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Multiple Sclerosis (MS) is a neuroinflammatory and chronic Central Nervous System (CNS)
disease that affects millions of people worldwide. The search for more promising drugs for
the treatment of MS has led to studies on Sildenafil, a phosphodiesterase type 5 Inhibitor
(PDE5I) that has been shown to possess neuroprotective effects in the Experimental
Autoimmune Encephalomyelitis (EAE), an animal model of MS. We have previously shown
that Sildenafil improves the clinical score of EAE mice via modulation of apoptotic
pathways, but other signaling pathways were not previously covered. Therefore, the
aim of the present study was to further investigate the effects of Sildenafil treatment on
autophagy and nitrosative stress signaling pathways in EAE. 24 female C57BL/6 mice
were divided into the following groups: (A) Control - received only water; (B) EAE - EAE
untreated mice; (C) SILD - EAE mice treated with 25mg/kg of Sildenafil s.c. The results
showed that EAE mice presented a pro-nitrosative profile characterized by high tissue
nitrite levels, lowered levels of p-eNOS and high levels of iNOS. Furthermore, decreased
levels of LC3, beclin-1 and ATG5, suggests impaired autophagy, and decreased levels of
AMPK in the spinal cord were also detected in EAE mice. Surprisingly, treatment with
Sildenafil inhibited nitrosative stress and augmented the levels of LC3, beclin-1, ATG5, p-
CREB and BDNF and decreased mTOR levels, as well as augmented p-AMPK. In
conclusion, we propose that Sildenafil alleviates EAE by activating autophagy via the
eNOS-NO-AMPK-mTOR-LC3-beclin1-ATG5 and eNOS-NO-AMPK-mTOR-CREB-
BDNF pathways in the spinal cord.

Keywords: EAE (Experimental Autoimmune Encephalomyelitis), Sildenafil citrate (Viagra), neuroinflammation,
autophagy, nitrosative stress
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INTRODUCTION

Multiple Sclerosis (MS) is a chronic neurodegenerative disease of
the Central Nervous System (CNS) with a strong immune-
inflammatory component underpinning is etiopathogenesis (1).
Traditionally, MS has been characterized by demyelination,
neuroaxonal degeneration and autoimmunity, which are the
result of the activation of many transduction pathways, such as
apoptosis, inflammation and excitotoxicity (2). Of note, the
knowledge of these pathways is key to the development of new
drugs to target MS or to repurpose the already available drugs.

Sildenafil is a Phosphodiesterase type 5 Inhibitor (PDE5I)
widely used for erectile dysfunction (ED) (3), pulmonary
hypertension (4) and Raynaud’s Syndrome (5). Due to its
pleiotropic effects, especially regarding neuroprotection and
neuroimmunomodulation, this drug has been tested in other
conditions such as neurodegenerative diseases and affective
disorders, such as Alzheimer’s Disease (AD) and Major
Depressive Disorder (MDD) (6, 7), both of which have a
strong immune-inflammatory component driving disease
progression. The first study that showed the effects of Sildenafil
in the Experimental Autoimmune Encephalomyelitis (EAE)
model of MS was published by Pifarre et al. (8). In this study,
Sildenafil at a dose of 10mg/kg was administered subcutaneously
(s.c.) after disease onset and the spinal cord was analyzed.
However, a previous study by our group has shown that
Sildenafil at a dose of 25 mg/kg s.c. also has neuroprotective
effects because it inhibits demyelination, neuroinflammation and
apoptosis in the spinal cord of EAE mice, which is directly
related to the motor dysfunction observed in EAE mice (9).
These different studies highlighted different aspects of the same
pathology and contributed to our understanding of how the
disease evolves and how it could be treated, since they also
highlighted different molecular targets. Furthermore, we have
also demonstrated similar findings in the cuprizone model of MS
(10). More recently, we demonstrated that Sildenafil at the same
dose and route of administration has neuroprotective effects in
the hippocampus of EAE mice, since it reduced the number of
infiltrating T CD4+ lymphocytes, inhibited neuroinflammation
and modulated synaptic plasticity and neurotransmission (11).
However, other signaling pathways responsible for the
mechanism of action of Sildenafil have not been explored. For
instance, this is the case for autophagy, a cellular process essential
to cell homeostasis and which is disrupted when there is an
intense oxidative stress burden, causing the formation and
accumulation of protein aggregates inside the cell. This
ultimately compromises cell viability and leads to cell death
(12, 13). Furthermore, autophagy is a key process in innate and
adaptive immunity, in the regulation of inflammation, pathogen
elimination and in MS pathogenesis (14–17). Moreover, studies
have shown that autophagy is associated with neuroprotection
against extra- and intracellular insults (18). Notably, in an animal
model of depression induced by Chronic Unpredictable Mild
Stress (CUMS), fluoxetine protected hippocampal astrocytes
against stress-induced damage by promoting autophagy, which
prevented cell death and contributed to the removal of damaged
mitochondria (19). On the other hand, deficiency in autophagy
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observed in dopaminergic neurons may be a mechanism leading
to increased susceptibility to cellular stress and neurodegeneration
in Parkinson’s Disease (PD) (20). Therefore, the aim of the present
study was to further explore the signaling pathways underlying the
mechanism of action of Sildenafil in EAE, focusing on nitrosative
stress and autophagy pathways.
MATERIALS AND METHODS

