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Background: Although increased early detection, diagnosis and treatment have
improved the outcome of breast cancer patients, prognosis estimation still poses
challenges due to the disease heterogeneity. Accumulating data indicated an evident
correlation between tumor immune microenvironment and clinical outcomes.

Objective: To construct an immune-related signature that can estimate disease
prognosis and patient survival in breast cancer.

Methods: Gene expression profiles and clinical data of breast cancer patients were
collected from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO)
databases, which were further divided into a training set (n = 499), a testing set (n = 234)
and a Meta-validation set (n = 519). In the training set, immune-related genes were
recognized using combination of gene expression data and ESTIMATE algorithm-derived
immune scores. An immune-related prognostic signature was generated with LASSO Cox
regression analysis. The prognostic value of the signature was validated in the testing set
and the Meta-validation set.

Results: A total of 991 immune-related genes were identified. Twelve genes with non-
zero coefficients in LASSO analysis were used to construct an immune-related prognostic
signature. The 12-gene signature significantly stratified patients into high and low immune
risk groups in terms of overall survival independent of clinical and pathologic factors. The
signature also significantly stratified overall survival in clinical defined groups, including
stage I/II disease. Several biological processes, such as immune response, were enriched
among genes in the immune-related signature. The percentage of M2 macrophage
infiltration was significantly different between low and high immune risk groups. Time-
dependent ROC curves indicated good performance of our signature in predicting the 1-,
3- and 5-year overall survival for patients from the full TCGA cohort. Furthermore, the
composite signature derived by integrating immune-related signature with clinical factors,
provided a more accurate estimation of survival relative to molecular signature alone.
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Conclusion:We developed a 12-gene prognostic signature, providing novel insights into
the identification of breast cancer with a high risk of death and assessment of the
possibility of immunotherapy incorporation in personalized breast cancer management.
Keywords: breast cancer, immune system, model statistical, prognosis, survival
INTRODUCTION

Breast cancer is the most commonly diagnosed cancer and the
leading cause of death from cancer in female worldwide, with the
expectation that 2,088,849 new cases will be diagnosed with
626,679 related death in 2018 (Bray et al., 2018). Although
increased early detection, diagnosis and treatment have
brought a sustained decrease in mortality rate over the past
decades, almost all patients who progress to metastatic diseases
will have poor outcomes even with multimodality therapy
(Emens, 2018; Weigel and Dowsett, 2010). These sobering data
highlight the urgent need for innovative approaches to identify
patients with high risk disease, and continuously improving the
management of breast cancer. At the era of increasing interest in
personalized medicine, the role of gene-expression profiling in
providing guidance to individual treatment optimization is of
considerable importance.

Breast cancer is not a single disease, but comprises
heterogeneous and diverse groups, with patients in the similar
stage disease varying in clinicopathological features, response to
systemic therapies and clinical outcomes (Blows et al., 2010).
Over the past decades, the advancement and widespread
application of “omics” has provided important insights into
molecular complexity of breast cancer, prompting researchers
to systematically explore methods to identify patients with high
risk disease better (Xiao et al., 2019). A number of studies
suggested that multigene signatures might be more accurate for
risk stratification than the conventional approaches in breast
cancer (Buyse et al., 2006; Reis-Filho and Pusztai, 2011; Toole
et al., 2014). Oncotype DX is a 21-gene signature providing a
stratification of distant relapse risk to weigh the benefits of
chemotherapy and the risks of side effects (Toole et al., 2014).
Another model, MammaPrint, a 70-gene signature, is also a
prognostic model to stratify patients with breast cancer into high
or low risk group for relapse (Buyse et al., 2006). These multigene
assays, to some extent, have already been incorporated into
clinical practice, but still awaiting the results of large,
randomized trials for the highest level of evidence of utility
(Kwa et al., 2017).

Increasing evidence support a vital role of the immune system
in breast cancer initiation and development (Emens, 2012;
Gonzalez et al., 2018). The evolving interactions between
breast tumors and host immunity establish a formidable
network of immune tolerance within tumor microenvironment
(TME), which allow overt immune escape and tumor
progression to occur (Emens, 2018; Gonzalez et al., 2018).
Immune checkpoint molecules enhancing suppressive activity
are upregulated on tumor cells while immune-suppressive
signaling pathways are activated in numerous immune cell
2

types in this process (Emens, 2018). Recent immunotherapies
targeting specific immune checkpoint PD-1/PD-L1 have had
remarkable success in anti-tumor therapy, inducing durable
clinical responses that translate into a survival benefit in some
patients with metastatic triple negative breast cancer (TNBC)
(Emens, 2018). Additionally, studies of the breast tumor
microenvironment suggest that the presence of immune
infiltration is a favorable prognostic marker particularly among
TNBC, HER2+ and highly proliferative ER positive tumors
(Bianchini et al., 2010; Mahmoud et al., 2011). However, the
molecular characteristics describing immune interaction remain
unknown and need to be comprehensively investigated due to
their prognostic potential in breast cancer.

