎛⎝ ⎞⎠, (7)

where σ is a free parameter.
Accordingly, a SVMmodel used for data classification is

given compactly as follows:

y xl(  � sign 

SV

k�1
αkykK xk, xl(  + b⎛⎝ ⎞⎠, (8)

where αk denotes the solution of the dual form of the
aforementioned constrained optimization. SV is the number
of support vectors which is the number of αk > 0.

2.2.2. Differential Flower Pollination (DFP). As shown in the
previous section, the model training and prediction phases
of a SVM model depend on a proper selection of its
hyperparameters including the penalty coefficient (c) and
the kernel function parameter (σ). .e first hyperparameter
affects the penalty imposed on data samples deviating from
the established decision surface; the later hyperparameter
specifies the smoothness of the decision surface. Since this
problem of hyperparameter selection can be formulated as
an optimization problem [38–40], this study employs the
DFP metaheuristic to optimize the model training phase of
SVM.

DFP, proposed in [41], is a population-based meta-
heuristic that combines the advantages of the standard al-
gorithms of differential evolution (DE) [42] and flower
pollination algorithm (FPA) [43]. .e employed hybrid
metaheuristic consists of three main steps: initialization of
population members, alteration of member locations, and
cost function evaluation. Each member of the DFP meta-
heuristic is presented as a numerical vector consisting of the
two SVM hyperparameters. In the first step, all population
members are randomly generated within the feasible do-
main. In the second step, the location of population
members is altered by local and global search phases. In the
next step, the cost function of each member is computed and
a greedy selection operator is performed to update the lo-
cation of the DFP’s population.

.e second step of the DFP includes the FPA-based
global pollination operator and the DE-based local polli-
nation operator. A switching probability p � 0.8 is used to
govern the frequencies of these two operators [43]..e FPA-
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based global pollination and the DE-based local pollination
operators are presented as follows:

(i) .e FPA-based global pollination:

X
trial
i � X

gDFP
i + L · X

gDFP
i −Xbest( , (9)

where g is the index of the current generation, Xtrial
i

is a trial solution, X
gDFP
i denotes a solution of the

current population, Xbest represents the best solu-
tion, and L denotes a random number generated
from the Lévy distribution [43].

(ii) .e DE-based local pollination modifies the current
member by creating a mutated flower and a crossed
flower according to the following equations:

(a) Creating a mutated flower:

X
mutated
i,gDFP

� xr1,gDFP + F · xr2,gDFP −xr3,gDFP , (10)

where r1, r2, and r3 are three random integers and F
denotes a mutation scale factor which is drawn from
a Gaussian distribution with the mean� 0.5 and the
standard deviation� 0.15 [41].

(b) Creating a crossed flower:

X
crossed
j,i,gDFP+1 �

Xmutated
j,i , if r and j≤Cr or j � rnb(i),

Xj,i,gDFP, if r and j>Cr and j≠ rnb(i),

⎧⎨

⎩

(11)

where Cr� 0.8 is the crossover probability [44].

2.3. Collected Image Samples. Because SVM is a supervised
machine learning algorithm, a dataset consisting of 2000
image samples of pipe surface with the ground truth label
has been collected to construct the SVM-based corrosion
detection model. It is proper to note that the numbers of
image samples in the two labels of noncorrosion (negative
class) and corrosion (positive class) are both 1000. .e
digital image samples have been collected during surveys of
several high-rise buildings in Danang city (Vietnam). .e
used digital camera is the 18-megapixel resolution Canon
EOSM10, and the images were manually acquired by human
inspectors.

Accordingly, image samples of the two labels of non-
corrosion (label�−1) and corrosion (label�+1) have been

Texture descriptor xi
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Φ(xv)
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Figure 2: .e data classification process of a SVM model.

Table 1: Texture descriptors using GLRL.

Descriptor Notation Equation
Short run emphasis SRE SRE � 1/Nr

M
i�1

N
j�1p(i, j)/j2

Long run emphasis LRE LRE � 1/Nr
M
i�1

N
j�1p(i, j) × j2

Gray-level nonuniformity GLN GLN � 1/Nr
M
i�1(

N
j�1p(i, j)2)

Run length nonuniformity RLN RLN � 1/Nr
N
j�1(

M
i�1p(i, j)2)

Run percentage RP RP � Nr/Np

Low gray-level run emphasis LGRE LGRE � 1/Nr
N
j�1

M
i�1p(i, j)/i2

High gray-level run emphasis HGRE HGRE � 1/Nr
N
j�1

M
i�1p(i, j) × i2

Short run low gray-level emphasis SRLGE SRLGE � 1/Nr
N
j�1

M
i�1p(i, j)/(i2 × j2)

