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1  | INTRODUC TION

Biological invasion plays fundamental role for ecosystem dys-
functions through loss of biodiversity across the world (Cordero, 
Torchelsen, Overbeck, & Anand, 2016; Heringer, Thiele, 

Meira-Neto, & Neri, 2019; Mack et al., 2000). Thus, it prompts 
wide research to unravel invasion mechanisms and conse-
quences of invasive species into natural systems. Therefore, 
this advances our understanding of mechanisms and effects of 
those invaders that play an important role in altering community 
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Abstract
Invasive plants apply new selection pressures on neighbor plant species by differ-
ent means including allelopathy. Recent evidence shows allelopathy functions as re-
markably influential mediator for invaders to be successful in their invaded range. 
However, few studies have determined whether native and non-native species 
co-occurring with invaders have evolved tolerance to allelopathy. In this study, we 
conducted germination and growth experiments to evaluate whether co-occurring 
native Juncus pallidus and non-native Lolium rigidum species may evolve tolerance to 
the allelochemicals induced by Cyanara cardunculus in Australian agricultural fields. 
The test species were germinated and grown in pots filled with collected invaded and 
uninvaded rhizosphere soil of C. cardunculus with and without activated carbon (AC). 
Additionally, a separate experiment was done to differentiate the direct effects of AC 
on the test species. The soil properties showed invaded rhizosphere soils had higher 
total phenolic and lower pH compared with uninvaded soils. We found significant 
reduction of germination percentage and seedling growth in terms of above- and 
belowground biomass, and maximum plant height and root length of native in the in-
vaded rhizosphere soil of C. cardunculus, but little effect on non-native grass species. 
Even soil manipulated with AC showed no significant differences in the measured 
parameters of non-native except aboveground biomass. Taken together, the results 
indicate allelochemicals induced by C. cardunculus exert more suppressive effects on 
native than non-native linking the coevolved tolerance of those.
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structure and ecosystem functions (Castro-Diez, Pauchard, 
Traveset, & Vila, 2016; Lodge, 1993; Sodhi, Livingstone, Carboni, 
& Cadotte, 2019). There are many hypotheses may explain the 
success of the invasive species in the introduced range (Catford, 
Jansson, & Nilsson, 2009; Crandall & Knight, 2018). Specifically, 
“enemy release”—lack of coevolutionary history with its host in the 
introduced range (Allen et al., 2017); “novel weapons”—gaining a 
competitive advantage over native by possessing novel biochem-
ical (Becerra et al., 2018); and “evolution of increased competi-
tive ability”—evolving more competitive ability by releasing most 
specialist enemies following introduction (Montesinos, Graebner, 
& Callaway, 2019) are commonly used. Biochemical interactions 
among plants have revived interest in invasion ecology (Callaway 
& Maron, 2006), which is referred as “allelopathy.” The “allelopa-
thy” was defined by Rice (1984): “any direct or indirect harmful or 
beneficial effect by one plant (including microorganisms) on an-
other through production of chemical compounds that escape into 
the environment.” However, it has been acknowledged with doubt 
for decades due to its complexity in demonstration (Keeley, 1988; 
Meiners, Kong, Ladwig, Pisula, & Lang, 2012; da Silva, Overbeck, 
& Soares, 2017). However, contemporary research provides ev-
idence of allelopathy between invasive and native plant species, 
which might be one of the underlying mechanisms of invad-
ers’ success into invasion processes (Bais, Vepachedu, Gilroy, 
Callaway, & Vivanco, 2003; Callaway & Ridenour, 2004; Ooka 
& Owens, 2018; Prati & Bossdorf, 2004; Song, Qin, He, Wang, 
& Yu, 2019; Stinson et al., 2006; Uddin, Robinson, Buultjens, Al 
Harun, & Shampa, 2017). Additionally, some studies found suc-
cess of the invader is in part due to the introduction of novel 
allelopathic compounds, as many co-occurring plant species ex-
hibit a lack of evolved tolerance to these compounds (Callaway 
& Ridenour, 2004; Huang, Lankau, & Peng, 2018; Lankau, 2012; 
Lyytinen & Lindstrom, 2019).