In this study, by using combination of gene expression data
and ESTIMATE algorithm-derived immune scores, we aimed to
recognize a group of immune-related genes and construct a
reliable multi-gene-based prognostic model for breast
cancer patients.
MATERIALS AND METHODS

Database
The UCSC Xena web-based data mining platform (https://xena.
ucsc.edu/) was used to download RNA-seq data from The
Cancer Genome Atlas (TCGA). Gene expression profiles of
733 breast cancer samples were obtained for TCGA dataset,
along with clinical data such as age, molecular subtype, survival
and outcome. Immune scores were calculated to the dataset
above by applying the ESTIMATE-a method that predicts the
extent of immune cell infiltration in tumor samples by analyzing
a specific gene signature related to immune cells (Yoshihara
et al., 2013). Among the TCGA cohort, 733 patients with relevant
information were randomized and divided into a training set
(n = 499) and a testing set (n = 234). To validate the prognostic
value of the gene signature discovered from the training set, three
gene expression array (GSE20685, GSE20711 and GSE42568)
containing 519 breast cancer patients and their corresponding
clinical information were retrieved from the Gene Expression
Omnibus (GEO) (https://www.ncbi.nlm.nih.gov/geo/).

Identification of IRGs Between Low and
High Immune Score Groups
The training set containing 499 patients from TCGA cohort was
divided into top and bottom halves (high vs. low immune score
group) based on their immune scores. LIMMA analysis was
carried out to identify the immune-related genes (IRGs) by
comparing the normalized expression data between high and
low immune score groups. The genes that met the cutoff criteria
January 2020 | Volume 10 | Article 1390
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of a |logFC| > 1 and an adjusted P value < 0.01 were considered as
IRGs. Hierarchical clustering analysis was performed to show
expression patterns of the IRGs between high and low immune
score groups.

Construction of a Prognostic Signature
Based on IRGs
The univariate Cox regression analysis was applied to
investigate the association between each IRG and overall
survival (OS) of patients in the training set. Those genes with
P-value < 0.05 were considered as candidate survival-associated
IRGs to build the immune-related risk model. To minimize the
risk of overfitting, LASSO regression was employed by 10-fold
cross-validation to obtain the most strongly survival-associated
IRGs in the training set, further fitting in Cox multivariate
regression model to generate the regression coefficient for each
gene. The immune-related gene prognostic index (IRGPI) is the
sum of products of the expression level of each gene and its
corresponding regression coefficient, IRGPI  =on

i=1biExpi.
Using the aforementioned formula, we calculated the IRGPI
for each patient in the training set, and a threshold for high and
low immune risk groups was chosen manually at the
50th percentile.

Validation of the Immune-Related Gene
Signature
The prognostic value of IRGPI was performed between high
and low immune risk groups in the training set, the testing set
and the Meta-validation set by Kaplan−Meier survival curve.
We then combined IRGPI with available clinical and pathologic
features in multivariate analysis to further investigate whether
IRGPI was an independent prognostic factor. Age and stage
were regarded as continuous variables. Stage was coded as Stage
I (1), Stage II A(2), the range between II A and II B(2.5), Stage II
B(3), Stage III A(4), Stage III B(5), the range between III A
and III C(5), Stage III C(6), Stage IV (7). The prognostic
accuracy of IRGPI was measured using concordance index
(C-index), which ranges from 0 to 1.0, with 0.5 indicting
random chance and 1.0 indicating perfect discrimination.
Stratified analysis was performed to further explore the
influence of other factors on IRGPI. In addition, we
compared the predictive efficiency of IRGPI with the
commercially available molecular model Oncotype Dx and
other two immune signatures in the literatures by receiver
operating characteristic curve (ROC) analysis at 1-year, 3-
year, and 5-year OS.

Profiling of Infiltrating Immune Cells
CIBERSORT, a versatile computational approach for quantifying
cell fractions from gene expression data of bulk tissue, was
applied to analyze the abundance of diverse immune cell types
in different risk groups (Newman et al., 2015). Customized
function in CIBERSORT web portal (http://cibersort.stanford.
edu/) enabled us to uploaded normalized gene expression data
for analysis, with default matrix at 1000 permutations. As a
result, the proportion of 22 types of infiltrating immune cells,
Frontiers in Genetics | www.frontiersin.org 3
including T cells, B cells, macrophages, neutrophils, dendritic
cells, and others, were calculated for each sample. TIMER, a
similar web-based data mining platform (https://cistrome.
shinyapps.io/timer/), was used to reversely verify the results
from CIBERSORT.

Gene Ontology (GO) Analysis
The g:Profiler web-based platform (https://biit.cs.ut.ee/gprofiler/)
was used to gain an insight into functional enrichment of genes
involved in the immune-related signature. FDR-adjusted
P value < 0.05 was set as the cutoff to screen significant gene sets.
Construction and Validation of a Composite
Immune-Clinical Prognostic Index
To refine the risk model, age, stage and IRGPI were integrated
into immune-clinical prognostic index (ICPI) by using Cox
proportional hazards regression in the training set. The
procedure for risk stratification by ICPI was repeated as
IRGPI. Further, we compared the predictive efficiency of ICPI
with that of IRGPI in terms of C-index, which was depicted by
restricted mean survival (RMS) curve. Similarly, the cutoff value
for ICPI was set manually at the 50th percentile to keep
consistent with IRGPI.