Short run high gray-level emphasis SRHGE SRHGE � 1/Nr
N
j�1

M
i�1(p(i, j) × i2)/j2

Long run low gray-level emphasis LRLGE LRLGE � 1/Nr
N
j�1

M
i�1(p(i, j) × j2)/i2

Long run high gray-level emphasis LRHGE LRHGE � 1/Nr
N
j�1

M
i�1p(i, j) × i2 × j2

Note.M andN are the number of gray levels and the maximum run length, respectively. LetNr andNp be the total number of runs and the number of pixels in
the image, respectively.
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prepared for SVM-based classification process. In order to
accelerate the texture computation process, the size of image
samples has been set to be 50× 50 pixels. Hence, image
cropping operation is performed to generate the image
samples used to train the SVM model. .e collected image
set is illustrated in Figure 3.

2.4. Proposed Hybridization of Image Processing and Meta-
heuristic-Optimized SVM for Pipe Corrosion Detection.
.is section of the study describes the structure of the newly
developed hybrid model of image processing and meta-
heuristic-optimized SVM for pipe corrosion detection. .e
proposed model, named as MO-SVM-PCD, is a combination
of image texture analysis and a metaheuristic-optimized
machine learning approach. As mentioned earlier, the sta-
tistical measurements of color channels, GLCM, and GLRL
are used to extract texture-based features from image samples.
.e hybrid model relies on SVM to classify data samples into
the categories of noncorrosion and corrosion. In addition, the
DFP metaheuristic is employed to optimize the SVM-based
training and prediction phases. .e overall structure of the
MO-SVM-PCD model is shown in Figure 4. .e model
structure can be divided into two separated modules: com-
putation of image texture and data classification based on
SVM. .e first module is constructed in Visual C#.NET; the
second module is developed in MATLAB.

Within the first module, the image texture descriptors
based on statistical analysis of color channels, GLCM, and
GLRL compute numerical features from image samples. For
each of the three color channels (red, green, and blue), six
statistical measurements of mean, standard deviation,
skewness, kurtosis, entropy, and range are calculated. Hence,
the total number of numerical features extracted from the
aforementioned statistical indices of an image sample is
6× 3�18. Subsequently, the group of features extracted
from the four co-occurrence matrices corresponding to the
directions of 0°, 45°, 90°, and 135° is computed. Because four
indices of the angular second moment, contrast, correlation,
entropy are acquired from one co-occurrence matrix, the
total number of GLCM-based features is 4× 4�16.

In addition, each GLRL matrix yields 11 properties of
SRE, LRE, GLN, RLN, RP, LGRE, HGRE, SRLGE, SRHGE,
LRLGE, and LRHGE. .us, as stated earlier, the number of
GLRL-based features is 4×11� 44. Accordingly, each image
sample is characterized by a feature vector having
18 + 16 + 44� 78 elements..is module can compute texture
of one image for illustration purpose and can extract features
from a batch of image samples to construct the training and
testing numerical datasets.

When the module of feature computation is accom-
plished, a dataset consisting of 2000 data samples and 78
input features is ready for further analysis. .is dataset has
two class outputs: −1 meaning noncorrosion (negative class)
and +1 meaning corrosion (positive class). In addition, for
standardizing the data ranges and enhancing the data
modeling process, the numerical dataset is preprocessed by
the Z-score data normalization [45]. .e equation of the
Z-score data normalization is given as follows:

XZN �
Xo −mX

sX

, (12)

where Xo and XZN represent an original and a normalized
input variable, respectively, and mX and sX denote the mean
and the standard deviation of the original input variable,
respectively.

Subsequently, the normalized dataset is randomly di-
vided into two subsets: a training set (70%) and a testing set
(30%). .e first data subset is employed for model training;
the later data subset is reserved for model testing. .e
training dataset is employed by the SVM-based data clas-
sification module to generalize a corrosion recognition
model. In addition, DFP is utilized to finetune the SVM
model hyperparameters including the penalty coefficient
and the RBF kernel parameter. It is worth mentioning that
the SVM model operates via the help of the MATLAB’s
Statistics and Machine Learning Toolbox [46]; in addition,
the DFP and the hybridization of DFP and SVMmodel have
been constructed in MATLAB by the authors.

