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Abstract: Vegetation restoration is considered a potentially useful strategy for controlling soil erosion
and improving soil organic carbon (SOC) in arid and semiarid ecosystems. However, there is still
debate regarding which vegetation restoration type is the best choice. In this study, four vegetation
restoration types (i.e., grasslands, shrubs, forests and mixed forests) converted from sloping farmlands
were selected to explore the SOC variation among the four types and to investigate which soil factors
had the greatest effect on SOC. The results showed while the magnitude of effect differed between
vegetation restoration type, all studied systems significantly increased SOC and labile organic carbon
contents (p < 0.01), soil nutrients such as total nitrogen (TN) (p < 0.01), available nitrogen (AN)
(p < 0.01), total phosphorus (TP) (p < 0.05) and available phosphorus (AP) (p < 0.05), soil enzyme
activities such as phosphatase (p < 0.01), soil microbial biomass carbon (MBC) (p < 0.05), and basal
respiration (BR) (p < 0.05), but had significant negative correlationswith polyphenol oxidase (p < 0.05).
However, the effects of vegetation restoration of farmland converted to natural grasslands, shrubs,
forests and mixed forests varied. Among the types studied, the mixed forests had the largest overall
positive effects on SOC overall, followed by the natural grasslands. Soil nutrients such as N and
P and soil microbial activities were the main factors that affected SOC after vegetation restoration.
Mixed forests such as Robinia pseudoacacia and Caragana korshinskii are the best choice for farmland
conversion on the central of the Loess Plateau.

Keywords: afforestation; carbon sequestration; forest soils; land management; land use; soil
organic carbon

1. Introduction

Soils play an important role in the global carbon cycle [1–3]. Soil organic carbon
(SOC) is an essential physical-chemical soil property and the most important indicator of
soil quality [4]. Vegetation restoration is considered to be a potentially useful strategy for
controlling soil erosion and improving soil quality in arid and semiarid ecosystems [5–7].
The conversion of farmland to forests or grasslands has been shown to increase SOC by
increasing C derived from new vegetation, thus simultaneously decreasing C loss from
decomposition and erosion [8,9]. Thus, afforestation and revegetation have been proposed
as effective methods for reducing atmospheric CO2 due to C sequestration in soils.

Soil physical-chemical properties have been extensively used to evaluate SOC; how-
ever, these properties usually change slowly, and thoroughly reflecting soil changes through
these properties is impossible; thus, the selection of indicators that appropriately reflect
the overall change in SOC is important. Previous studies have mainly focused on SOC
dynamics during vegetation restoration [5], the effects of land use change and SOC [10,11],
and C-N relations [9], as well as the effects of aspect-vegetation complexes on the decompo-
sition of SOC [12]. Moreover, many studies have focused on the effects of soil microbes [13],
soil enzyme activities [14,15], soil nutrients [16], soil aggregates and SOC fractions [17,18],
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and soil mechanical components, e.g., sand, silt, and clay [19] on SOC. However, most of
those studies only reported the effects of soil factors on SOC from one or a few aspects. For
example, one study reported soil organic carbon variation determined by biogeographic
patterns of microbial carbon and nutrient limitations [20], which can be reflected by the soil
extracellular enzyme activities [6]. Soil enzyme-mediated mineralization of soil organic
matter is a vital biochemical process within the soil C cycles [6]. And litter decomposition
following vegetation restoration was linked to soil nutrient dynamics [21]. So, there is little
available information on the combination of soil physical, chemical and biological factors
to examine the effect of soil factors on SOC as a whole.