Statistical Analysis
All statistical tests were performed using R (version 3.6.0; https://
www.r-project.org/) and SPSS (version 19.0; SPSS Company,
Chicago, IL). Continuous variables were analyzed with the t-test
or the Wilcoxon rank sum test while categorical variables were
compared with the Pearson Chi-square test. The immune scores
were calculated by ESTIMATE package. Univariate and
multivariate Cox proportional hazards regression were
performed by survival package. Kaplan−Meier curve and RMS
curve were also performed by survival package. LASSO Cox
proportional hazards regression analysis was performed by
penalized package. Time-dependent ROC curve was done with
TimeROC package. The C-index was calculated and compared
with survcomp package. The PAM50 subtype and Oncotype Dx
recurrence scores were estimated with genefu package. For all tests,
a two-sided P-value < 0.05 was considered statistically significant.
RESULTS

Immune Scores Are Significantly
Associated With Breast Cancer PAM50
Subtypes
A total of 1252 patients with complete gene expression data and
relevant information were included in the analysis. TCGA cohort
was randomly divided into the training set and the testing set
while GSE20685, GSE20711 and GSE42568 as the Meta-
validation set (Table 1). To characterize the role of immune
scores and stromal scores in breast cancer, we calculated the
immune score and the stromal score by ESTIMATE algorithm
for each patient from TCGA cohort. The immune scores ranged
January 2020 | Volume 10 | Article 1390
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from -1724.49 to 3459.35, and stromal scores were distributed
between −2164.14 and 2026.84. The average immune score of
basal-like subtype cases ranked the highest of all four subtypes
(except normal-like in PAM50 subtype), followed by HER2-
Frontiers in Genetics | www.frontiersin.org 4
enriched subtype, and luminal subtype (P < 0.001) (Figure 1A).
The rank order of stromal scores from highest to lowest is
luminal A > HER2-enriched > luminal B > basal-like (P <
0.001) (Figure 1B). To explore the potential correlation
TABLE 1 | Clinical and Pathologic Feature of Patients in the Training Set, Testing Set, and Meta-validation Set.

Characteristic TCGA cohort Meta-validation cohort

Training set Testing set P-value GSE20685 GSE20711 GSE42568

No. of samples 499 234 327 88 104
Median age in years (range) 58 (48–66) 58 (48–68) 0.74 48 (47–49) NA 56 (49–68)
AJCC stage
I (%) 86 (17) 39 (17) 0.85 69 (21)
IIA (%) 178 (36) 79 (34) 0.61 147 (45)†

IIB (%) 115 (23) 49 (21) 0.52
IIIA (%) 77 (15) 40 (17) 0.57 103 (31)‡ NA NA
IIIB (%) 8 (2) 11 (5) 0.01
IIIC (%) 23 (5) 14 (6) 0.43
IV (%) 12 (2) 2 (1) 0.25 8 (2)

PAM50 subtype§

Luminal A (%) 223 (45) 102 (44) 0.78 121 (37) 23 (26) 31 (30)
Luminal B (%) 121 (24) 59 (25) 0.77 80 (24) 22 (25) 42 (40)
HER2-enriched (%) 53 (11) 25 (11) 0.98 68 (21) 21 (24) 15 (14)
Basal-like (%) 95 (19) 41 (18) 0.62 42 (13) 22 (25) 23 (22)
Median follow-up (months) 38 24 113 92 82

No. of death (%) 72 (14) 28 (12) 0.37 83 (25) 25 (28) 35 (34)
January
 2020 | Volume 10 |
†Annotated as stage II patients only; ‡Annotated as stage III patients only; §Normal-like is not included.
FIGURE 1 | Immune scores and stromal scores in breast cancer. Violin-plot showing the distribution of immune scores (A) and stromal scores (B) among different
breast cancer molecular subtypes. Kaplan−Meier curves of overall survival (OS) among high or low risk groups based on immune scores (C) and stromal scores (D)
in the TCGA cohort.
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between OS and immune/stromal scores, patients were divided
into low and high score groups based on their scores, with
median immune/stromal score as the cutoff value. Kaplan−Meier
survival curve indicated that patients in high immune score
group were likely to achieve more favorable outcome than those
in low immune score group (HR = 0.68, 95%CI = 0.46-1.01, P =
0.055) (Figure 1C), while cases in high and low stromal score
group showed no significant difference in OS (HR = 1.01, 95%
CI = 0.68-1.49, P = 0.98) (Figure 1D).