Animals
Since MS is more prevalent in females than males (21), a total of
24 female C57BL/6 mice aged 8-12 weeks and weighing 25-30 g
from Aggeu Magalhães Institute were used and distributed in the
following experimental groups: a) CONTROL (n=8) - mice that
received only vehicle (water); b) EAE (n=8) – mice submitted to
EAE induction and that received only vehicle (water); c) SILD
(n=8) - mice submitted to EAE induction during the daylight and
that received 25 mg/kg of Sildenafil subcutaneously (s.c) during
21 days. Mice were kept under a controlled temperature (22°C)
and photoperiod environment (12h/12h light/dark) and received
water and standard chow ad libitum throughout the entire
experiment. The experiment was approved by and performed
in accordance with the guidelines of the Aggeu Magalhães
Institute Ethics Committee/Oswaldo Cruz Foundation (87/
2015 CEUA/FIOCRUZ), which is in compliance with
European (EU Directive 2010/63/EU) and American (National
Institutes of Health guide for the care and use of Laboratory
animals) standards. Moreover, CEUA/FIOCRUZ took into
consideration the principle of the three Rs (reduction,
replacement, and refinement) to approve the current number
of mice.

EAE Induction
The EAE was induced as described elsewhere using naïve mice as
controls (9). On the last day of the experiment, mice were
anesthetized, and the spinal cord was harvested and used for
the analysis of the nitrosative stress and autophagy pathways.
All experiments were carried out in compliance with the
ethical guidelines for animal experimentation (87/2015–
CEUA/FIOCRUZ).

Sildenafil Treatment
Sildenafil treatment (25mg/kg) (Viagra® , Pfizer) was
administered on day post-induction 3 for a total of 21 days
always during the daytime as previously described (9).

Immunohistochemistry (IHC)
Immunohistochemistry was performed as previously described
(9). Briefly, sections of all groups were incubated overnight at
4°C with the following primary antibodies: p-eNOS (Abcam,
ab75639, 1:50), mTOR (Abcam, ab2732, 1:1000), Beclin-1
(Abcam, ab62557, 1:100), ATG5 (Abcam, ab228668, 1:100)
and iNOS (Abcam, ab3523, 1:100. The labeling reaction was
performed in six sections per group and the analysis of pixels
quantification was performed in 6-8 images per group
May 2021 | Volume 12 | Article 671511
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(mean value). Images of the same magnification were
quantitatively analyzed using Gimp 2.6 software (GNU Image
Manipulation Program, UNIX platforms). Unspecific labeling/
background was removed from the quantification by using the
selection and exclusion tool of the aforementioned software.

Western Blotting (WB)
Protein extraction and Western blotting were performed as
previously described elsewhere (9). Briefly, proteins (30 µg
total) (n = 5 spinal cords/per group) were separated with 12%
acrylamide gel. After overnight incubation with 5% non-fat milk,
the membranes were incubated for four hours at room
temperature with primary antibodies against p-AMPK (Cell
Signaling, 2535S, 1:1000) followed by anti-rabbit HRP-
conjugated antibody (ABCAM, ab6721, 1:3000; Sigma-
Aldrich). For quantification, the pixel density of each
immunoblot was determined using the Image J 1.38 software
(http://rsbweb.nih.gov/ij/download.html; developed by Wayne
Rasband, NIH, Bethesda, MD, USA). The analyses were done
in duplicate and immunoblotting for b-actin (1:1,000, Sigma-
Aldrich, #A2228) was performed as a loading control.