The debate on allelopathy in natural ecosystems is partially char-
acterized by methodological difficulties to demonstrate the effects 
of the natural concentration level of allelochemicals on coexisting 
plant species (Mallik, 2008). A majority of allelopathic studies have 
been conducted using plant extracts from different solvents and 
plant materials under laboratory conditions which are ecologically 
unrealistic (Inderjit & Dakshini, 1995) (Hierro & Callaway, 2003; 
Inderjit & Callaway, 2003; Inderjit & Weston, 2000). In spite of ad-
vancement in using ecologically “realistic” technique, experiments 
evaluating the evolved tolerance of neighboring plant species (na-
tive versus non-native) to root exudates found in rhizosphere are 
exceptionally rare (Inderjit & Nilsen, 2003; Lankau, 2012; Lyytinen 
& Lindstrom, 2019), with a few exceptions (Blair, Weston, Nissen, 
Brunk, & Hufbauer, 2009; Fujii et al., 2004; Nilsson, 1994; Nilsson, 
Zackrisson, Sterner, & Wallstedt, 2000). Noteworthy here is that the 
study regarding C. cardunculus by Scavo, Rial, Molinillo, et al. () has 
been carried out to improve the methodological aspects of allelopa-
thy. The experiments in the field and/or using field level allelochem-
ical concentration in rhizosphere with co-occurring plant species 
and demonstrating the evolved tolerance of those may offer the 

possibility to overcome the debate on allelopathic effects (da Silva 
et al., 2017; C. Fernandez et al., 2016; Jose & Gillespie, 1998; Scavo, 
Abbate, & Mauromicale, 2019; Zackrisson & Nilsson, 1992).

Cynara cardunculus, native to the Mediterranean basin, is a herba-
ceous perennial thistle (Pignone & Sonnante, 2004) and has invaded 
in the western USA, South America, UK, Australia, and New Zealand 
(GISD, 2020). In Australia, Cynara cardunculus subsp. flavescens 
Wiklund is declared as a significant environmental weed in the states 
of Victoria, South Australia, and Tasmania (Bean, 2017), and the va-
riety is unclear but it might be scolymus (L.) Benth (Bean, 2015). C. 
cardunculus is considered a pest in agriculture systems, including 
pasture land and disturbed areas, and it invades natural habitats in-
cluding grasslands, riparian areas, open woodlands, and wetlands.

Though C. cardunculus has higher vegetative reproduction from 
its roots and crowns of the mature plant, it also produces higher 
seeds ranged from 600 to 30,000 seeds/year/plant (Marushia & 
Holt, 2006, 2008). It is very fast growing with higher above and be-
lowground biomass, and more competitive than associated native 
plant species. These attributes could contribute to the invasiveness 
of this plant (White & Holt, 2005). The widespread distribution and 
dense monocultures (20,000 plants per acre) displace native plant 
communities and reduce plant diversity across the world (Marushia 
& Holt, 2006; White & Holt, 2005). The dense populations of C. car-
dunculus also cause the restriction of wildlife movement and native 
vegetation growth creating fragmentation of native habitats (Kelly & 
Pepper, 1996). For instance, the invasion of C. cardunculus displaced 
the endangered plant species Acanthomintha ilicifolia in California 
(Kelly, 2000).

With these common invasive traits, the allelopathic trait of 
C. cardunculus has contributed to the displacement and reduc-
tion of native biodiversity (Carlos Rial, Novaes, Varela, Molinillo, 
& Macias, 2014; Scavo, Pandino, et al., 2019; Scavo, Restuccia, 
Abbate, & Mauromicale, 2019; Scavo, Restuccia, Pandino, Onofri, 
& Mauromicale, 2018). It produces a variety of allelochemicals in-
cluding phenolic compounds (Pandino, Lombardo, Mauromicale, & 
Williamson, 2011a, 2011b), sesquiterpene lactone (Rial et al., 2016; 
Scavo, Rial, Molinillo, et al., ), and polyphenols (caffeoylquinic acids 
and flavonoid derivatives) (Ciancolini, Alignan, Pagnotta, Vilarem, 
& Crino, 2013). Those allelochemicals demonstrated inhibitory ef-
fects on wheat coleoptile, standard target species, and weed growth 
(Rial et al., 2014, 2016). These compounds may be available through 
biomass leaching and decomposition, and root exudates that makes 
substantial concentration in the rhizosphere soil to influence seed 
bank of associated plant species (Scavo, Restuccia, et al., 2019).

Most of the past studies into C. cardunculus have focused 
on medicine (Bras, Guerreiro, Duarte, & Neves, 2015; Garbetta 
et al., 2014; Koubaa, Damak, McKillop, & Simmonds, 1999; 
Miadokova et al., 2008; Yasukawa, Matsubara, & Sano, 2010), food 
(Agboola, Chan, Zhao, & Rehman, 2009; Dias et al., 2018; Pandino, 
Lombardo, Mauromicale, & Williamson, 2011a, 2011b), and bio-
fuel (Ciancolini et al., 2013; J. Fernandez, Curt, & Aguado, 2006; 
Gominho, Curt, Lourenco, Fernandez, & Pereira, 2018). Some 
studies have tested allelopathy using plant extract in its native 
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range (Carlos Rial et al., 2014; Scavo, Pandino, et al., 2019; Scavo, 
Restuccia, et al., 2019; Scavo et al., 2018), and competitive ability 
of C. cardunculus (White & Holt, 2005). While those studies have 
demonstrated allelopathic effects of C. cardunculus on model and 
weed species in its native range, none has examined the effects on 
associated native and non-native grass species. More specifically, 
no studies evaluate the evolved tolerance of the co-occurring na-
tive and non-native grass species with field concentrations of root 
exudates (allelochemicals) available in rhizosphere of C. cardunculus. 
To the best of our knowledge, to date no allelopathic studies have 
been conducted in its non-native range, specifically in Australian C. 
cardunculus populations.