In 1999, the Chinese government implemented the “Grain for Green” Program (GGP)
by restoring degraded farmland to forests, shrubs and grasslands [5]. Although the initial
goal of the GGP program was aimed at controlling soil erosion and restoring ecosystems, it
has been instrumental in increasing both the rate and overall quantity of C sequestered in
the soil. At present, the “Grain for Green” program is the first and still the most ambitious,
ecosystem services program in the world [22,23]. The Loess Plateau is the key zone for
implementing the GGP. The process of natural and artificial restoration of abandoned
farmland is underway on the Loess Plateau [5]. Although the initial goal of the GGP was
to control soil erosion, the program strongly affects soil C cycling. Consequently, many
studies have focused on changes in soil C accumulation following farmland conversion
on the Loess Plateau [5,13,24]. However, those studies only focus on one simple type of
vegetation restoration. The GPP includes forests, shrubs, grasslands and mixed forests. To
date, there is still controversy regarding the best choice of vegetation restoration type for
the Loess Plateau.

Therefore, we are in need of a comprehensive study of soil C variations that considers
different types of vegetation restoration (i.e., forests, shrubs, grasslands and mixed forests).
The objectives of the study were to (1) explore the difference in SOC under different
vegetation restoration types and (2) identify the soil factors that have the greatest effect
on SOC.

2. Materials and Methods
2.1. Study Area

This study was conducted in the Zhifanggou watershed in Ansai County, Shaanxi
Province, NW China (36◦46′28′′–36◦46′42′′ N, 109◦13′46′′–109◦16′03′′ E; 1010–1400 m a.s.l.,
8.27 km2) (Figure 1). The study area is characterized by a semiarid climate and a deeply
incised hilly-gully loess landscape. Slopes vary between 0◦ and 65◦. The Zhifanggou
watershed is a popular case study area for comprehensive soil and water conservation
on the Loess Plateau. The mean annual temperature range is 9.1 ◦C (from 1970 to 2010).
The average maximum temperature is 36.8 ◦C and the average minimum temperature is
−23.6 ◦C in the whole year; the average frost-free period is 157 days. The mean annual
precipitation is 503 mm (from 1970 to 2010), of which 70% falls between July and September.
Soil types are classified as a typical loess soil (Calcic Cambisols) and are susceptible to
erosion. The main herbaceous plants are Stipa bungeana, Bothriochloa ischaemum, Artemisia
sacrorum, Potentilla acaulis, Stipa grandis, Androsace erecta, Heteropappus altaicus, Lespedeza
bicolor, Artemisia capillaris and Artemisia frigid, of which S. bungeana is the most widely
distributed. In addition, shrubs such as Rosa xanthina, Spiraea pubescens and Hippophae
rhamnoides can be found in gullies. The primary planted trees in the study area are Robinia
pseudoacacia, Populus simonii, Caragana microphylla and Platycladus orientalis [13].
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Figure 1. Location of the Zhifanggou watershed on the Loess Plateau, China.

2.2. Experimental Design and Soil Sampling

Five land use types, sloping farmland (SL), grassland (GL, natural restoration), shrub-
land (SL, Caragana korshinskii), forestland (FL, Robinia pseudoacacia), and mixed forests
(ML, Robinia pseudoacacia + Caragana korshinskii, in the watershed were selected for study.
Three forest types were planted on sloped farmlands, and the grasslands developed from
abandoned sloped farmlands (control). Between 1988 and 1990, all forests, shrubs and
grasslands were planted or naturally restored by the local farmers. In 2018, our project team
established 12 plots in these afforested systems. Management histories for the 30 years of
plant growth were obtained by interviews with local farmers and village elders and by
reviewing rental contracts between farmers and the government.