Construction of an Immune-Related Gene
Signature and Its Prognostic Value
To reveal the correlation of gene expression profiles with
immune scores, we compared Illumina RNA-seq data of 499
breast cancer cases in the TCGA training set. A total of 991 IRGs
with 927 genes upregulated and 64 genes downregulated were
identified in high immune score group when compared with low
immune score group (Figure 2A and Table S1). Heatmap
analysis showed that these genes presented differential gene
expression profiles between low and high immune score
Frontiers in Genetics | www.frontiersin.org 5
groups (Figure 2B). The association of 991 IRGs with OS was
assessed using univariate Cox analysis in the training set, and 17
prognostic IRGs were recognized (Figure 2C). Then LASSO Cox
proportional hazards regression analysis was performed based
on the 17 initial candidate prognostic IRGs, and 12 genes were
found to be the final prognostic IRGs which were used in IRGPI
construction (Table 2). The IRGPI was calculated as the
following formula: IRGPI = 0.177*LCAM − 0.152*CYP1B1 −
0.111*MYBPC2 − 0.028*LCN2 − 0.256*FAM179A −
0.140*FAM159A − 0.107*LIMD2 − 0.051*PIGR − 0.180*RAC2
+ 0.483*IL10 − 0.075*CHI3L1 + 0.149*CCR8. High immune risk
group defined by the 12-gene signature-based IRGPI, had
significant worse OS (HR = 5.12, 95%CI = 3.18-8.22, P <
0.0001) in the TCGA training set independent of age, stage
and molecular subtype (Figures 3A–C and Table 3).

Validation of the IRGPI as an Independent
Prognostic Factor
To validate the prognostic value of IRGPI derived from the
training set, we applied the same formula to the internal testing
FIGURE 2 | Comparison of gene expression profile with immune scores in breast cancer. (A) Volcano plot visualizing the immune-related genes between high and
low immune score groups. Red plots represent aberrantly expressed genes with adjusted P-value < 0.01 and log2FC > 1. Black plots represent normally expressed
genes. Blue plots represent aberrantly expressed genes with adjusted P value < 0.01 and log2FC < 1. (B) Heatmap analysis of the immune-related genes between
high and low immune score groups. (C) Forest plot of hazard ratios showing the survival-associated immune-related genes.
January 2020 | Volume 10 | Article 1390
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set (TCGA-testing) and the Meta-validation set (GSE20685,
GSE20711 and GSE42568). Using the same IRGPI threshold
chosen in TCGA training set, the 12-gene prognostic signature
significantly stratified the TCGA testing set for OS (HR = 2.42,
95%CI = 1.15-5.08, P = 0.025) independent of age, stage and
molecular subtype (Figures 3D–F and Table 3). In the Meta-
validation set, again using the same threshold chosen in TCGA
training set, the 12-gene prognostic signature was also capable to
stratify patients for OS significantly (HR = 1.52, 95%CI = 1.09-
2.11, P = 0.012) independent of molecular subtype (Figures 3G–I
and Table 3).

Stratification Analysis
Breast cancer is a heterogeneous disease that can be classified by
a variety of clinical and pathological features, which are routinely
used as prognostic factors. The classification of breast cancers
into different subgroups may help to predict outcome and choose
proper treatment. For stratification analysis, we evaluate the
prognostic value of the 12-gene signature in stage-specific
groups from the TCGA cohort and the validation dataset. The
IRGPI stratified stage I/II breast cancers of TCGA cohort (HR =
6.27, 95%CI = 3.68-10.66, P < 0.0001) and GSE20685 dataset
(HR = 2.88, 95%CI = 1.42-5.84, P = 0.0051) into different
prognost ic subgroups in term of OS significant ly
(Figures 4A, B). When further restricted to patients with stage
II disease, the IRGPI remained significantly prognostic for
TCGA cohort (HR = 9.47, 95%CI = 5.26-17.02, P < 0.0001)
and the GSE20685 dataset (HR = 3.80, 95%CI = 1.61-8.97, P =
0.0050) (Figures 4C–F).

Comparison With Other Gene Signatures
Breast cancer prognostic signatures mainly focus on the patients
of early stage as a subset which adjuvant chemotherapy might be
tailored based on the risk of recurrence, since most patients in
this subset may be adequately treated with endocrine therapy
alone (EBCTCG, 2011; Sparano et al., 2015). Previous studies
have shown that the 21-gene signature provides information of
the likelihood of recurrence and the potential benefit from
chemotherapy in ER-positive and node-negative breast cancer
(Melisko, 2005; Paik et al., 2006). In reference to the 21-gene
signature, NCCN guidelines report that 21-gene recurrence score
Frontiers in Genetics | www.frontiersin.org 6
(RS) can be considered in patients with 1-3 involved lymph
nodes to guide additional chemotherapy (Goetz et al., 2019). We
compared the 12-gene signature-based IRGPI with the 21-gene
signature-based RS in patients with ER/PR-positive, HER2-
negative, node-negative or 1-3 involved lymph nodes from the
full TCGA cohort. The IRGPI achieved a better accuracy in
predicting 1-year, 3-year and 5-year OS (AUC = 0.88, 0.84, 0.85,
respectively) than RS (AUC = 0.60, 0.55, 0.48, respectively)
(Figures 5A–C).

