Schnell et al. Int J Health Geogr (2021) 20:14
https://doi.org/10.1186/512942-021-00268-y

International Journal of
Health Geographics

METHODOLOGY Open Access
)]

Check for
updates

Locational privacy-preserving distance
computations with intersecting sets
of randomly labeled grid points

Rainer Schnell”"®, Jonas Klingwort'?® and James M. Farrow?

Abstract

Background: We introduce and study a recently proposed method for privacy-preserving distance computa-
tions which has received little attention in the scientific literature so far. The method, which is based on intersecting
sets of randomly labeled grid points, is henceforth denoted as ISGP allows calculating the approximate distances
between masked spatial data. Coordinates are replaced by sets of hash values. The method allows the computa-
tion of distances between locations L when the locations at different points in time t are not known simultaneously.
The distance between Lyand L, could be computed even when L, does not exist at t;and Ly has been deleted at t.
An example would be patients from a medical data set and locations of later hospitalizations. ISGP is a new tool for
privacy-preserving data handling of geo-referenced data sets in general. Furthermore, this technique can be used
to include geographical identifiers as additional information for privacy-preserving record-linkage. To show that the
technique can be implemented in most high-level programming languages with a few lines of code, a complete
implementation within the statistical programming language R is given. The properties of the method are explored
using simulations based on large-scale real-world data of hospitals (n = 850) and residential locations (n = 13,000).
The method has already been used in a real-world application.

Results: ISGP yields very accurate results. Our simulation study showed that—with appropriately chosen parameters
—99 % accuracy in the approximated distances is achieved.

Conclusion: We discussed a new method for privacy-preserving distance computations in microdata. The method is
highly accurate, fast, has low computational burden, and does not require excessive storage.

Keywords: Geographical data, Geo-referenced data, Geo-masking, Record-linkage, ISGP

Background

The number of statistical microdata sets containing
geo-referenced data has increased steadily. For exam-
ple, at least two US medical surveys (National Ambula-
tory Medical Care Survey, NAMCS, and the National
Hospital Ambulatory Medical Care Survey, NHAMCS)
have additional data files containing the distances to the
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nearest eligible hospital as well as the distances to the
nearest eligible hospital with an emergency department
[1]. Other CDC (Centers for Disease Control and Preven-
tion) surveys (for example, NHANES, NHCS, NHIS, NIS,
NSFG, SLAITS) also contain geocodes. The increasing
availability of geographical information has generated a
continuous stream of research literature on the effects of
geographical disparity on health-related outcomes [2-8].

Generally, surveys with geo-referenced informa-
tion have restricted data access to guarantee as much
respondent privacy as possible. The method introduced
here could be used for research applications under
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privacy legislation such as the General Data Protection
Regulation as implemented in different ways among
European countries. For example, due to privacy con-
cerns in most countries, survey agencies and official sta-
tistics bureaus are often required to separate research
data and respondent identifying information [9-11].
Depending on the available spatial resolution, geographi-
cal locations could be used to identify a person directly.
Therefore, geolocations of survey respondents are usu-
ally not included in scientific use files. In many research
settings, respondents are assured that directly identifying
information (such as names or geolocations) is deleted
after data collection. Given this, at least two different sce-
narios for the use of the suggested technique seem to be
plausible:

1. In a cohort study of treatment outcomes, initial
healthcare providers’ address is pseudonymised and
saved. During the follow-up treatment, the pseu-
donymised addresses of subsequent health care pro-
viders are added to the dataset. Estimated distances
of providers can be computed even in those cases,
where providers do not exist at the initial data collec-
tion time.

2. If no unique person identifiers are available for link-
ing records of the same patient between different
organisations, quasi-identifiers such as names and
addresses are used for linkage. If these identifiers
have to be pseudonymised, computing distances
between addresses might help in identifying true
links. Therefore, the estimated euclidean distances of
addresses between potential links could be used for
privacy-preserving record-linkage [11].