In each vegetation restoration type, three 20 m × 20 m plots were established in
August 2018 when the plant biomass peaked. Five quadrats (1 m × 1 m) were separately
chosen in each of the four corners and center of the plots. Litter horizons were removed
before soil sampling. Soil sampling, using a soil drilling sampler (9 cm inner diameter), was
performed in the 0–20 cm soil layers. We then mixed the same layers together to form one
sample. All samples were sieved through a 2 mm screen, and roots and other debris were
removed in the field. Each sample was air-dried and stored at room temperature for the
determination of soil physical and chemical properties. The soil bulk density (g cm−3) of
the different soil layers was measured using a soil bulk sampler with a 5 cm diameter and
5 cm high stainless steel cutting ring (3 replicates) at points adjacent to the soil sampling
quadrats. The original volume of each soil core and its dry mass after oven-drying at 105 ◦C
over 48 h were measured for bulk density determination. The morphological traits of the
herbage in each age group are listed in Table 1. The plots were all located near the top of the
loess mounds. All plots were located in the hill-slope, loess-derived soil and north-faced
slope. And there was little difference among the sites in regard to gradient, altitude, or
previous farming practices.
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Table 1. Information of geographical characteristics and soil physical properties in the five land
use types. Note: SF, Sloping farmland; GL, Grassland; SL, shrubland of Caragana korshinskii; FL,
forestlands of Robinia pseudoacacia; ML, mixed forests of Robinia pseudoacacia + Caragana korshinski. pH,
soil pH; BD, soil bulk density. Different lower-case letters mean significant differences in different
land use types at 0.05level (p < 0.05). Data of soil physical properties are Means ± SE. n = 3. All plots
of the five land use types were located in the hill-slope, loess-derived soil and north-faced slope.

Land Use Types Slope
(◦)

Altitude
(m)

pH BD
(g cm−3)

Soil Fractions (%) Primary
Undergrowth
Vegetations

Sand
(>0.2 mm)

Silt
(0.2–0.002 mm)

Clay
(<0.002 mm)

SF (Farmlands) 20–22 1165–1178 8.7 ± 0.2 a 1.27 ± 0.12 a 82.1 ± 0.2 14.8 ± 0.1 c 3.1 ± 0.1 c Setaria italica
GL (Grasslands) 20–23 1189–1202 8.7 ± 0.1 a 1.18 ± 0.12 bc 81.1 ± 0.4 15.9 ± 0.3 b 3.0 ± 0.2 c Artemisia sacrorum

SL (Shrublands) 24–27 1039–1089 8.7 ± 0.1 a 1.19 ± 0.12 b 82.1 ± 0.3 14.6 ± 0.5 c 3.3 ± 0.2 c Artemisia sacrorum,
Stipa bungeana

FL (Forestlands) 22–25 1119–1234 8.7 ± 0.1 a 1.08 ± 0.12 d 78.6 ± 0.3 17.7 ± 0.4 a 3.7 ± 0.1 a Lespedeza bicolor,
Stipa bungeana

MF (Mixed forests) 23–27 1087–1165 8.6 ± 0.1 b 1.15 ± 0.12 c 80.8 ± 0.3 16.0 ± 0.2 b 3.2 ± 0.1 b Artemisia sacrorum

2.3. Laboratory Assay

Soil pH was determined at a soil/water ratio of 1:2.5 (PHSJ-4A pH meter, Zhangqiu
Meihua International Trading Co., Jinan, China). Soil bulk density (BD) was determined
using the ring cutting method [13]. SOC was assayed by dichromate oxidation [25], and
total nitrogen (TN) was assayed using the Kjeldahl method [26]. The available nitrogen (AN)
was determined by the continuous alkali-hydrolyzed reduction diffusion method [27]. The
total P (TP) and available P (AP) were determined by the Olsen method [28]. The soil labile
organic carbon content (LOC) was determined following the method of Vieira et al. [29],
and soil non-labile organic carbon content (NLOC) was determined by the SOC minus
the LOC [13]. The soil particle sizes (clay, silt and sand contents) were determined using
the MasterSizer 2000 method (Malvern MasterSizer 2000, Worcestershire, UK). Enzyme
activities were assayed according to colorimetric determination methods [30,31]. All soil
enzyme activities were determined using three replicates per sample. Microbial biomass
C, N, and P contents (MBC, MBN, MBP, respectively) were analyzed by the chloroform
fumigation-extraction method [20]. Soil basal respiration (BR) was estimated via CO2
evolution at 25.8 ◦C in samples incubated for 14 days, adjusted to 50% of the field water-
holding capacity. The metabolic quotient (qCO2) was calculated as the ratio of soil basal
respiration to microbial biomass C (BR/Cmic) [6,13].