Traditionally, prognostic multigene model strictly consisted
of proliferation-associated genes; however, these prognostic
models were only highly applicable in ER/PR-positive and
node-negative breast cancer subtypes. Recent preclinical
studies have demonstrated that inflammation and the immune
landscape are essential drivers of breast cancer. Therefore,
prognostic multigene signatures based on immune-related
genes have emerged, including Teschendorff's 6-gene model,
Bianchini's 15-gene model and others (Bianchini et al., 2010;
Teschendorff et al., 2010). When compared with Teschendorff's
(AUC = 0.44, 0.47, 0.50, respectively) and Bianchini's (AUC =
0.53, 0.56, 0.51, respectively) immune-related signatures, our
twelve-gene signature (AUC = 0.83, 0.80, 0.74, respectively)
exhibited a higher accuracy in predicting 1-year, 3-year and 5-
year OS of breast cancer patients (Figures 5D–F).

IRGPI Is Predictive Factor of pCR to
Neoadjuvant Chemotherapy
The presence of infiltrating immune cells in the breast tumor,
and a linear relationship between immune cells infiltrates and
clinical outcomes have now been confirmed in large study
cohorts (Emens, 2018). A number of studies have also found
that the expression of immune-related genes is associated with a
better prognosis, and a greater likelihood of pathologic complete
response (pCR) to neoadjuvant chemotherapy (Ignatiadis et al.,
2012; Asano et al., 2016). Thus, we next seek to assay whether
IRGPI could predict pCR to chemotherapy. Patients were
divided into pCR and non-pCR subgroups described in the
original publications. To balance the sample size of the two
groups, we integrated GSE32646 and GSE28844 (GSE16446 and
GSE4779) into a new cohort for analysis. In consistent with
previous studies, the patients in pCR group had a significantly
lower IRGPI than the patients in no-pCR group (Figures 6A, B).

Biological Function Prediction of the
Immune-Related Signature
Immune infiltration profiling and GO analysis were carried out
to explore the potential biological function of the 12 genes
involved in immune-related risk model. For immune
infiltrates, such as M2 macrophages, M0 macrophages, resting
memory CD4+ T cells, resting mast cells, follicular T-helper cells,
M1 macrophages and naïve B cells were enriched in TCGA
cohort (Figure 6C). We also found that the abundance of naïve B
cells, M2 macrophages, follicular T-helper cells and M0

macrophages were significantly different between low and high
immune risk groups in TCGA cohort (Figure 6D). Furthermore,
TABLE 2 | Immune-related Gene Signature in the Prognostic Model.

Gene symbol Full name Coefficient

L1CAM L1 cell adhesion molecule 0.177
CYP1B1 Cytochrome P450 family 1 subfamily B member 1 −0.152
MYBPC2 Myosin binding protein C, fast type −0.111
LCN2 Lipocalin 2 −0.028
FAM179A† Family with sequence similarity 179 member A −0.256
FAM159A‡ Family with sequence similarity 159 member A −0.140
LIMD2 LIM domain containing 2 −0.107
PIGR Polymeric immunoglobulin receptor −0.051
RAC2 Rac family small GTPase 2 −0.081
IL10 Interleukin 10 0.483
CHI3L1 Chitinase 3 like 1 −0.075
CCR8 C-C motif chemokine receptor 8 0.149
†Also known as TOGARAM2; ‡Also known as SHISAL2A.
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FIGURE 3 | 12-gene prognostic signature biomarker characteristics in TCGA training set, TCGA testing set and Meta-validation set. (A), (D) and (G) Breast cancer
were ranked by immune risk scores in the TCGA training set, TCGA testing set and Meta-validation set. (B), (E) and (H) Heatmap of 12 genes related to IRGPI
differentially expressed between high and low immune risk groups in the TCGA training set, TCGA testing set and Meta-validation set, with red indicating higher
expression and blue indicating lower expression. Patients were stratified by immune-related gene prognostic index (IRGPI) (low immune risk vs. high immune risk).
(C), (F), and (I) Kaplan−Meier curves of overall survival (OS) among different IRGPI risk groups in TCGA training set, TCGA testing set and meta-validation set.
Hazard ratios (HRs) and 95% CIs are for high immune risk group vs. low immune risk group. P values comparing risk groups were calculated with the log-rank test.
Frontiers in Genetics | www.frontiersin.org January 2020 | Volume 10 | Article 13907
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TABLE 3 | Univariate and Multivariate Analysis of Prognostic Factors in the Training set, Testing set and Meta-validation Set.