2  | MATERIAL S AND METHODS

Our experiments were set to test the allelopathic effects of C. car-
dunculus on germination and growth of grass species that co-occurs 
in agriculture field in Victoria, Australia. We used field-collected 
rhizosphere soils to imitate natural conditions through exposing of 
target species that minimize uncertainties in plant extract concentra-
tions or exclusion of other possible edaphic effects (Gómez-Aparicio 
& Canham, 2008). As the allelopathic effects are species-specific 
(Callaway & Ridenour, 2004; Gomez-Aparicio & Canham, 2008), we 
also devised the experiments to determine the evolved tolerance of 
associated native versus non-native grass species to the allelopathic 
potential of C. cardunculus in its invaded community. In addition, 
chemical properties (total phenolic content and pH) of C. cardun-
culus rhizosphere were assessed to test the differences among the 
populations. Overall, this study aimed to evaluate allelopathy and 
coevolutionary effects of rhizosphere soil induced by C. cardunculus 
on co-occurring native and non-native grass species in its invaded 
range.

2.1 | Measurement of field soil chemical properties

To test whether invasive plant species C. cardunculus changes 
chemical soil properties, we collected rhizosphere soil at the end 
of November 2018 during its highest biomass production from 
three invaded and three nearby noninvaded populations in agri-
cultural land at 26.7 m above sea level in Werribee South, Victoria, 
Australia (37°54′44.5″S 144°42′00.8″E). We designed our sam-
pling protocol to minimize the effects through selection of homog-
enous soil profile, and plant density and diversity in uninvaded and 
invaded sites of each population, which were also close to each 
other. The location of each population including soil from both 
invaded and nearby noninvaded was separated from the others 
by a distance of at least 500 m. At each location, we collected 
five samples from five individuals of C. cardunculus as invaded soil 
samples and five from nearby noninvaded population where other 
species such as Juncus pallidus, Maireana decalvans, and Themeda 
triandraexcept C. cardunculus were present. After that, the soil 

samples were transported into the laboratory, sorted and homog-
enized for composite sample. Then, we took five subsamples from 
each population for measurement of soil properties and meas-
ured total phenolic content (TPC) and pH in soil as it is assumed 
those properties might play a significant role in testing allelopathy, 
though rhizosphere has also numerous aspects (Scavo, Abbate, 
et al., 2019). Soil pH was determined with a pH meter (Pocket 
digital pH meter, 99,559, Dick Smith Electronics, Australia) in a 
1:2.5 w/v (soil: distilled water) ratio (Paz-Ferreiro, Trasar-Cepeda, 
Leirós, Seoane, & Gil-Sotres, 2007). Soil phenolics was determined 
by sampling 100 mg of air-dried soil following the Folin–Ciocalteu 
method (Blainski, Lopes, & De Mello, 2013).

2.2 | Germination experiment

However, the multiple populations provide the possibility to check 
the variation among populations through increasing the reliability 
of the results, and better representing the condition of each treat-
ment, but we avoided using multiple populations in this occasion 
due to complexity in research design and the possibility of confu-
sion. The collected homogenized rhizosphere soil from only one 
population was used in the experiment as no attempt was made to 
check variation among populations. Half of the soil (invaded and 
noninvaded) was thoroughly mixed with activated carbon (AC) and 
the mixture was placed into the pots as a treatment. The remaining 
soil was considered as a treatment without AC. The AC has special 
characteristics with high absorptivity of organic complexes, such 
as allelochemicals, and weak affinity for inorganic molecules, such 
as those present in nutrient solution. Many allelopathic studies re-
lated to C. stoebe including C. maculosa, C. rhenana, C. muretii, C. 
vallesiaca, and C. stoebe subsp. have demonstrated through reduc-
ing the suppressive effects of root exudates (Callaway, Ridenour, 
Laboski, Weir, & Vivanco, 2005; Lyytinen & Lindstrom, 2019; 
Ridenour & Callaway, 2001). The 100 g soils were placed in pun-
nets (9.75 cm by 6.75 cm) with five replicates. The punnets were 
moistened and kept at room temperature for 24 hr to activate the 
soil microbes. The sterilized seeds (collected from fields invaded 
by C. cardunculus) of native Juncus pallidus and non-native Lolium 
rigidum grass species were then seeded at a rate of 20/pot. The 
tested seeds were selected due to the following reasons: (a) They 
are co-occurring plant species of C. cardunculus; (b) allelopathic 
interactions between invasive alien and coexisting plant species 
(native and non-native) seem to be one of the underlying mecha-
nisms for the invasion success of some invaders; and (c) testing 
the evolved tolerance of the coexisting species. We followed a 
complete randomized block design in this study. The pots were 
kept in shade for 3 days and then transferred to the natural lit 
greenhouse at 23 ± 3°C day and 12 ± 2°C night temperatures. The 
pots were watered with automated irrigation system twice in a 
day. Pots were randomly shuffled every week to minimize the spa-
tial effects. Then, after four weeks, the germinant was counted for 
each treatment.
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2.3 | Growth and establishment experiment