2.4. Statistical Analysis

One-way ANOVA was used to analyze the means among different ecosystem types.
Differences were evaluated at the 0.05 significance level. When significance was observed
at the p < 0.05 level, Tukey’s post hoc test was used to carry out the multiple comparisons.
Pearson correlation was used to indicate the relationships between SOC and the 23 other
soil properties. Moreover, multivariable linear regression analysis (MLRA) was used to
quantify the effects of soil factors on SOC. In the analysis, the absolute value coefficient
was used as an indicator of the effect size and was summed to determine the relative
contribution (RC) rates of soil and microbial properties in explaining the SOC. All analyses
were performed using SPSS 25.0 (SPSS Inc., Chicago, IL, USA).

3. Results
3.1. SOC and Soil N and P Nutrients in Different Vegetation Restoration Types

All studied vegetation restoration types significantly increased SOC, LOC, NLOC,
TN, TP, AN and AP compared with sloping farmland (p < 0.05) (Figures 2 and 3). Among
the four vegetation restoration types, i.e., grasslands, shrublands, forestlands and mixed
forests, the mixed forests had the largest effect on SOC. The SOC in the mixed forests
increased by 6.45 g kg−1 after 30 years of farmland conversion to mixed forests (Figure 2).
In addition, vegetation restoration decreased soil pH and BD (Table 2). The soil silt and
clay contents also increased overall after vegetation restoration (Table 1).
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Figure 2. Soil organic carbon (SOC, (a)), soil labile organic carbon (LSOC, (b)) and Non-labile organic
carbon (NLSOC, (c)) in different vegetation restoration types. Note: SF, Sloping farmland; GL,
Grassland; SL, shrubland of Caragana korshinskii; FL, forestlands of Robinia pseudoacacia; ML, mixed
forests of Robinia pseudoacacia + Caragana korshinski. Different lower-case letters above the error bars
indicate significant differences in different land use types at 0.05 level (p < 0.05). Data are Means ± SE.
n = 3.
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3.2. Soil Microbial Activities in Different Vegetation Restoration Types 

Figure 3. Soil N and P nutrients in different vegetation restoration types. TN (a), total nitrogen; AN
(b), available nitrogen; TP (c), total phosphorus; AP (d), available phosphorus. Note: SF, Sloping
farmland; GL, Grassland; SL, shrubland of Caragana korshinskii; FL, forestlands of Robinia pseudoacacia;
ML, mixed forests of Robinia pseudoacacia + Caragana korshinski. Different lower-case letters above the
error bars indicate significant differences in different land use types at 0.05 level (p < 0.05). Data are
Means ± SE. n = 3.

Table 2. Soil enzymes activities in different vegetation restoration types. Note: SF, Sloping farmland;
GL, Grassland; SL, shrubland of Caragana korshinskii; FL, forestlands of Robinia pseudoacacia;; ML,
mixed forests of Robinia pseudoacacia + Caragana korshinski. Different lower-case letters mean significant
differences in different land use types at 0.01 level (p < 0.01). Data are Means ± SE. n = 3.

Land
Use

Types

Saccharase
(mg Glucose

g−1 h−1)

Cellulase
(mg Glucose

g−1 h−1)

Urease
(mg NH4

+-N
g−1 h−1)

Amylase
(mg Maltcose

g−1 h−1)

Phosphatase
(mg Phenol

g−1 h−1)

Polyphenol Oxidase
(mL 0.01 N

I2 g−1)

Catalase
(mL 0.1 N

KMnO4 g−1)