Measurement of NO
The Griess colorimetric assay was used to measure spinal cord
levels of NO by the detection of nitrite (NO2) resulting from
oxidation of NO. Samples (n = 5 per group) were diluted fourfold
with distilled water and deproteinized by adding 1/20 volume of
a zinc sulfate solution (300 g/L), to give a final concentration of
15 g/L. Subsequently, centrifugation for 10 min at 3.500 g took
place and 100 µL of samples were added to a 96-well ELISA in
triplicate, followed by the same volume of Griess reagent. The
standard curve was prepared by serial dilution of a solution of
sodium nitrite (100 mM) was in PBS. After incubation for 10 min
in the dark, the absorbance of the reaction product was read at
490 nm to allow information of nitrite concentration to be
obtained. The absorbance of different samples was compared
with the standard curve (22).

Immunofluorescence of Paraffin-
Embedded Tissue
Immunofluorescence was performed as described elsewhere (9).
Briefly, samples were incubated overnight at 4°C with anti-p-
CREB (Cell Signaling, #9198, 1:100), anti-BDNF (Alomone,
ANT-010, 1:100) and anti-MAP1LC3A/B antibody (Biorad,
AHP2167, 1:100). The labeling reaction was performed in six
sections per group and the analysis of pixels quantification was
performed in 6-8 images per group (mean value). Images of the
same magnification were quantitatively analyzed using Gimp 2.6
software (GNU Image Manipulation Program, UNIX platforms).
Unspecific labeling/background was removed from the
quantification by using the selection and exclusion tool of the
aforementioned software.

Statistical Analysis
The statistical differences were analyzed by one-way ANOVA
followed by Tukey’s post-test and two-way ANOVA followed by
Tukey’s post-test (clinical score). The results are presented as
Frontiers in Immunology | www.frontiersin.org 3
mean ± standard deviation. All analysis was done by using
Graphpad Prism (version 6.0, GraphPad Software Inc., USA)
software. A p-value <0.05 indicates statistical significance.
RESULTS

Sildenafil Prevents the Development of
Severe Motor Dysfunction in EAE Mice
To assess whether the prophylactic administration of Sildenafil
could prevent the development of motor dysfunction in EAE
mice or even prevent a severe motor dysfunction, we evaluated
mice daily to observe any changes in the motor function.
Corroborating our previous findings, the control mice did not
have any signs of motor dysfunction, which was only observed in
the EAE mice. However, the prophylactic treatment with
Sildenafil was able to prevent the progression of motor
impairments (Figure 1, Supplementary Table 1).

Sildenafil Decreases Nitrosative Stress
Markers in the Spinal Cord of EAE Mice
Oxidative and Nitrosative Stress (O&NS) are known to be
inducers of the autophagy process, as damaged molecules are
constantly being generated due to cellular stress and removed by
autophagy (23). However, when in excess nitrosative stress can
lead to protein misfolding and aggregation, which contributes to
neurodegeneration (24, 25). Taking that into consideration,
drugs that have antioxidant effects can likely reduce excessive
O&NS and prevent their detrimental consequences. Therefore,
we subsequently established whether Sildenafil could modulate
FIGURE 1 | Mice clinical score. Control mice (green line) did not develop
motor dysfunction, while mice with EAE (purple line) progressively developed
motor dysfunction. However, the prophylactic treatment with Sildenafil (blue
line) prevented the development of more severe motor symptoms. The
evaluation of clinical signs of the disease was performed daily throughout the
experiment and scored on a scale of 0 to 5: 0 = no sign; 1 = loss of caudal
tone; 2 = weakness in hind limbs; 3 = paralysis of hind limbs; 4 = paralysis of
hind limbs and weakness in anterior limbs; 5 = complete paralysis or death.
The values are presented as mean ± SEM (n = 8 mice/group). Two-way
ANOVA followed by Tukey’s post-test statistical analysis showed statistically
significant differences between all groups over time. ****p< 0.0001. This
experiment was repeated twice.
May 2021 | Volume 12 | Article 671511

http://rsbweb.nih.gov/ij/download.html
https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Duarte-Silva et al. Sildenafil Alleviates EAE by Triggering Autophagy
the nitrosative stress pathway using antibodies against p-eNOS,
iNOS and measuring the levels of tissue nitrite (NO−