The soils were prepared as per the abovementioned germination 
experiment, and the 100g soils were placed in punnets (9.75 cm by 
6.75 cm) for growth experiment. However, the size of the punnets 
may seem tighten for growth of whole period of the experiment, but 
the plants can adopt with it, and it may not interfere the findings 
as it was applicable for all replicates of both tested species. About 
300 (three hundred) sterilized seeds of each grass species (native 
and non-native) were germinated in a tray (30 cm by 28 cm) filled 
with sterilized sand. One seedling of both species was then trans-
planted into the prepared punnet by twenty-one replicates and pots 
were grouped by target species following a randomization across 
treatments and kept as per the abovementioned condition. Dead 
seedlings were replaced after a period of two weeks, to allow the 
experiment to continue. The pots were watered using an automated 
irrigation system twice in a day and fertilized fortnightly with liquid 
fertilizer (Hyponex, N-P-K, 6-10-5, Hyponex Inc) at a concentra-
tion of 2ml/1 of water. Pots were randomly shuffled every week to 
minimize the spatial effects, and after 3.5 months, the plants were 
harvested for biometric parameters including maximum plant height 
and root length, aboveground biomass (AGB), belowground biomass 
(BGB), total biomass (AGB plus BGB), and AGB-BGB ratio.

We conducted a separate experiment along with the main ex-
periments to assess the direct effect of AC on seedlings growth of 
native and non-native used grass species with sterilized sand and AC 
treatments. We used five replicates per treatment (with and with-
out AC) for both of grass species. The direct effect of AC on plant 
growth has been assessed due to its complication on allelopathy (Lau 
et al., 2008). This experiment was carried out adopting the same pro-
cedure as the aforementioned experiment and measured biometric 
parameters (Appendix S1).

2.4 | Data analyses

An independent sample t test was performed to check the differ-
ences of soil phenolics and pH level among uninvaded and invaded 
sites for each population of C. cardunculus. Two-way ANOVAs were 
also conducted to test the differences of those variables as func-
tions of populations and invasion status (uninvaded and invaded). 
We again conducted two-way ANOVAs to test the effect of soil 
allelopathy as functions of activated carbon (with and without AC) 
and invasion status (uninvaded and invaded) on AGB, BGB, AGB-
BGB ratio, total biomass, and maximum plant height and root length 
of native and non-native grass species. Target species (native and 
non-native) were not considered as third fixed factor in the univari-
ate general linear model due to avoid complexity. For example, the 
test does not provide which specific species is significantly different 
from each other. As a result, separate analysis (species-specific) was 
done to get direct understanding of the allelopathic effects on each 
of them. Moreover, an independent sample t test was performed to 
compare the significant differences between AC treatments (with 

vs. without carbon) and species (native vs. non-native) in both of 
germination and growth experiments including separate growth 
experiment. To maintain homogeneity of variances and normality 
of the used data for these analyses, we used data transformation 
techniques: a square root (soil phenolics, AGB, BGB, total biomass 
for native; AGB for non-native) and an arcsine-square root function 
(germination percentage for native). We also applied Levene's test 
for homogeneity of variance and Kolmogorov-Smirnov (K-S) test for 
normality of the used data. All data were analyzed using SPSS ver-
sion 20.0 (IBM Corporation).