SF 1.05 ± 0.09 c 1.44 ± 0.19 b 0.57 ± 0.14 d 1.23 ± 0.12 ab 0.32 ± 0.13 c 2.81 ± 0.19 a 0.49 ± 0.17 d
GL 2.49 ± 0.18 b 2.13 ± 0.19 a 0.40 ± 0.12 e 1.01 ± 0.12 bc 1.29 ± 0.22 b 2.16 ± 0.19 b 0.64 ± 0.18 c
SL 2.17 ± 0.27 b 1.95 ± 0.19 a 1.77 ± 0.21 a 0.90 ± 0.23 c 1.32 ± 0.27 b 2.11 ± 0.23 b 0.69 ± 0.09 c
FL 3.27 ± 0.34 a 1.97 ± 0.18 a 1.27 ± 0.11 b 0.85 ± 0.22 c 1.18 ± 0.21 b 2.12 ± 0.20 b 0.96 ± 0.21 a
ML 2.54 ± 0.24 b 1.95 ± 0.26 a 0.60 ± 0.17 d 1.05 ± 0.18 bc 1.56 ± 0.27 a 1.98 ± 0.27 b 0.80 ± 0.19 ab

3.2. Soil Microbial Activities in Different Vegetation Restoration Types

All vegetation restoration had a significant effect on soil enzyme activities (Table 2). Fol-
lowing farmland abandonment, grassland exhibited decreased urease activities (p < 0.05),
and shrubs, forests and the mixed forests exhibited increased urease activities (p < 0.05)
(Table 2). Overall, amylase and polyphenol oxidase activities were reduced by vegeta-
tion restoration, but phosphatase, saccharase, cellulase, and catalase activities increased
compared to sloping farmland (p < 0.05) (Table 2).

All studied vegetation restoration types significantly increased MBC, MBN, and MBP
contents compared with sloping farmland (p < 0.05) (Figure 4), suggesting that microbial
biomass was increased due to vegetation restoration, which resulted in higher BR in
grasslands, shrubs, forests and mixed forests (Figure 4). Among the types studied, the
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mixed forest had the highest MBC, MBN and MBP; the same result was observed for BR
(Figure 4). However, the microbial respiratory quotient (qCO2) was reduced after farmland
was converted to grasslands, shrubs, forests and mixed forests (Figure 4).
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Figure 4. Microbial biomass C, N, P, respiration strength and qCO2 values of soils in the seven
land use types. MBC (a), Microbial biomass carbon; MBN (b), Microbial biomass nitrogen; MBP (c),
Microbial biomass phosphorus; BR (d), Basal respiration; qCO2 (e), Microbial respiratory quotient.
Note: SF, Sloping farmland; GL, Grassland; SL, shrubland of Caragana korshinskii; FL, forestlands
of Robinia pseudoacacia; ML, mixed forests of Robinia pseudoacacia + Caragana korshinski. Different
lower-case letters above the error bars indicate significant differences in different land use types at
0.05 level (p < 0.05). Data are Means ± SE. n = 3.

3.3. Factor Effects on SOC

SOC was related to soil nutrients, physical properties and microbial activities. Among
the factors, SOC had a significant positive correlation with the TN, AN, TP and AP contents
(p < 0.01) (Table 3). In addition, SOC also had a positive correlation with the phosphatase,
saccharase, cellulase, and catalase activities, but it was negatively correlated with polyphe-
nol oxidase activities (p < 0.05) (Table 3). SOC was also positively correlated with the MBC
content and BR (p < 0.01) (Table 3). Based on the relative contribution (RC) analysis, the
results showed that soil microbial activities contributed 45.1% to the SOC and that soil
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nutrients contributed 22%. All soil factors in the study contributed 87.7% to SOC in the
multivariable linear regression analysis (Table 3).

Table 3. Pearson correlation coefficient between soil organic carbon and other soil properties. Note:
* Correlation is significant at the 0.05 level (p < 0.05) (2 tailed) and ** Correlation is significant at
the 0.01 level (p < 0.01) (2 tailed). N = 15. ## indicates the value was the explain rates based on the
coefficient of determination (R2) of the multivariable linear regression analysis; # indicate the residual
contribution rate of the multivariable linear regression, which indicates other factor’s contribution to
SOC that were not determined in this study.