An application of the first-mentioned type has already
been used in practice [12]. The second type is a natu-
ral extension of encoding one-dimensional numerical
data for privacy-preserving record-linkage [13]. Since
respondents’ spatial mobility in many societies is mostly
regional, the additional distance information will increase
the precision of linkage procedures.

In this paper, a new method for calculating distances
between pseudonymized spatial data is presented, which
preserves the original distances between locations
(Sect. 2). This method was first presented at a conference
by [14], but has not been published previously. In con-
trast to the presentation, we implement the method, pro-
vide the proof of the central equation, simulate effects of
parameter choices, and demonstrate a successful applica-
tion with real-world data.
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Previous approaches

Different approaches for the masking of spatial data
have been suggested in the literature. Based on [15], the
methods sketched in the review by [16] can be classi-
fied into three categories: (1) methods that aggregate
spatial points, (2) methods that modify coordinates, and
(3) methods that release contextual data only. Examples
of the first category include point and areal aggregation.
Translation, rotation, scaling, and random perturba-
tion belong to the second group, whereas the release of
the distances to the nearest neighbors gives an example
of the third category. Two of the latest suggestions can
be considered as examples of (2): [17] and [18]. The first
approach moves each point into the area of a torus, cen-
tered at this point. The second approach uses an embed-
ding of the coordinates. However, here we suggest an
entirely different approach.

The work most similar to ours has been published by
[19]. Kerschbaum introduced a distance-preserving
pseudonymization technique for timestamps and spa-
tial data. For the two-dimensional calculation of the dis-
tance between two points, the author generates a regular
grid of reference points and assigns a hash value to every
grid point. The pseudonymization of a point location P
is the set of grid points with a certain distance d from P,
together with angle and distance to the point of interest.
Using the distance and the angle of the grid points, loca-
tions P; and P, can be recovered.

In contrast to Kerschbaum’s method, we do not cal-
culate the distance between two points by calculating
their distances to one common grid point. Instead, we
approximate the distance between two spatial points P
and Q by considering the area of intersection of two cir-
cles centered at these points. Furthermore, the angle and
the distance are available as plain-text in Kerschbaum’s
method, which probably allows the re-identification.
Finally, the new method allows the computation of dis-
tances between locations when the locations at different
points in time are not known simultaneously. For exam-
ple, the distance between L; and Ly could be computed
even when L, does not exist at t1 and L1 has been deleted
at ty.

Methods

Approximation of the distance between two spatial points

by intersecting sets of randomly labelled grid points

In this Section, we demonstrate the approximation of the

distance between two spatial points in a two-dimensional

space, without using information about their exact posi-

tions. For this purpose, we approximate the area of inter-

section between two circles surrounding these points.
Let us consider two points P and Q and the distance d

between them. First, we surround each of those points
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Fig. 1 Area of intersection A between two circles with the same
radius r, whose centers P and Q have distance d from each other

by a circle of radius r, as depicted in Fig. 1. Thus, if
0 < d < 2r holds, the two circles have an area of intersec-
tion A, which depends on d.

Hence, up to a separation of the double radius, there
exists a bijective (one-to-one and onto) mapping
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f:00,2r] — [0,77%], d+— A(d)

between the distance d and the area A of overlap. It is
intuitively clear that every area A(d) results from exactly
one distance d € [0, 2r] between P and Q. Therefore, we
can verify the Equation

1
A(d) = 2r% - arccos(zi) - Ed A 4r2 — g2 1)
r

describing the relation between A and d. A proof is given
in the appendix. Hence, if we know A we can approxi-
mate d as we will show below.

Next, we overlay the two circles with a regular grid, as
shown in Fig. 2, and map unique random numbers to the
grid points. Then, the pseudonymizations Gp and Gq of
the spatial points P and Q consist of the grid points sur-
rounded by the respective circle. Furthermore, we deter-
mine the set of grid points Gp N G covered by the area of
intersection A. In the example shown in Fig. 2, this inter-
section is given by Gp N Go = {78, 38, 6,70).