Data sets Variables Univariate Multivariate

HR (95%CI) P value HR (95%CI) P value

TCGA-training Age 1.04 (1.02–1.06) 1.76e-04 1.04 (1.02–1.06) 2.98e-04
Stage 1.33 (1.17–1.52) 1.69e-05 1.25 (1.10–1.43) 7.68e-04
PAM50 subtype
LumA/LumB Reference Reference
HER2-enriched 1.90 (0.99-3.70) 0.055 – –

Basal-like 0.83 (0.45–1.55) 0.56 – –

IRGPI 2.72 (2.09–3.54) 7.99e-14 2.51 (1.92–3.27) 1.08e-11
TCGA-testing Age 1.03 (1.00–1.06) 0.028 1.03 (1.01–1.06) 0.012

Stage 1.38 (1.07–1.78) 0.012 1.37 (1.05–1.78) 0.019
PAM50 subtype
LumA/LumB Reference Reference
HER2-enriched 0.97 (0.28–3.29) 0.96 – –

Basal-like 0.72 (0.24–2.12) 0.55 – –

IRGPI 2.34 (1.48–3.70) 2.6e-04 2.16 (1.34–3.49) 0.0015
Meta-validation Age – – – –

Stage – – – –

PAM50 subtype
LumA/LumB Reference Reference
HER2-enriched 2.33 (1.59–3.42) 1.41e-05 2.48 (1.69–3.65) 3.53e-06
Basal-like 1.45 (0.91–2.33) 0.12 – –

IRGPI 1.14 (1.04–1.76) 0.001 1.69 (1.2–2.39) 0.0028
Frontiers in Genetics | www.fr
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Bolded values represent significant shifts in plausibility (P value < 0.05).
FIGURE 4 | Kaplan−Meier curve of overall survival (OS) for breast cancer patients with different IRGPI risks. (A) Survival curve of stage I/II patients of TCGA cohort.
(B) Survival curve of stage I/II patients in GSE20685 dataset. (C) Survival curve of stage I patients of TCGA cohort. (D) Survival curve of stage I patients of
GSE20685 dataset. (E) Survival curve of stage II patients of TCGA cohort. (F) Survival curve of stage II patients of GSE20685 dataset.
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the difference of specific immune cells infiltration between two
groups was validated in the independent validation set. The
mean level of M2 macrophages in the high immune risk group
was significantly higher than that in low immune risk group in
the validation set (Figure 6E). In addition, the proportion of
immune cell types (B cells, CD4+ T cells, CD8+ T cells,
neutrophils, macrophages and dendritic cells) of tumor sample
in the TCGA cohort was calculated by TIMER for reverse
analysis. As expected, TIMER has drawn the consistent
conclusion: patients with higher levels of immune cells
infiltration are inclined to lower immune risk (Figures 6F–K).
The results of GO analysis indicated that 12 genes were mostly
enriched in the immune processes such as immune response,
leukocyte activation, cell adhesion and so on (Table 4).

Integrated Risk Score by Combining the
IRGPI With Clinical Factors
In multivariate Cox analysis, age, stage and IRGPI remained as
independent prognost i c f ac tors a f te r ad jus ted by
clinicopathological factors in at least 2 datasets. To further
improve accuracy, age, stage and IRGPI were used to fit a Cox
proportional hazards regression model in the training set and
derive an ICPI as 0.036*age + 0.225*stage + 0.920*IRGPI. By the
continuous form of ICPI, the estimation of survival was
significantly improved compared with IRGPI (mean C-index,
0.80 vs. 0.75 in the training set, P = 0.0090) (Figure 7).
Frontiers in Genetics | www.frontiersin.org 9
DISCUSSION

Breast cancer is a heterogeneous group of diverse subtypes, each
with its own biologic and clinical characteristics (Blows et al.,
2010). Increasing interests aroused on finding reliable prognostic
biomarkers to better identify patients with high risk disease, who
would benefit from intensive treatment. In an effort to bolster
clinical tools for immunobiologic understanding in breast
cancer, we developed a prognostic signature associated with
tumor immune microenvironment. Based on ESTIMATE
algorithm, we calculated immune score for each patient from
TCGA breast cancer cohort. The rank order of immune scores
across molecular subtypes from highest to lowest is basal-like >
HER2-enriched > luminal. This is consistent with previous
studies that TNBC and HER2+ breast cancers are more likely
to harbor immunogenicity which suggests potential benefits
from immunotherapy than luminal breast cancers (Emens,
2018; Savas et al., 2016; Xiao et al., 2019). Genes that were
differentially expressed between high and low immune score
groups were considered as IRGs for further survival analysis, and
17 IRGs with statistical significant prognostic association were
found. Prognostic model training in the TCGA training set
selected a 12-gene signature, which was significantly associated
with OS and further validated both in the TCGA testing set, and
the Meta-validation set (Figure 8). Thus, our 12-gene signature
provides new perspectives for the identification of breast cancer
with a high risk of death and assessment of the possibility of
FIGURE 5 | Comparison of our 12-gene signature and other models. Time-dependent ROC analysis was performed to compare our 12-gene signature and
Oncotype Dx in predicting 1-year (A), 3-year (B) and 5-year (C) overall survival (OS). Time-dependent ROC analysis was performed to compare our 12-gene
signature and other two immune-related signatures in predicting 1-year (D), 3-year (E) and 5-year (F) overall survival (OS).
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immunotherapy incorporation in personalized breast
cancer management.