Factors Soil Properties Pearson Correlation
Coefficient Relative Contribution Rate (%) p

Total 81.6 ##

Error 18.4 #

C fractions LOC 0.976 ** 6.0 <0.01

Soil nutrients

TN 0.937 ** 5.8 <0.01
AN 0.969 ** 6.0 <0.01
TP 0.833 ** 5.2 <0.01
AP 0.818 ** 5.1 <0.01

Soil physical properties

pH −0.477 4.2 >0.05
BD −0.097 0.6 >0.05

Sand 0.039 0.2 >0.05
Silt 0.370 2.3 >0.05

Clay 0.180 1.1 >0.05

Soil microbial activities

Urease −0.089 0.6 >0.05
Amylase −0.213 1.3 >0.05

Phosphatase 0.916 ** 5.7 <0.01
Saccharase 0.615 * 3.8 <0.05
Cellulase 0.693 ** 4.3 <0.01

Polyphenol oxidase −0.872 ** 5.4 <0.01
Catalase 0.587 * 3.6 <0.05

MBC 0.841 ** 5.2 <0.01
MBN 0.353 2.2 >0.05
MBP 0.813 ** 5.0 <0.01
BR 0.894 ** 5.5 <0.01

qCO2 −0.411 2.5 >0.05

4. Discussion
4.1. Vegetation Restoration Types Affect SOC and Soil N and P Properties

Land-use change following farmland conversion can cause a change in soil C [11]. The
mixed forests had the largest positive effects on SOC, followed by the grasslands (Figure 2),
because the mixed forests and natural grassland consume less soil water than single shrubs
and trees in arid and semiarid regions [32], leading to a higher soil water content or
unchanged soil water following vegetation restoration [32]. Higher soil moisture will
promote plant growth and thus produce more plant biomass and litter input into the soils,
consequently improving the accumulation of SOC [2]. In addition, the mixed forests had
the largest positive effects on soil N and P compared with the sloping farmland (Figure 3).
The direct possible reason is that mixed forests resulted in the greatest increase in SOM
among the four vegetation restoration types in the study area. Usually, different vegetation
types provide different surface residues and root distributions [33], leading to varied soil N
content. For example, the patterns of soil N dynamics differed greatly among different tree
species used in afforestation and depended on the transfer of soil organic matter (SOM)
into soil via the roots of ground vegetation and litter decomposition [9]. Soils with different
vegetation undergo different litter decomposition processes and rates, meaning that the
release of N and P in soil differs [34]. Generally, all vegetation restoration types significantly
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increased TN, TP, AN and AP content (Figure 3), mainly because vegetation cover, plant
species and biomass increased markedly after farmland abandonment [6]. Ground litter
decomposition by microbes and root extension may contribute the most to soil N and P
accumulation [34,35].

4.2. Effects of Vegetation Restoration Type on Soil Microbial Activities

Soil enzymatic activity plays an important role in C cycling and nutrient dynamics [36].
As sensitive indicators of the influence of land use changes or vegetation restoration
on soil [6], changes in plant cover, SOC, and soil environmental conditions (e.g., pH
and BD) after farmland abandonment would change the soil microbial composition and
enzyme activity [6,36]. Plant residues in afforested ecosystems contain more roots and
substrates than farmlands that stimulate the synthesis of soil enzymes [37,38], such as
urease, phosphatase, saccharase, cellulase, and catalase activities (p < 0.05) (Table 2). In
addition, farmland has suffered serious soil erosion in the study area of the Loess Plateau,
which has caused severe nutrient loss and has ultimately resulted in lower soil enzyme
activities [5,24].

Long-term natural grassland had a lower urease activity (p < 0.05) than sloping
farmland. Soil microorganisms do not need to secrete more enzymes to obtain additional
nutrients because the efficiency of the enzymes is negatively correlated with nutrient
availability [39]. To obtain access to more N, soil microorganisms secrete urease when
soil N availability is low [6]. The N content in the soil increased significantly through
long-term grassland restoration due to the continuous inputs of plants, which provide
sufficient N for the growth and metabolism of microorganisms [6]. Moreover, the amylase
and polyphenol oxidase activities were also reduced by vegetation restoration compared to
sloping farmland (p < 0.05) (Table 2), indicating that there was a lower SOM decomposition
rate at the late stage of vegetation restoration (~30 years). This can be concluded from
the microbial respiratory quotient (qCO2) being reduced after farmland was converted to
grasslands, shrubs, forests and mixed forests (Figure 4).