For reasonably flat geometries, like those we con-
sider here, it is sufficient to use a rectangular grid. If the
method is extended to curved geometries, like the sur-
face of a sphere, using a triangular grid would provide
more accurate results.

288
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32 30 28 57

56T

Fig. 2 Circles overlaid with a regular grid. Random numbers are assigned to the grid points
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Furthermore, the regularity of the grid is important, so
that identical distances between considered points yield
(dependent on the radius) nearly the same number of
grid points enclosed by the area of intersection. In the
case of randomly distributed grid points, the accuracy
of the result strongly depends on how many grid points
are enclosed by the area of intersection. Thus, the error
for the approximation of the distance d will generally be
higher for random grids than for regular grids. We will
demonstrate this effect in Sect. 2.

The similarity of the two pseudonymizations for P and
Q can be computed with any suitable similarity measure.
Here, we use the Dice coefficient [20], given by

_ 2Igp N Gql
= 1Gol + 1Gal @

where | - | denotes the number of elements contained in
the respective set. The similarity measure can then be
used to approximate the intersection A as proportion of
the area 7772 of a circle through

A=s.7r2 3)

Finally, solving the equation A(d) = A yields the approxi-
mation for the distance d between P and Q. Since the
method is based on intersections of sets of grid points,
we denote the procedure as ISGP. We will illustrate ISGP
with an application in the next section.
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Step-by-step workflow

In a real-world application as described in the Back-
ground (Sect. 1), two data holders could agree on the
parameters (seed of pseudo-number random generator,
radius, number of grid points, and area). Each of the data
holders computes the set of grid points corresponding to
the locations of the points of interest (Steps 1-8 in the
workflow below). A research group will use these sets of
grid points to compute the distances they need for their
research (Step 9). The research group only needs the sets
of grid points and the information on the radius used for
the computation.

We will describe a step-by-step workflow for these
steps using the statistical programming language R [21].
As an example, we use two real-world data sets contain-
ing geographic information. The first data set contains
850 hospitals located in England.! The second data set
is a large administrative database of the United King-
dom containing approximately 13 million residential
addresses. As outlined in Sect. 1, the distance to the near-
est hospitals is relevant in various research fields. As an
example, we will calculate the approximate distances for
one residential address to its nearest three hospitals.

Step 1: Preprocessing

First, the package maptools [23] for reading and
manipulating geographic data is loaded. After that, the
commonly used coordinate reference system WGS84 is
chosen. The shapefile of the United Kingdom is imported,
and finally, England is selected.” Figure 3 shows the
administrative boundaries of England.

library(maptools)

england <- uk[,1]

plot (england)

WGS84 <- "+proj=longlat +ellps=WGS84 +datum=WGS84 +no_defs +towgs84=0,0,0"
uk <- readShapePoly("GBR_adm/GBR_adml.shp", proj4string=CRS(WGS84))

! The file is publicly available and was downloaded from [22].

% The shapefile containing the administrative boundaries of the United
Kingdom was downloaded from [24]. The website provides administra-
tive boundaries of many more countries, so that the workflow can be easily
adapted to other countries or continents.
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Step 2: Preprocessing and geocoding of residential

and hospital addresses

The files containing address information on residents
and hospitals are loaded. The package ggmap [25] was
used to query the longitude and latitude of these address
information from Google. The administrative database
contains addresses of the United Kingdom. Therefore,
Scotland, Belfast (covers all of Northern Ireland), Isle
of Man, Guernsey, and Jersey were removed based on
the postal code area. Removing these areas resulted in
approximately 12 million remaining addresses. From
those, a random sample of 13,000 addresses was drawn
from this database, and their geo-coordinates were
queried.
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Some of the sampled addresses resulted in incorrect
queries due to the administrative database being depre-
cated. Those addresses were removed from the analysis.
Further, it was verified whether all successful queries are
within the administrative boundaries of England. There-
fore, the function over from the package sp [26] was
used. Removing these coordinates reduced the number
of residential addresses considered to 12,057. The final
result of preprocessing hospital and residential data is
shown in Fig. 4.