3  | RESULTS

3.1 | Rhizosphere soil chemical properties

The measured soil chemical properties such as total phenolics and 
pH have been altered due to C. cardunculus invasion. The soil pheno-
lics and pH of all populations was significantly higher and lower, re-
spectively, at invaded sites compared to uninvaded sites (phenolics: 
F1,24 = 3,291.77, p ≤ .001; pH: F1,24 = 304.06, p ≤ .001) (Figure 1). The 

F I G U R E  1   Changes to (a) phenolics and (b) pH due to 
Cynara cardunculus invasion in three populations. Each bar is 
the mean ± SE, n = 5. Asterisks designate significant difference 
between uninvaded and invaded plots within each population after 
independent sample t test (***p ≤ .001)
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significant variation of only phenolics among populations was ob-
served (F2,24 = 17.47, p ≤ .001). However, there were no interactions 
between populations × invasion status on those variables (phenolics: 
F2,24 = 1.18, p = .32; pH: F2,24 = 1.45, p = .25). The phenolic content 
varied with a range of 0.18 to 0.23 mg/g at uninvaded and 1.07 to 
1.28 mg/g at invaded sites among populations, whereas the pH level 
was 7.27 to 7.45 at uninvaded and 6.35 to 6.55 at invaded sites.

3.2 | Germination test

There was significant interactive effect of invasion status and car-
bon treatments on germination percentage of the native species 
(F1,16 = 26.50, p ≤ .0001), but no significant effect on non-native 

species (F1,16 = 0.51, p = .48) (Figure 2). The germination percent-
age of native species was also influenced significantly by the main 
effect of invasion status (F1, 16 = 360.29, p ≤ .0001) and AC treat-
ments (F1, 16 = 59.24, p ≤ .0001), whereas non-native species was 
neither affected by invasion status (F1, 16 = 0.51, p = .48) nor AC 
treatments (F1, 16 = 0.06, p = .81). The AC in invaded rhizosphere 
soil increased 341% germination for native. However, it was only 
2.1% for non-native grass seeds indicating that soil allelopathy 
of C. cardunculus had strong negative effect on native compared 
to non-native seed germination (Figure 2). In addition, there was 
significant difference between native and non-native species in 
without (t = 36.24, df = 8, p ≤ .001) and with (t = 11.63, df = 8, 
p ≤ .001) AC treatments in invaded soil, but no effect in uninvaded 
soil (Figure 2).

F I G U R E  2   Germination percentage 
of native Juncus pallidus and non-native 
Lolium rigidum grass species germinated 
in uninvaded and invaded rhizosphere 
soil of Cynara cardunculus either with or 
without activated carbon (AC). Each bar is 
the mean ± SE, n = 5. Asterisks above bar 
and horizontal line designate significant 
difference between AC treatments 
and target species, respectively after 
independent sample t test (***p ≤ .001)

TA B L E  1   ANOVA of the effects of activated carbon (without carbon vs. with carbon), and plant invasion (uninvaded vs. invaded) on 
maximum plant height, maximum root length, aboveground biomass (AGB), belowground biomass (BGB), and total biomass of test plant 
species (native Juncus pallidus and non-native Lolium rigidum)

Source of variation
df1, 
df2

AGB BGB AGB-BGB ratio Total biomass Plant height Root length

F p F p F p F p F p F p

Native

Activated carbon 
(AC)

1, 80 903.62 <.001 224.91 <.001 40.06 <.001 765.45 <.001 40.57 <.001 23.01 <.001

Plant invasion (PI) 1, 80 404.08 <.001 1,413.13 <.001 266.72 <.001 1,418.63 <.001 64.10 <.001 49.16 <.001

AC × PI 1, 80 472.75 <.001 299.58 <.001 0.32 .57 625.55 <.001 78.51 <.001 0.14 .710

Non-native

Activated carbon 
(AC)

1, 80 12.36 <.01 108.05 <.001 63.98 <.001 29.17 <.001 3.43 .067 5.72 <.05

Plant invasion (PI) 1, 80 85.80 <.001 667.07 <.001 33.71 <.001 563.17 <.001 1.63 .205 10.29 <.01

AC × PI 1, 80 17.77 <.001 42.55 <.001 32.88 <.001 4.92 .029 0.69 .408 1.14 .288

Note: Here, degrees of freedom 1 (df1) and degrees of freedom 2 (df2), where df2 equals the total number of observations in all cells (n) minus the 
degrees of freedoms lost because the cell means are set.
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3.3 | Seedling growth performance

The main and interactive effects of invasion status and carbon 
treatments on the growth performance of native and non-native 
seedlings were presented in Table 1. The AC treatments in invaded 
rhizosphere soil had significant incremental effect on AGB, BGB, 
total biomass, AGB-BGB ratio, plant height, and root length of na-
tive seedlings, whereas AGB and AGB-BGB ratio of non-native 
seedlings were positively affected (Table 1, Figures 3, 4, 5). In the 
invaded rhizosphere soil, AC significantly increased AGB (267%), 
BGB (202%), total biomass (237%), AGB-BGB ratio (20.75%), maxi-
mum plant height (63%), and maximum root length (13%) for na-
tive seedlings, whereas the increased rate for non-native was for 
AGB (20%) and AGB-BGB ratio (49.59%) (Figures 3, 4, 5). Overall, 
AC in invaded soil had incremental effects on all measured biom-
etric parameters of native seedlings, whereas most of the param-
eters except AGB, AGB-BGB ratio, and maximum root length for 
non-native seedlings were negatively affected (Figures 3, 4, 5). In 