Compared with sloping farmland (p < 0.05), vegetation restoration increased microbial
biomass, which resulted in higher BR in the grasslands, shrubs, forests and mixed forests
(Figure 4). This was possibly due to the greater plant diversity, biomass and residues after
vegetation restoration providing more nutrient pools and niches for soil microorganisms.
The mixed forest had the highest MBC, MBN and MBP (Figure 4), which also indicated
that mixed forests are a good measure to improve the soil quality on the Loess Plateau. In
addition, the total C, N, and P contents in microorganisms and soil synchronously increased
after farmland abandonment, demonstrating that there was a potentially strong interaction
between soil and microorganisms following vegetation restoration.

4.3. Factor Effects on SOC since Vegetation Restoration

Soil physical-chemical properties have been extensively used to evaluate SOC, how-
ever, these properties usually change slowly, and thoroughly reflecting soil changes using
these properties is impossible [13]. Soil microbial properties rapidly respond to soil changes
caused by both natural and anthropogenic factors, and some enzymes are closely related to
soil energy flow and nutrient cycles [13]. For instance, soil microbial biomass is considered
to be a transformation agent of soil organic matter (SOM) and a labile pool for plant nutri-
ents [40]. Soil quality indicators have been developed because of the complex nature of soils
and the exceptionally large number of soil properties that must be determined. Selection of
indicators that appropriately reflect the overall change in soil quality is important.

Soil N dynamics are a key parameter in the regulation of long-term terrestrial C
sequestration [41]. This study also found that SOC had significant correlations with AN, TN,
AP and TP (Figures 2 and 3). In fact, SOC was closely coupled with TN [9], and SOC showed
the same dynamics as soil TP during vegetation restoration [5,6]. In addition, SOC was
significantly positively correlated with C/N (p < 0.05). Deng et al. [42] reported that SOC
was significantly positively correlated with the soil TN and C/N ratio following vegetation
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restoration. The study also found that SOC was significantly positively correlated with
LOC (p < 0.01) and NLOC (p < 0.01) (Table 3) because LOC and NLSOC are two components
of SOC. NLOC is a relatively stable form of soil carbon, and LOC is mainly input into soils
by higher plants, which will increase the SOC content even though priming accelerates the
decomposition of native SOC [43].

Soil enzyme activities were significantly correlated with the SOC content [15,44],
because the transformations of important organic elements are facilitated by microorgan-
isms [45]. However, one study reported polyphenol oxidase was closely related to soil
humus decomposition and was not significantly correlated with SOC [13]. This may be
related to the different components of the litter and the pathway of humus decomposition
in the soils of different species [13]. SOC also had a positive correlation with MBC [46,47].
MBC reflects the size of microbial populations and includes both metabolically active and
resting-state microorganisms [6], whereas parameters such as BR reflect the actual and
potential microbial activities in the soil [13]. Indeed, soils with more SOC also had higher
BR [48], because a large part of the SOC is dedicated to sustaining microbial respiration.

5. Conclusions

Land-use change after farmland conversion can increase soil C accumulation. How-
ever, the effects of land conversions from farmlands on soil C were varied among grasslands,
shrubs, forests and mixed forests. Herein, the mixed forests had the largest positive effects
on SOC, followed by the natural grasslands. Vegetation restoration also increased soil N
and P content and soil microbial and enzyme activities. Although vegetation restoration
increased the basal respiration (BR) of soil microbes, the microbial respiratory quotient
(qCO2) decreased after farmland conversion. Soil nutrients, such as N and P, and soil
microbial activities were the main factors that affected SOC after vegetation restoration.
The results suggested that mixed forests such as trees and shrubs (R. pseudoacacia and C.
korshinskii) are the best choice for vegetation restoration after farmland conversion in the
central Loess Plateau.
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