2 ).
In the p-eNOs analysis, ANOVA analysis showed a

significant difference among groups (F (2, 15) = 6.826, P =
0.0078). The results showed that control mice had basal levels of
p-eNOs. On the other hand, EAE mice presented decreased p-
eNOS levels compared to control and sildenafil groups (p< 0.05)
whereas the treatment with Sildenafil significantly augmented
the p-eNOS levels compared to EAE group (p< 0.05) (Figure
2A). The iNOS analysis showed statistical differences among
groups by one-way ANOVA (F (2, 23) = 7.101, P = 0.0040).
Control mice had basal levels of iNOS. On the one hand, the EAE
group had increased levels of iNOS when compared to control
group (p<0.01). By its turn, treatment with Sildenafil reduced
iNOS levels compared with EAE group (p< 0.05) (Figure 2B,
Supplementary Table 2).

Levels of nitrite in the spinal cord showed a difference among
groups by one-way ANOVA (F (2, 6) = 13.72, P = 0.0058).
Control group presented basal expression of NO, while EAE
mice had increased levels of nitrite compared with control group
(p< 0.01). Conversely, treatment with Sildenafil reduced nitrite
levels compared to EAE group (p< 0.05) (Figure 4C).

Sildenafil Modulates Autophagy Markers
to Improve EAE
The link between autophagy dysfunction and neurodegenerative
diseases is well established. In many diseases, such as Parkinson’s
Disease (PD) and Alzheimer’s Disease (AD), protein aggregation
occurs due to the inability of the cellular machinery to remove them
and this usually is accompanied by neurotoxicity and
Frontiers in Immunology | www.frontiersin.org 4
neurodegeneration (26). In the case of MS, it was experimentally
demonstrated that protein aggregation contributes to
neurodegeneration (12). In this regard, drugs that can target this
pathway can likely be strong candidates to treat such diseases
because they can likely remove protein aggregates and reestablish
cellular proteostasis. To determine whether Sildenafil could
modulate autophagy pathway, we used antibodies against
autophagy and autophagy-related molecules, such as LC3, beclin-
1, ATG5, p-CREB, BDNF and mTOR.

Notably, we investigated whether Sildenafil could target the
nucleation and elongation phase of autophagy characterized by the
participation of LC3-beclin-1 and ATG5, respectively (20, 27).
ANOVA analysis showed a significant difference among groups in
LC3(F (2, 31) = 8.718, P = 0.0010). EAE mice, on the one hand,
had decreased levels of LC3 in comparison to control group (p<
0.05). On the other hand, treatment with Sildenafil increased LC3
levels when compared to untreated mice (p<0.01) (Figures 3B, F).
In the beclin-1 analysis, ANOVA analysis showed a significant
difference among groups (F (2, 9) = 11.05, P = 0.0038). Untreated
mice had decreased expression of beclin-1 when compared to
control mice (p<0.01), which was reversed by treatment with
Sildenafil (p< 0.05) (Figures 3A, C). ANOVA analysis showed a
significant difference among groups in ATG5 analysis (F (2, 14) =
7.343, P = 0.0066). On the one hand, untreated mice had
diminished levels of ATG5 when compared to control group (p<
0.05). On the other hand, Sildenafil augmented ATG5 levels when
compared to the EAE group (p<0.01) (Figures 3A, D). ANOVA
analysis showed a significant difference among groups in mTOR (F
(2, 30) = 4.817, P = 0.0153). EAE group had increased expression
of mTOR in comparison to the control group (p< 0.05), while mice
A

B

FIGURE 2 | Immunohistochemistry for p-eNOS in the spinal cord (A). Statistical differences were analyzed by one-way ANOVA [F (2, 15) = 6.826, P = 0.0078]
followed by Tukey’s post-test. Control group presented basal expression of p-eNOS, while EAE mice had decreased labeling of this protein in
immunohistochemistry). Treatment with Sildenafil increased p-eNOS immunoreactivity #p < 0.05 when CONTROL vs. EAE; *p < 0.05 when EAE vs. SILD.
Immunohistochemistry for iNOS in the spinal cord (B). Statistical differences were analyzed by one-way ANOVA [F (2, 23) = 7.101, P = 0.0040] followed by Tukey’s
post-test. Control group presented basal expression of iNOS, while EAE mice had increased labeling of this protein in immunohistochemistry. Treatment with
Sildenafil decreased iNOS expression. Quantification of pixels (left panels). Values are presented as mean ± SD. #p < 0.01 when CONTROL vs. EAE; *p < 0.05 when
EAE vs. SILD. n= 6-8 images/group. These experiments were repeated twice.
May 2021 | Volume 12 | Article 671511

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Duarte-Silva et al. Sildenafil Alleviates EAE by Triggering Autophagy
that received Sildenafil had mTOR expression reduced (p< 0.05)
(Figures 3A, E, Supplementary Table 2).