uninvaded soil, AC treatments had significant incremental effects 
on AGB (17%), AGB-BGB ratio (23.21%), and maximum root length 
(9.0%) for native seedlings, whereas only maximum root length 
(9.5%) of non-native seedlings was positively affected (Figures 3, 4, 
5). In most cases, AC in uninvaded soil had less significant effects 
on seedling performance of both species. On average, invaded 
rhizosphere soil of C. cardunculus showed greater negative effects 
on native seedlings compared with non-native. The direct compari-
sons between native and non-native grass species for measured 
parameters varied across treatments of invasion status (invaded 
and noninvaded) and AC (without and with AC; Figures 3, 4, 5).

The direct effects of AC on experimental seedlings showed that 
there was no significant effect on the native seedlings in terms of 
AGB, BGB, total biomass, maximum plant height and root length and 
non-native seedlings in terms of aboveground biomass, and maxi-
mum plant height and root length (all p > .05) except belowground 
biomass (t = 2.32, df = 8, p = .048). Actual data are provided in the 
online Appendix S1 (see Data S1).

F I G U R E  3   (a) Maximum plant height 
and (b) maximum root length of native 
Juncus pallidus and non-native Lolium 
rigidum grass species grown in uninvaded 
and invaded rhizosphere soil of Cynara 
cardunculus either with or without 
activated carbon (AC). Each bar is the 
mean ± SE, n = 21. Asterisks above bar 
and horizontal line designate significant 
difference between AC treatments 
and target species, respectively after 
independent sample t test (*p ≤ .05; 
**p ≤ .01 & ***p ≤ .001)
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4  | DISCUSSION

4.1 | Chemical changes in rhizosphere

Our results showed significant differences in phenolics content and 
pH level between rhizosphere soil of uninvaded and invaded plots in all 
populations. Many of the previous studies found inconsistent results 
for soil properties invaded by invasive plants under field conditions 
(Broz, Manter, & Vivanco, 2007; Ehrenfeld, 2003), but we followed the 
systematic sampling protocol to avoid the inconsistency in results. The 
findings of our studies aligned with other studies of C. cardunculus, 
those documented the high concentration of phenolic compounds in 
different organs of the plant (Ciancolini et al., 2013; Dias et al., 2018; 
Pandino, Lombardo, Mauromicale, & Williamson, 2011a, 2011b). 
The high concentration of allelochemicals in plant organs has led to 
the suggestion that soil may receive a major portion of the released 
chemicals from plants through leaching, rhizodeposition, litter decom-
position, etc. and might be involved in allelopathic effects between 
neighboring plant species (Kong, Xuan, Khanh, Tran, & Trung, 2019; 
Kong et al., 2018). Furthermore, the results were supported by other 

studies, which found high phenolic concentration in soil invaded by 
invasive plants such as Pluchea lanceolata, C. stoebe, Mikania micrantha, 
and Phragmites australis (Bais et al., 2003; Hierro & Callaway, 2003; 
Inderjit, 1998; Kaur, Malhotra, & Inderjit, 2012; Rudrappa, Bonsall, 
Gallagher, Seliskar, & Bais, 2007; Nazim & Robinson, 2017a, b).

In addition to the increased phenolic content in the invaded soil 
of C. cardunculus, our studies found lower pH level, which seems to 
be associated with the phenolic compounds in the plants that might 
accumulate in rhizosphere through root exudates, leachate, and lit-
ter decomposition. The invasive plants including Solidago gigantea 
(Herr, Chapuis-Lardy, Dassonville, Vanderhoeven, & Meerts, 2007; 
Scharfy, Eggenschwiler, Venterink, Edwards, & Gusewell, 2009), 
Phragmites australis (Nazim & Robinson, 2017a, b), Eucalyptus camal-
dulensis (Soumare et al., 2016), and Rudbeckia laciniata (Stefanowicz, 
Majewska, Stanek, Nobis, & Zubek, 2018) lowered the pH level in 
the invaded soil, which support our findings. On the contrary, some 
studies regarding invasive plants like Alliaria petiolata (Rodgers, 
Wolfe, Werden, & Finzi, 2008), Mikania micrantha (Kaur et al., 2012), 
and Kalmia angustifolia (Inderjit & Mallik, 1999) increased the pH 
level in the invaded soil.