Our analysis is also likely to provide biological and therapeutic
information. IL10 is considered an immunosuppressive cytokine
with a crucial role as a feedback regulator of diverse immune
response (Saraiva and O'Garra, 2010). The upregulation of IL10 in
Frontiers in Genetics | www.frontiersin.org 10
tissue and serum was observed in triple-negative breast cancer
patients and strongly correlated with increased tumor stage and
poor outcome. It is the most studied gene of the twelve, being
nominated as therapeutic target for pancreatic and breast cancers
(Shen et al., 2018). L1CAM, an axonal glycoprotein belonging to
immunoglobulin superfamily, is associated with poor prognosis
FIGURE 6 | (A) The difference of IRGPI between pCR and non-pCR groups in GSE32646 and GSE28844. (B) The difference of IRGPI between pCR and non-pCR
groups in GSE16446 and GSE4779. (C) 22 types of immune cells abundance calculated by CIBERSORT in TCGA cohort. (D) Immune cells abundance between low
and high immune risk groups for TCGA cohort. (E) B cells naïve, Macrophages M2, T cells follicular helper and Macrophages M0 abundance in GSE20685 dataset.
The association between adjusted IRGPI and the abundance of DCs (F), B cells (G), T cells CD4 (H), macrophages (I), neutrophils (J), and T cells CD8 (K)
calculated by TIMER in TCGA cohort. P values are based on Wilcoxon rank sum test. Error bars indicate estimated 95%CI.
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and metastases formation in several cancers, including breast and
pancreas. Over-expression of L1CAM not only induced NF-kB
activation but also mediated the phosphorylation of FAK and Src,
which promoted cancer cell proliferation and tumor growth
(Kiefel et al., 2012; Nakaoka et al., 2017). LCN2 is a neutrophil
gelatinase-associated lipocalin and plays a role in innate immunity
by limiting bacterial growth. It was reported that LCN2 promoted
breast cancer progression by inducing epithelial to mesenchymal
transition (EMT) through the ERa/Slug axis and might represent
TABLE 4 | Biological processes of genes consisting of IRGPI.

GO term Description P value

GO:0002274 Myeloid leukocyte activation 9.171 × 10−3

GO:0002366 Leukocyte activation involved in immune response 1.326 × 10−2

GO:0002263 Cell activation involved in immune response 1.363 × 10−2

GO:0070301 Cellular response to hydrogen peroxide 1.858 × 10−2

GO:0007155 Cell adhesion 2.187 × 10−2

GO:0022610 Biological adhesion 2.250 × 10−2

GO:0002443 Leukocyte mediated immunity 3.847 × 10−2
FIGURE 7 | Immune-clinical prognostic signature characteristics in TCGA training set, TCGA testing set and GSE20685 validation set. (A), (D), and (G) Breast
cancer were ranked by immune-clinical risk scores in the TCGA training set, TCGA testing set and GSE20685 validation set. (B), (E), and (H) Kaplan−Meier curves
of overall survival (OS) among different ICPI risk groups in TCGA training set, TCGA testing set and GSE20685 validation set. Hazard ratios (HRs) and 95% CIs are
for high vs. low immune risk. P values comparing risk groups were calculated with the log-rank test. (C), (F), and (I) Restricted mean survival curves for IRGPI and
ICPI scores was plotted on TCGA training set, TCGA testing set and GSE20685 validation set.
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a biomarker of breast cancer (Yang et al., 2009). LIMD2 is a
mechanistically undefined LIM-only protein that was originally
found to be expressed in metastatic lesion. Experimental data
showed that LIMD2 linked with integrin-mediated signaling to
cell motility and metastatic behaviors in bladder, breast and
thyroid tumors (Peng et al., 2014). RAC2 is part of the small
Rho GTPase superfamily and is specifically expressed in
hematopoietic cells. RAC2 signaling events were proved to be
relevant with phospholipase D-induced breast cancer cell invasion
and found to regulate actin cytoskeleton during breast cancer
metastasis (Henkels et al., 2013; Li et al., 2013). CHI3L1, a highly
evolutionary conserved secreted protein, was recently shown to be
involved in facilitating tumor progression and metastasis by
triggering the MAPK and PI3K signaling pathways in
macrophages (Chen et al., 2017; Cohen et al., 2017). CCR8 is a
member of chemokine receptor family and plays a pivotal role in
recruitment of regulatory T (Treg) cells to tumor by the CCL1-
CCR8 axis. CCR8 expression was found to be upregulated in Treg

cells and correlated with poor survival of patients with breast
cancer (Wang et al., 2019). CYP1B1, an extrahepatic enzyme,
plays a physiological role in degradation of 17b-estradiol into
carcinogenic 4-hydroxy-estradiol. Over-expression of CYP1B1
has been shown to correlate with Wnt5/6-b-catenin signaling,
stem cell phenotype and poor clinical prognostic factors in
inflammatory breast cancer (Mohamed et al., 2019). PIGR, a Fc
receptor family member, is a central component of the mucosal
immune system. Previous studies revealed a pro-oncogenic role of
PIGR in hepatocellular cancer by activating Src family tyrosine
kinase (Yes) and MEK/ERK signaling (Yue et al., 2017), while
PIGR in breast cancer was rarely reported. Moreover, we are the
first to report the prognostic value of MYBPC2, FAM159A, and
Frontiers in Genetics | www.frontiersin.org 12
FAM179A in breast cancer, which may provide novel directions
for further investigation.