Regarding p-CREB, ANOVA analysis showed a significant
difference among groups [F (2, 10) = 6.987, P = 0.0126].
Frontiers in Immunology | www.frontiersin.org 5
Untreated mice displayed reduced p-CREB levels in comparison
to the control mice (p< 0.05), while treatment with Sildenafil
reversed this reduction (p< 0.05) (Figures 3B, G). Finally,
ANOVA analysis showed a significant difference among
A C

D

E

F

G

H

B

FIGURE 3 | (A) Immunohistochemistry for beclin-1 in the spinal cord. Statistical differences were analyzed by one-way ANOVA [F (2, 9) = 11.05, P = 0.0038]
followed by Tukey’s post-test. Control group presented basal expression of beclin-1, while EAE mice had decreased labeling of this protein in immunohistochemistry.
Treatment with Sildenafil increased beclin-1 immunoreactivity. Immunohistochemistry for ATG5 in the spinal cord. Statistical differences were analyzed by one-way
ANOVA [F (2, 14) = 7.343, P = 0.0066] followed by Tukey’s post-test. Control group presented basal expression of ATG5, while EAE mice had decreased labeling of
this protein in immunohistochemistry. Treatment with Sildenafil increased ATG5 immunoreactivity. Immunohistochemistry for mTOR in the spinal cord. Statistical
differences were analyzed by one-way ANOVA [F (2, 30) = 4.817, P = 0.0153] followed by Tukey’s post-test. Control group presented basal expression of mTOR
while EAE mice had increased labeling of this protein in immunohistochemistry. Treatment with Sildenafil decreased immunoreactivity mTOR immunoreactivity. (C–E)
Quantification of pixels. Values are presented as mean ± SD. #p < 0.05 when CONTROL vs. EAE; *p < 0.01 when EAE vs. SILD. n= 6-8 images/group. These
experiments were repeated twice. (B) Immunohistochemistry for LC3 in the spinal cord. Statistical differences were analyzed by one-way ANOVA [F (2, 31) = 8.718,
P = 0.0010] followed by Tukey’s post-test. Control group presented basal expression of LC3, while EAE mice had decreased labeling of this protein in
immunohistochemistry. Treatment with Sildenafil increased LC3 immunoreactivity. #p < 0.05 when CONTROL vs. EAE; *p < 0.01 when EAE vs. SILD.
Immunohistochemistry for p-CREB in the spinal cord. Statistical differences were analyzed by one-way ANOVA [F (2, 10) = 6.987, P = 0.0126] followed by Tukey’s
post-test. Control group presented basal expression of p-CREB, while EAE mice had decreased labeling of this protein. Treatment with Sildenafil increased p-CREB
immunoreactivity. #p < 0.05 when CONTROL vs. EAE; *p < 0.01 when EAE vs. SILD. Immunohistochemistry for BDNF in the spinal cord. Statistical differences were
analyzed by one-way ANOVA [F (2, 15) = 14.26, P = 0.0003] followed by Tukey’s post-test. Control group presented basal expression of BDNF, while EAE mice had
decreased labeling of this protein. Treatment with Sildenafil increased BDNF immunoreactivity. #p < 0.05 when CONTROL vs. EAE; *p < 0.001 when EAE vs. SILD
(F–H) Quantification of pixels. Values are presented as mean ± SD. n= 6-8 images/group. These experiments were repeated twice.
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groups in BDNF [F (2, 15) = 14.26, P = 0.0003]. Untreated mice
had lower levels of BDNF when compared to control group (p<
0.05). However, treatment with Sildenafil increased BDNF levels
in comparison to the EAE group (p< 0.001) (Figures 3B, H,
Supplementary Table 2).