As shown in Figure 4, the two SVM hyperparameters are
randomly initialized at the first generation (g � 1). Using the
local and global pollination operators, the DFP algorithm
gradually guides the population of SVM hyperparameters to
explore the search space and identify better solutions. Based
on the guidance of parameter setting in previous studies
[44, 47], the population size and the number of DFP
searching generations are selected to be 12 and 100. .e
feasible domain of the SVM’s penalty coefficient and kernel
parameter is [1, 100] and [0.1, 100], respectively. In the phase
of solution evaluation, the quality of each member in the
population is appraised via the following cost function:

fCF �


K
k�12/ PPVk + NPVk( 

K
, (13)

where K� 5 denotes the number of data folds and PPV and
NPV are the positive predictive value and the negative
predictive value. PPV and NPV are employed to express the
model performance associated with a set of SVM
hyperparameters.

PPV and NPV are computed according to the following
equations [48]:

PPV �
TP

TP + FP
,

NPV �
TN

TN + FN
,

(14)

where TP, TN, FP, and FN are the true positive, true
negative, false positive, and false negative values,
respectively.

It is noted that to compute the model’s cost function, a
K-fold cross validation process with K � 5 is employed.
Using this cross fold validation, the original dataset is
separated into 5 mutually exclusive subsets. Accordingly,
the SVM model training and evaluation is repeated 5
times. In each time, 4 subsets are utilized for model
training and one subset is used for model validation. .e
overall model performance is obtained via averaging
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predictive outcomes of the 5 data folds. .is process has
been proved to be a robust method for model hyper-
parameter selection [49]. Notably, in each generation,
based on the computed cost function, the location of
population members is updated and the stopping criterion
is checked to verify whether the current generation
number exceeds the allowable value. If the stopping cri-
terion is met, the DFP-based optimization process ter-
minates and the optimized SVM model is ready to predict
corrosion status for novel image samples.

3. Experimental Results and Discussion

As stated earlier, the dataset featuring 2000 samples and 78
image texture variables has been separated into the training

and testing subset. .e training and testing subsets occupy
70% and 30% of the original dataset, respectively. .e first
subset is used for model training. .e second subset is
employed for testing the model predictive capability when it
predicts corrosion status of novel image samples which has
not been encountered in the training subset. Moreover, to
reliably assess the model performance and to diminish the
randomness caused by the data sampling process, this re-
search work has conducted a random subsampling of the
original dataset consisting of 20 runs. In each run, 30% of the
data is randomly extracted to constitute the testing subset;
the rest of the data is used for model training. Accordingly,
the overall model performance is reliably evaluated by av-
eraging prediction results obtained from the repeated data
sampling.

(a)

(b)

Figure 3: .e collected image samples: (a) noncorrosion class and (b) corrosion class.

Training 
dataset

The optimized 
SVM model 

SVM model 
training

Corrosion detection 
result

The collected 
image samples

Texture descriptors

GLCM-based
features
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of color channels

GLRL-based 
features

DFP 
optimization

Testing 
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Hyper parameter 
initialization

Start

Cost function 
evaluation

Stopping criterion 
verification

SVM model 
prediction

g = 1

g = g + 1

Figure 4: .e proposed MO-SVM-PCD model used for pipe corrosion detection.
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In addition to the aforementioned PPV and NPV, the
classification accuracy rate (CAR), recall, and F1 score are
also used for expressing the model’s predictive accuracy.
.ese indices are computed as follows [50]:

classification accuracy rate : CAR �
TP + TN

TP + TN + FP + FN

× 100%,

recall �
TP

TP + FN
,

F1 score �
2TP

2TP + FP + FN
,

(15)

where TP, TN, FP, and FN are the true positive, true
negative, false positive, and false negative values.

Demonstration of the feature extraction phase which
computes image sample texture is provided in Figure 5.
Herein, for each image sample, 78 features representing the
statistical measurements of image colors, GLCM, and GLRL
are attained and used for data classification purpose. In
addition, the evolutionary process of the DFPmetaheuristic-
based SVM model optimization is illustrated in Figure 6
which shows the best and the average cost function values in
each generation..e optimal values of the penalty coefficient
and the RBF kernel function parameter are found to be 4.30
and 8.86 with the best cost function� 1.08.

.e performance of the MO-SVM-PCD in the training
and testing phases is reported in Table 2. As shown in this
table, the proposed model has attained good predictive
accuracy in both phases with CAR >90%. In detail, the
MO-SVM-PCD has achieved CAR � 91.17%, PPV � 0.91,
recall � 0.92, NPV � 0.92, and F1 score � 0.91 in the testing
phase. .ere is a focus on the MO-SVM-PCD performance
in the testing phase because this reflects the generalization
capability of the model.