The incidence rates of breast cancer have been rising over the
last decades with increases in screening and awareness, of which
70% will be early-stage (stage I–II) disease (Kwa et al., 2017). The
traditional methods of the risk stratification for breast cancer use
standardized clinical and pathological characteristics to guide
therapeutic decision. Those classical features indicating patient
prognosis include tumor size, lymph node status, grade and
subtype, which could be efficiently utilized to certain
subpopulations, however, the prognostic factors used have
limitations in predicting individual clinical outcome. For
example, patients with resembling clinicopathological features
may have distinct outcomes. Many patients with early stage
breast cancer would therefore be overtreated with chemotherapy
on the basis of clinicopathologic features alone, particularly those
with ER/PR positive and HER2 negative tumors. Approximately
60% of patients with early stage breast cancer suffer from toxic
side effect of adjuvant chemotherapy, while only a fraction of
them will ultimately benefit from it (EBCTCG, 2011). According
to the EBTCG meta-analyses, ER status has no impact on
proportional reduction with chemotherapy in breast cancer
recurrence and death (EBCTCG, 2005; EBCTCG, 2012). On
the contrary, the TAILORx trial showed that patients with ER/
PR-positive, HER2-negative and node-negative cancer in low
risk of recurrence can safely avoid chemotherapy (Sparano et al.,
2015). Meanwhile, data from several studies indicated that ER-
positive patients have worse response to chemotherapy both in
the adjuvant and neoadjuvant settings, compared with ER-
negative patients (Montagna et al., 2010).

The strong prognostic performance of the 12-gene signature
facilitates potential clinical application in several clinical
important settings. As aforementioned, the heterogeneity
existing in breast tumors might result in the overtreatment of
chemotherapy for early-stage patients, to some extent. The 12-
gene signature offers an opportunity for selecting the optimal
therapy for early-stage patients, avoiding unnecessary
chemotherapy. For advanced and metastatic tumors, the 12-
gene signature associated with immune response might be used
to identify patients who might benefit from intensify
immunotherapies that have shown so much promise in
recalcitrant diseases. When compared with a clinical applicable
and commercialized model, our signature achieved higher
accuracy in predicting OS than Oncotype Dx for ER/PR-
positive, HER2-negative, node-negative, or one to three
involved lymph nodes breast cancer patients from the full
TCGA cohort. Meanwhile, compared with other immune-
related signatures, our signature showed a better performance
than Teschendorff's 6-gene model and Bianchini's 15-gene model
in predicting OS of breast cancer patients from the full TCGA
cohort. We further leveraged the complementary value of the
immune signature and clinical factors, and found that combining
both could provide a more accurate estimation of OS in
breast cancer.

The prognostic signature related to the tumor immune
microenvironment may hold great promise for identifying
FIGURE 8 | The workflow of construction and validation of our immune-
related prognostic signature.
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novel biomarkers and improving patient management in the era
of immunotherapy. As described above, the growth and
invasiveness of breast cancer are affected by the presence of
various cells in TME. Several recent studies reported that the
extent of immune infiltration in TME is associated with breast
cancer prognosis. We found higher levels of M2 macrophage
infiltration in the high immune risk groups with relatively worse
prognosis. M2 macrophages, acting as anti-inflammatory and
pro-tumor, are increasingly recognized as contributors to
metastatic progression of breast cancer and correlated with
poor prognosis (Chowdhury et al., 2019; Little et al., 2019).
These are all hints of potential therapeutic opportunities by
regulation of M2 macrophage-induced migratory and invasive
response in breast cancer. In addition, we also note that most
genes involved in our signature are relevant to immune
response, which may affect the response to immunotherapies.
The direction of this effect is difficult to predict, as either
increased or decreased immune response may facilitate either
more or less immunotherapy response. Taken together,
dysregulated immune contexture might account for the
survival differences observed between patient groups defined
by our signature. Clinical integration of 12-gene signature needs
to be tested directly, though appears promising from these
initial results.

There are still some limitations in this initial work. First, the
patient cohorts were retrospective, therefore these findings must
be validated prospectively for further confirmation. Second, we
evaluated the performance of the signature in each molecular
subtype from the full TCGA cohort lacking further validation,
owing to limited patient number in validation datasets. Third,
microarray and RNA-seq results are susceptible to bioinformatic
parameters that may vary among clinical programs, although we
tried to include internal and external datasets for more rigorous
validation of our signature.
CONCLUSION

In summary, we have performed an immune-related prognostic
analysis in breast cancer, resulting in an independently validated
Frontiers in Genetics | www.frontiersin.org 13
12-gene signature, as well as identification of multiple genes
associated with immune infiltration for further study. Stratified
analysis further revealed that the 12-gene signature performed
well in clinical defined subgroups. Furthermore, the
complementary value of the immune-related signature with
clinical factors achieved a better accurate stratification of OS in
breast cancer patients. Thus, the 12-gene signature is a promising
prognostic biomarker and could be a useful predictive tool to
select patients who might benefit from immunotherapy.
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