Sildenafil Modulates AMPK to
Improve EAE
AMP-activated protein kinase (AMPK) is not only an energy
balance regulator, but it also plays a key role in the modulation of
autophagy in an mTOR-dependent and independent fashion,
such as via the modulation of the transcription factor Forkhead
box O3 (FOXO3), known to induce the expression of autophagy
genes, such as the ones that codify for beclin-1 and ATG5 (28–
30). In this regard, drugs that can modulate AMPK may be of
relevance to achieve autophagy induction in neurodegenerative
diseases. To establish whether Sildenafil could modulate the
AMPK and thus indirectly modulate autophagy, we next used
an antibody against p-AMPK. ANOVA analysis showed a
significant difference among groups (F (2, 3) = 34.57, P =
0.0085). The results showed that control mice had basal levels
of p-AMPK. Untreated mice, on the one hand, presented
decreased levels of p-AMPK when compared to control mice
(p<0.01). Nonetheless, treatment with Sildenafil increased the
levels of p-AMPK in comparison to EAE mice (p< 0.05) (Figures
4A, B).
Frontiers in Immunology | www.frontiersin.org 6
DISCUSSION

In this study, we further investigated the molecular pathways
underpinning the improvement observed in EAE mice treated
with Sildenafil. Previously, we have demonstrated that Sildenafil
decreases the clinical score of EAE mice by modulation of
apoptotic pathways (9). Here, we corroborated this finding and
demonstrated that this amelioration is also caused by the
modulation of other signaling pathways, such as the nitrosative
stress and autophagy pathways.

Dysfunction in the cellular redox status plays an important role
in the pathogenesis of many diseases, including, but not limited to
MS, Major Depressive Disorder (MDD) and Chagas disease (31–
33). Increased levels of Reactive Oxygen Species (ROS) as well as
Reactive Nitrogen Species (RNS), such as Nitric Oxide (NO) and
nitrite can be detrimental. ROS and RNS can react with proteins,
lipids, and nucleic acids, causing damage to these molecules.
Furthermore, by damaging the aforementioned molecules, ROS
and RNS can generate neoepitopes against which an immune
response can be mounted (31). Inducible Nitric Oxide Synthase
(iNOS) is usually activated during inflammation and leads to high
production of NO, within the micromolar range. It is noteworthy
that NO can also be a source of RNS, which can damage the cellular
constituents. Nitration of proteins is considered to be a mechanism
driving disease progression in AD, PD and Lateral Amyotrophic
Sclerosis (ALS) (34, 35). However, not much is known about it in
A

B C

FIGURE 4 | Western blot for p-AMPK (A) Statistical differences were analyzed by one-way ANOVA [F (2, 3) = 34.57, P = 0.0085] followed by Tukey’s post-test.
Control group presented basal expression of p-AMPK, while EAE mice displayed decreased p-AMPK levels. Treatment with Sildenafil increased p-AMPK levels.
(B) Densitometric analysis of p-AMPK. Values are presented as mean ± SD. #p < 0.01 when CONTROL vs. EAE; *p <0.05 when EAE vs. SILD n= 5 mice/group.
This experiment was repeated twice. (C) Levels of nitrite in the spinal cord showed difference among groups by one-way ANOVA [F (2, 6) = 13.72, P = 0.0058].
Control group presented basal expression of NO, while EAE mice had increased levels of nitrite compared with control group. Conversely, treatment with Sildenafil
reduced nitrite levels compared to EAE group. Values are presented as mean ± SD. #p < 0.01 when CONTROL vs. EAE; *p < 0.05 when EAE vs. SILD. n= 5 mice/
group. This experiment was repeated twice.
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the context of MS. NO can react with the cysteine residue of
proteins by S-nitrosylation (SNO) and thereby affect protein
structure and function, leading to their activation, deactivation
or even aggregation, which is toxic to cells and drives
neurodegeneration (36). Of key importance is when SNO
modification occurs in pathways responsible for proteostasis and
cytoprotection, such as the antioxidant and anti-apoptotic pathways.
As a consequence, dysfunctional redox states and impaired
autophagy facilitate protein aggregation and its permanence in the
cell, affecting cell viability. In this regard, high amounts of NO
facilitate the formation of protein aggregates (36, 37).