In addition, corrosion detection based on the MO-SVM-
PCD for a large-sized image samples can be achieved via a
blockwise image separation process. .is image separation
process is illustrated in Figure 7(a). In this figure, each block
corresponds to a sample having the size of 50× 50. .e
classification result for the entire image is carried out by
combining the MO-SVM-PCD-based corrosion detection
for each image block (see Figure 7(b)). .e computational
time required to classify one image block is about 4 seconds;
therefore, the corrosion detection of the whole large-sized
image (800× 600 pixels) requires about 768 seconds. It is
noted that the detected positive class (corrosion class)
samples are highlighted by red squares. As can be seen from
this figure, the proposed approach can achieved relatively
good classification result. Nevertheless, several positive
samples located in the boundary of the corroded area have
not been identified correctly.

Furthermore, to better demonstrate the prediction ca-
pability of the newly constructed MO-SVM-PCD employed
for detecting metal pipe corrosion, its performance has been
compared to that of the least squares support vector machine

(LSSVM) [51], classification tree (CTree) [52], back-
propagation artificial neural network (BPANN) [53], and
convolutional neural network (CNN) [54]. .e reason for

Image texture-based
features

GLCM-based
features

Statistical properties 
of color channels

GLRL-based
features

Texture descriptors

203.56 190.16 196.87 32707.71 34.30 9477.21...
...X1 X2 X3 X76 X77 X78

(a)

Image texture-based
features

GLCM-based
features

Statistical properties 
of color channels

GLRL-based
features

Texture descriptors

128.762 101.986 92.9316 11625.9 31.7479 594.22
...X1 X2 X3 X76 X77 X78

(b)

Figure 5: Illustration of the feature extraction process: (a) a
noncorrosion case and (b) a corrosion case.
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Figure 6: .e DFP optimization process.

Table 2: Average prediction performance of the MO-SVM-PCD.

Indices Training phase Testing phase
CAR (%) 98.382 92.808
PPV 0.982 0.922
Recall 0.986 0.936
NPV 0.986 0.935
F1 score 0.984 0.929
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the selection of these benchmark models is that they have
been confirmed to be capable methods for pattern classifi-
cation by previous studies [5, 40, 55–57].

.e LSSVM model is programmed in MATLAB by the
authors; its tuning parameters including the regularization
coefficient and kernel function parameter are also auto-
matically identified by the DFP metaheuristic. .e CTree is
developed by the built-in functions provided in the MAT-
LAB Statistics and Machine Learning Toolbox [46]. .e
BPANNmodel is programmed inMATLAB environment by
the authors. Via experiment, the suitable parameter of
minimum leaf size of the employed CTree model has been
found to be 2. Based on the suggestions of Heaton [58] and
several trial-and-error runs, the number of neuron in the
hidden layer of the BPANN model is selected to be 2×NI/
3 +NO � 54, where NI � 78 is the number of input features
and NO � 2 is the number of class labels. Moreover, the
learning rate and the number of training epochs of the
neural network are set to be 0.1 and 1000, respectively.

In addition, the CNN model employed for corrosion
detection is constructed by the MATLAB image processing
toolbox [59]; the stochastic gradient descent with mo-
mentum (SGDM) and mini-batch mode are used in the
model training phase. Via experimental runs, the appro-
priate configuration of the deep learning method is as fol-
lows: input image size is 50× 50 pixels. .e number of
convolution layers is 4. .e sizes of the filters are 20× 20,
16×16, 8× 8, and 4× 4 in the 1st, 2nd, 3rd, and 4th convo-
lution layer, respectively. .e number of filters in each layer

is 36. .e batch size is 20% of the training data. In addition,
the CNN model has been trained in 1000 epochs. In CNN,
the feature extraction phase is automatically performed by
convolution layers; therefore, the CNN model does not
requires the feature computation done by the three
employed image texture descriptors.

.e prediction results of all the models obtained from
the repeated data sampling with 20 runs are summarized in
Table 3 which reports the mean and the standard deviation
(Std) of the model performance. Observably, the MO-SVM-
PCD has attained the most desired predictive accuracy in
terms of CAR, followed by BPANN, LSSVM, CNN, and
CTree. .e proposed pipe corrosion approach also achieves
the highest values of PPV, recall, NPV, and F1 score. .e
comparison of model performance is graphically displayed
in Figure 8.