F I G U R E  4   (a) Aboveground biomass 
and (b) belowground biomass of native 
Juncus pallidus and non-native Lolium 
rigidum grass species grown in uninvaded 
and invaded rhizosphere soil of Cynara 
cardunculus either with or without 
activated carbon (AC). Each bar is the 
mean ± SE, n = 21. Asterisks above bar 
and horizontal line designate significant 
difference between AC treatments 
and target species, respectively, after 
independent sample t test (*p ≤ .05; 
**p ≤ .01 & ***p ≤ .001)
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4.2 | Germination and growth performance

Our results found C. cardunculus invaded soil had a significant nega-
tive effect on the germination percentage and growth parameters of 
native, but less significant effect on non-native co-occurring grass 
species, indicating that the result depended intricately on the iden-
tity of test species. The total effect of allelopathy was greater on the 
native grass species, as the germination and total biomass increased 
more significantly in the invaded soil manipulated with AC. The AC 
neutralized the negative effects of allelochemicals available in soil, 
whereas the non-native grass species showed almost no sensitivity 
to allelochemicals. Goslee, Peters, and Beck (2001) found that mod-
erate sensitivity to allelochemicals induced by Acroptilon repens was 
an important component to swing the consequences among neigh-
boring species competition in grasslands.

The approach in our study using invaded rhizosphere soil is 
more ecologically realistic than general bioassay because the use of 
plant extracts lacks the ability to quantify or identify the response 
of allelochemicals available in invaded soil system, and whether the 

concentration of allelochemicals is responsible for allelopathy. Our 
study did not cover the whole criteria of allelopathy research de-
sign documented by Williamson (1990) and Blum, Shafer, & Lehman 
(Blum, Shafer, & Lehman, 1999) to demonstrate allelopathy of C. car-
dunculus. However, we used AC in field-collected soil to separate 
the allelopathic effects on co-occurring plant species from other 
possible effects that could demonstrate the allelopathy in a more 
ecologically realistic way. This approach may provide a better under-
standing of allelopathy under soil chemical ecological context. The 
previous studies of C. cardunculus demonstrated phytotoxicity of 
sesquiterpene lactones as secondary metabolites derived from dif-
ferent parts of the plant (Rial et al., 2014, 2016), but our studies did 
not isolate the individual chemical from the invaded soil. Isolation 
of those chemicals from rhizosphere, and the implications of those 
under settings that are more natural is required, to evaluate its ex-
tent compared to resource competition or other interactions (Scavo, 
Abbate, et al., 2019).

Our results found native species J. pallidus were more sensitive 
to allelochemicals available in rhizosphere of C. cardunculus, whereas 

F I G U R E  5   (a) Aboveground biomass 
(AGB): belowground biomass (BGB) and 
(b) total biomass of native Juncus pallidus 
and non-native Lolium rigidum grass 
species grown in uninvaded and invaded 
rhizosphere soil of Cynara cardunculus 
either with or without activated carbon 
(AC). Each bar is the mean ± SE, n = 21. 
Asterisks above bar and horizontal line 
designate significant difference between 
AC treatments and target species, 
respectively, after independent sample t 
test (*p ≤ .05 & ***p ≤ .001)
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non-native L. rigidum showed less sensitivity. The AC increased 
more significantly of germination percentage, growth parameters 
namely AGB, BGB, total biomass, and maximum plant height and 
root length of native grass species, whereas only AGB increased for 
non-native. The effect of AC may provide the evidence of allelopa-
thy (Adomako et al., 2019; Callaway & Aschehoug, 2000; Lyytinen 
& Lindstrom, 2019; Mahall & Callaway, 1991), but there is debate 
to use AC for allelopathy test, as it may also influence other soil 
properties such as nutrient availability (Lau et al., 2008), and bio-
logical properties, namely microbial communities in soil (Weißhuhn 
& Prati, 2009). Nevertheless, the results in our separate experiment 
showed no significant direct effect of AC on the measured biometric 
parameters including AGB, and total biomass of any of the two grass 
species.

The non-native invasive plant species might achieve success 
in their introduced range due to allelopathy this being the alterna-
tive mechanism for their “evolution of increased competitive abil-
ity” (Hierro & Callaway, 2003; Zheng et al., 2015). This hypothesis 
explains invasive plants achieve greater competitive advantages 
over resident species due to lack of coevolved tolerance to new al-
lelochemicals compared to their original ranges, referred to as “alle-
lopathic advantage against resident species” hypothesis proposed by 
Callaway and Ridenour (2004; Inderjit, Callaway, & Vivanco, 2006). 
Thus, it is evident that native species experience greater effects 
through induced allelochemicals by invasive species compared to 
non-natives, which had same original range of the invaders. In our 
studies, the tested non-native grass species L. rigidum co-occur 
with C. cardunculus in their native range (Müller, Deil, De Mera, & 
Orellana, 2005), which may provide a comparative evidence of co-
evolved tolerance to allelochemicals induced by C. cardunculus.