On the other hand, Endothelial Nitric Oxide Synthase
(e-NOS) is responsible for basal NO production (nanomolar
range), which regulates, for instance, vascular tone (38, 39). NO
takes part in the NO-soluble guanylate cyclase (sGC)-Cyclic
guanosine monophosphate (cGMP)-dependent protein kinase
(PKG) pathway. Of note, accumulation of cGMP exerts anti-
inflammatory effects by reducing the levels of Intercellular
Adhesion Molecule 1 (ICAM) and Vascular Cellular Adhesion
Molecule (VCAM) in the cerebellum, which inhibits the traffic of
leukocytes to the CNS (40). Furthermore, NO can also activate
AMPK and reduce inflammation (41). Interestingly, AMPK is
activated in response to IL-10 and favors macrophage
polarization towards the anti-inflammatory or M2 phenotype
(42). This is corroborated by our previous study (11) and this
suggests that the switching of microglia to the M2 phenotype is
probably due to the increased levels of IL-10 and p-AMPK in
mice treated with Sildenafil. Furthermore, we showed that EAE is
characterized by lowered expression of p-eNOS, but high levels
of iNOS and NO, which favors nitrosative stress and protein
aggregation. However, treatment with Sildenafil decreased iNOS
and NO levels, while increasing the expression of eNOS.

It is worthy to mention that activated AMPK phosphorylates
and activates eNOS, leading to NO production, which in turn
activates AMPK (41, 43). Data have shown that oxidative and
nitrosative stress (O&NS) pathways play a key role in EAE and
MS, characterized by high levels of oxidative stress markers as
well as lowered levels of antioxidants (44–46). In a second vein,
data have shown that Sildenafil is able to inhibit ROS and elevate
the expression of antioxidant molecules, such as Superoxide
Dismutase (SOD) and catalase (47). A previous study by our
laboratory conducted with the cuprizone model of MS showed
that Sildenafil led to increased levels of eNOS and p-AMPK (22).
All in all, these data show that Sildenafil, when administered
before disease symptoms, inhibits nitrosative stress and improves
EAE. Furthermore, by stimulating eNOS, Sildenafil triggers the
activation of the NO-sCG-cGMP-PKG pathway, which leads to
the activation of AMPK.

AMPK is a protein known to be a regulator of energy balance.
Interestingly, AMPK also regulates autophagy (48). Activated
AMPK phosphorylates Tuberous Sclerosis 1 and 2 (TSC1/2) and
inhibits mTORC1 complex, thus promoting autophagy (49).
Furthermore, AMPK activation leads to inhibition of Nuclear
Factor kappa B (NFkB) (50, 51). Moreover, activated AMPK also
inhibits iNOS and thus inflammation (52). A study conducted in
our laboratory has shown that Sildenafil increased the expression
Frontiers in Immunology | www.frontiersin.org 7
of p-AMPK in the cuprizone model of MS (22). In this regard,
here we showed that EAE mice treated with Sildenafil presented
increased levels of p-AMPK, which further contributes to
inhibition of neuroinflammation in the spinal cord.
Interestingly, AMPK activated by NO phosphorylates IkB
kinase (IKK) and prevents NFkB activation, thus exerting an
anti-inflammatory effect (41). Furthermore, activated AMPK can
indirectly inhibit NFkB by activating Sirtuin 1 (SIRT1), FOXO
and Peroxisome Proliferator-Activated Receptor-Gamma
Coactivator-1a (PGC1a) (49). In sum, our results suggest that
activation of AMPK inhibits neuroinflammation and takes part
in mTOR inhibition and autophagy induction. In fact, we
reported here that Sildenafil increases p-AMPK and LC3 levels,
while decreases mTOR levels, which likely suggests that
Sildenafil favors and promotes autophagy in the spinal cord of
EAE mice and thus exerts a neuroprotective effect.

Lower LC3-I/II and beclin-1 expression with consequent
impaired autophagy were shown to occur in the spinal cord of
EAE mice (53, 54) and induction of autophagy via the
Cannabinoid Receptor 2 (CBR2) ameliorated EAE (55).
Furthermore, it is reported that the expression of ATG5 is
elevated in EAE (56), which is not corroborated by our
findings and can likely be explained by differences in the
analyzed samples and different stages of disease (purified T
cells from EAE mice and postmortem brain tissue versus spinal
cord as presented in this study). Here, we show that untreated
mice had reduced levels of LC3, beclin-1 and ATG5 while
showing an increase in mTOR expression. However, Sildenafil
administration led to elevated expression of LC3, beclin-1 and
ATG5, while displaying reduced mTOR levels. Furthermore, we
previously reported increased IL-10 levels followed by Sildenafil
treatment (11), which can further suppress the activity of mTOR
and increase autophagy and mitophagy (57). Although the
functional consequences of the activation of the autophagy
pathways were not investigated here, one could reasonably
argue that this process may lead to the removal of protein
aggregates previously reported to occur during EAE and which
are responsible for neuronal death by apoptosis (12, 13).
Accordingly, we have previously demonstrated that during
EAE the intrinsic and extrinsic pathways of apoptosis, as well
as other signaling pathways that control cell survival/death, are
activated, causing neuron death, which was rescued after
Sildenafil treatment (9). Altogether, our results suggest that
Sildenafil promotes autophagy and exerts neuroprotective
effects by increasing IL-10 and AMPK levels and by
modulating the expression of LC3, beclin-1 and ATG5 in the
spinal cord of EAE mice.