In addition, the Wilcoxon signed-rank test [60] is uti-
lized in this section to better confirm the statistical signif-
icance of the differences in the model performances..is is a
nonparametric statistical test commonly employed for
model comparison [61]. With the significance level of the
test� 0.05, if the p value computed from the Wilcoxon
signed-rank test is lower than this significance level, it is able
to reject the null hypothesis of insignificant difference in
prediction outcomes of the two predictors. Hence, it is
confident to conclude that the predictive results of the two
pipe corrosion detection models are statistically different.
Using the CAR values, the outcome of the Wilcoxon signed-
rank tests is reported in Table 4. .is test points out that the

Original image

Blockwise separation

�e MO-SVM-
PCD corrosion

detection

Corrosion detection result

(a)

Image with detected corrosion

(b)

Figure 7: .e MO-SVM-PCD-based corrosion detection result: (a) blockwise image separation process and (b) detection outcome with a
large-sized image sample.
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MO-SVM-PCD is statistically better than the LSSVM,
CTree, BPANN, and CNNwith p values< 0.05. Based on this
statistical test, it is able to state that the proposed method is
the most suited method for the task of interest.

4. Conclusion

Corrosion is a commonly observed type of pipe defects.
Timely detection of corrosion is very crucial to ensure the
integrity of the water supply system and avoid water

contamination. In addition, information regarding corroded
pipe sections obtained during periodic building surveys can
significantly help to establish cost-effective maintenance
strategies for building owners. .is study puts forward an
automatic method based on image processing and machine
learning for pipe corrosion recognition. Image processing
techniques have been employed to extract useful features
from images of pipe surface to characterize the corrosion
status. In total, 78 features are extracted using three texture
descriptors of the statistical properties of image color,
GLCM, and GLRL.

.e SVM machine learning method integrated with the
DFP metaheuristic is utilized to construct a decision
boundary used for classifying pipe surface images into two
categories of noncorrosion and corrosion. A dataset con-
sisting of 2000 image samples has been used to train and
validate the proposed hybrid model of the MO-SVM-PCD.
Experimental results supported by the Wilcoxon signed-
rank test point out that the newly developed method is
superior to other benchmark approaches with an average
CAR� 92.81%..erefore, the newly developed model can be

Table 3: Corrosion detection result of the machine learning models.

Phase Indices
MO-SVM-PCD LSSVM CTree BPANN CNN
Mean Std Mean Std Mean Std Mean Std Mean Std

Train

CAR (%) 98.382 0.236 96.432 0.435 97.018 0.532 94.593 1.674 90.890 1.649
PPV 0.982 0.004 0.937 0.008 0.970 0.006 0.937 0.020 0.891 0.024
Recall 0.986 0.004 0.996 0.002 0.971 0.008 0.956 0.016 0.933 0.020
NPV 0.986 0.004 0.995 0.002 0.971 0.007 0.956 0.016 0.930 0.019
F1 0.984 0.002 0.965 0.004 0.970 0.005 0.947 0.016 0.911 0.016

Test

CAR (%) 92.808 1.094 87.467 1.121 85.825 1.467 88.733 1.721 87.258 1.571
PPV 0.922 0.015 0.886 0.016 0.854 0.016 0.877 0.022 0.855 0.028
Recall 0.936 0.017 0.860 0.016 0.864 0.021 0.902 0.026 0.899 0.022
NPV 0.935 0.016 0.864 0.014 0.863 0.019 0.899 0.024 0.894 0.018
F1 0.929 0.011 0.873 0.011 0.859 0.015 0.889 0.017 0.876 0.014

MO-SVM-PCD LSSVM CTree BPANN CNN
0.80

0.85

0.90

0.95

Pe
rfo

rm
an

ce
 in

di
ce

s

CAR

PPV

Recall

NPV

F1 score

Figure 8: Result comparison.

Table 4: p values obtained from the Wilcoxon signed-rank test.

Models MO-SVM-
PCD LSSVM CTree BPANN CNN

MO-SVM-
PCD — 0.00009 0.00009 0.00009 0.00009

LSSVM 0.00009 — 0.00427 0.01407 0.48933
CTree 0.00009 0.00427 — 0.00022 0.01185
BPANN 0.00009 0.01407 0.00022 — 0.01954
CNN 0.00009 0.48933 0.01185 0.01954 —
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a useful tool for building maintenance agents to quickly
evaluate the status of pipe systems. Further extensions of the
current study may include the utilization of other advanced
machine learning for data classification, employment of
other metaheuristic for model optimization, employment of
higher-order statistical features as input to machine learning
based classifiers, enhancement of the detection accuracy for
image samples located in the boundary of the corroded area,
improvement of the computational efficiency of the current
method by employing advanced image segmentation tech-
niques, and collection of more image samples to enhance the
generalization of the current MO-SVM-PCD model.
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.e data used to support the findings of this study are
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