Our studies found native J. pallidus experienced strong allelo-
pathic effects, whereas non-native L. rigidum showed more resis-
tance to allelochemicals indicating that L. rigidum is less susceptible 
to allelochemicals induced by C. cardunculus. This may explain the 
coevolutionary history of the L. rigidum with C. cardunculus in its na-
tive range (i.e., southern Europe), which may provide more compet-
itive advantages over native species. It is evident that the species L. 
rigidum coevolves with C. cardunculus over a longer period in their 
native ranges that may provide resistance to allelochemicals induced 
by C. cardunculus. The findings are more aligned with the studies of 
Hu and Zhang (2013) and Prati and Bossdorf (2004) whom found, for 
example, Alliaria petiolata had greater allelopathic effects on native 
(American) Geum laciniatum germination, but less effect on non-na-
tive (European) Geum urbanum. In addition, Chromolaena odorata 
showed significant allelopathic effects on five native species (China) 
compared to non-native (South American) species. In contrast, 
Mallik and Pellissier (2000) found that invasive Vaccinium myrtillis 
had significant allelopathic effects on the non-native Picea mariana 
in comparison with the native Picea abies. This indicates plant species 
without a common evolutionary history exert significant allelopathic 
interactions. This is also supported with the notion of a coevolu-
tionary aspect to allelopathy (Arroyo, Pueyo, Saiz, & Alados, 2015; 
Rabotnov, 1981; Thorpe, Thelen, Diaconu, & Callaway, 2009).

4.3 | Linking changes in soil properties and plant 
communities

Invasive plant species may influence rhizosphere properties rapidly 
from surrounding native communities, which have major impact 
on the plant communities (Gibbons et al., 2017; Weidenhamer & 
Callaway, 2010). The plant-driven changes in physical, chemical, or 
biological soil properties may significantly influence germination and 
growth performance of the neighboring plant species (Chen, Wang, 
Wang, & Kong, 2014; Gentili, Ambrosini, Montagnani, Caronni, 
& Citterio, 2018; Herranz, Ferrandis, Copete, Duro, & Zalacaín, 
2006; Lyytinen & Lindstrom, 2019; Miller, Perron, & Collins, 2019). 
The chemical soil characteristics influenced by allelochemicals of 
invader might play an important role in ecological implications be-
tween plants and soil systems (Scavo, Abbate, et al., 2019). Among 
all the changes, the allelopathic attributes of some invasive plants 
make them more aggressive. Allelopathy as an invasion mechanism 
of some invaders in natural plant communities remains a disputed 
ecological research matter, partly due to lack of evidence of alle-
lochemicals persistence and effects in the surrounding plants. The 
establishments of the allelopathic interactions need the demonstra-
tion of allelopathy in invaded rhizosphere under soil chemical eco-
logical context (Blum et al., 1999; Scavo, Abbate, et al., 2019). Thus, 
our studies demonstrated that the chemical changes in rhizosphere 
induced by C. cardunculus. had significant negative allelopathic ef-
fects on co-occurring native grass species compared to non-native. 
This also leads to explain that the non-native grass species might 
have a long coevolution history with C. cardunculus, and thus, the 
evolution influenced the allelopathic interactions among them.

Our studies may contribute to the existing body of evidence 
demonstrating that changes in soil properties induced by invasive 
plants like C. cardunculus may influence the composition of the 
plant communities. The plant-driven changes in soil properties and 
thereby the altered functions and processes might create feedback 
mechanisms, which may proliferate the invasibility of the invader 
(Ehrenfeld & Scott, 2001; Inderjit & Cahill, 2015; Weidenhamer 
& Callaway, 2010). This is of a particular concern because such 
mechanisms might have significant implications for management 
of invasions and restoration of native communities in the invaded 
communities.

5  | CONCLUSIONS

In summary, the results of our studies recommend that allelopathy of 
C. cardunculus can contribute to its success through negative impacts 
on the natives as an invasive species in Australian agricultural fields. 
The allelopathic interference was species-specific as a function of 
coevolutionary context, which is mostly imperative for invasive spe-
cies, as the invaders compete with diverse sets of species (native 
and non-native) in different ranges. We recommend further works 
to evaluate the relative allelopathic effects by C. cardunculus on co-
occurring species of “origin” versus “recipient” plant communities, 
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considering the concentration of natural allelochemicals in soil that 
may demonstrate the generality of allelopathy to the better under-
standing of plant invasions. Furthermore, studies regarding species-
specific rhizosphere allelochemistry evaluating evolved tolerance 
of test species may be recommended for ecologically realistic and 
meaningful information.
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