The cAMP-response Element Binding Protein (CREB) is a
transcription factor that binds to cAMP Response Element
(CRE) and promotes transcription of target genes, including
Brain Derived Neurotrophic Factor (BDNF), a neurotrophin that
mediates neuroplasticity in the central and peripheral nervous
system. Via CREB-BDNF pathway, neurons undergo
neurogenesis, differentiation, survival, neurite outgrowth and
synaptogenesis (58, 59). Interestingly, mTOR inhibition by
rapamycin was accompanied by phosphorylation of CREB,
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which protected against neurodegeneration induced by amyloid-
b (60). Furthermore, it is known that CREB can activate
autophagy genes via the Farnesoid X receptor (FXR)/CREB
signaling pathway whereby FXR inhibits CREB activation (61–
63). By its turn, AMPK inhibits FXR and thus increases CREB
activation (64, 65). Regarding BDNF, it was shown that increased
levels of BDNF were associated with inhibition of autophagy
(66). However, other studies have shown that BDNF can also
promote autophagy (67). In diabetic rats, BDNF-TrkB pathway
exerted antidepressant effect of hydrogen sulfide (H2S) by
triggering autophagy in the hippocampus (68). In another
study with cortical neurons submitted to oxygen deprivation in
vitro, BDNF exerted neuroprotective effects by increasing
autophagy via the PI3K/Akt/mTOR/p70S6K pathway.
Interestingly, BDNF administration led to decreased mTOR
levels (69). Therefore, we postulate that the increased levels of
CREB/BDNF may induce autophagy and ameliorate disease
pathology and may also be involved in the reduction of mTOR
expression, which could further trigger autophagy. However,
future studies are needed to corroborate this hypothesis.

In summary, our data showed that Sildenafil ameliorates EAE
by activating signaling pathways that mitigate nitrosative stress
and by triggering autophagy pathway (Figure 5). However, the
Frontiers in Immunology | www.frontiersin.org 8
use of the subcutaneous route of administration has a clear
translational limitation since Sildenafil is mainly taken via the
oral route. Furthermore, despite the fact that PDE5Is are
promising drugs to treat neurodegenerative disorders,
Sildenafil is currently only prescribed to MS patients to treat
ED (7, 38, 70–76). Moreover, only few clinical trials were
performed to elucidate the efficacy and effects of these drugs.
Notably, they have shown that treatment with PDE5Is led to
enhanced cognitive performance and function (77–79) and
improved overall life quality of the MS patients, which
included life as a whole, family life and social contacts (80).
However, the lack of clinical data makes it hard to ensure that
MS patients taking these drugs would have a better prognosis.
Therefore, future experimental studies, as well as clinical trials
with MS patients, need to be performed to provide more insights
into disease pathogenesis and disease progression. This would
allow a more in-depth view of PDE5Is mechanism of action and
how it could help in the treatment of neurodegenerative diseases,
such as MS. In conclusion, we demonstrate that Sildenafil
alleviates EAE via the eNOS-NO-AMPK-mTOR-LC3-beclin1-
ATG5 and eNOS-NO-AMPK-mTOR-CREB-BDNF pathways in
the spinal cord, which triggers autophagy and consequently
improves disease.
FIGURE 5 | Schematic summarizing the signaling pathways modulated by Sildenafil to improve EAE pathology. Sildenafil increases the levels of p-AMPK and
reduces the levels of mTOR, which leads to an increase in the levels of LC3, promoting autophagy. Furthermore, Sildenafil enhances the expression of p-eNOS,
leading to the production of NO, which further activates AMPK. Moreover, NO triggers the activation of the NO-sGC-cGMP-PKG pathway, which leads to increased
levels of p-CREB and BDNF, further promoting autophagy. Furthermore, Sildenafil inhibits iNOS, which when activated produces NO in excess, thus inhibiting
nitrosative stress. Altogether, the activation of the aforementioned signaling pathways improves EAE pathology. Red bars: inhibition; Green arrows: activation.
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