Step 3: Enlarge area considered for computation
The boundaries of England are enlarged for computation.
For coordinates close to the geographical boundaries of

# Query of hospitals in England

# Query of sampled addresses in

AddressSample <- sample$address

hospitaladdress <- hospitaldata$address

hospitalcoordinates <- as.data.frame(geocode(hospitaladdress))

CoordinatesSample <- as.data.frame(geocode(AddressSample))

England

&
Fig. 3 Geographical boundaries of England

£
Fig. 4 Queried hospital (in red) and residential addresses (in black)
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England, the circles drawn will include fewer grid points.
This will cause a loss in precision of the approximation.
Further, in such scenarios, the risk for re-identifica-
tion might increase. The surface of England is approxi-
mately 130,300 km?. The surface of the enlarged area is
1,490,000km?. The artificially generated area covers
England 11 times and preserves the underlying geograph-
ical structure of the addresses and England, respectively.
Figure 5 shows the generated expanded geographical area
with hospitals and addresses. This step is optional.
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Step 5: Selection of coordinates

For demonstration purposes and the further steps in the
example, we restrict the data shown in Fig. 5 to Cornwall
and Devon (South West England) and four arbitrary cho-
sen coordinates. One residential address and its nearest
three hospitals. This step is for demonstration purposes
only and not necessary for the method to work.

Step 6: Grid generation
As mentioned before, either randomly or regularly dis-
tributed grid points may be used. The R package sp

surface <- Polygon(rectangular)

surface <-

df <- data.frame(NA)

surface <-

surface <-

shapeframe <- c(0,0, 1150000,1150000, 5200000,6500000, 6500000,5200000)

rectangular <- matrix(shapeframe, nrow=4, ncol=2)

surface <- Polygons(list(surface),1)
SpatialPolygons(list(surface),

proj4string=CRS("+proj=utm +zone=30 +datum=WGS84 +units=m"))

SpatialPolygonsDataFrame (surface,df)

spTransform(surface, UTM)

Step 4: Change of coordinate system

Although calculation of geographic distances from the
WGS84 coordinates is possible with the R package sp
[26], an approach using Euclidean distances is sufficient
here, since the considered area is small. Therefore, the
WGS84 coordinates are transformed to UTM coordinates
using the package rgdal [27].

contains functions for the generation of both regular
and random grids. As an example grids consisting of
n = 20,000 grid points, randomly sampled from the
enlarged geographical area, were generated. In Fig. 6, a
grid with regularly distributed grid points is compared
with a grid consisting of randomly distributed grid
points.

library(rgdal)

surface <- spTransform(surface, UTM)

Hospitals <- spTransform(P1, UTM)

Addresses <- spTransform(P2, UTM)

UTM <- CRS ("+proj=utm +zone=30 +ellps=WGS84 +datum=WGS84 +units=m +no_defs")
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Fig. 5 Enlarged geographical area with addresses of hospitals (in red)
and residential addresses (in black)
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Step 7: Assignment of random numbers to the grid points
The next step consists in randomly assigning the arbitrar-
ily chosen numbers 1, ..., 20,000 to the grid points. See
Fig. 7 for the result (only the part covering Cornwall and
Devon is shown).

Step 8: Determination of pseudonymizations

The R package sp provides functions for calculating
spatial distances between points. At first, the distances
between P and each grid point, as well as the distances
between Q and each grid point are calculated. Next, for
each of the points, P and Q, a set of integers is deter-
mined. This set depends on a parameter r, which denotes
the radius of a circle (in meters) with center P and Q,
respectively (see Fig. 8). The resulting set consists of the
random labels of those grid points, which have a dis-
tance less than r from the respective point P, Q. Here, the
radius () is set to 30 km. The following R code shows the
pseudonymization of P and Q;.

green, red, and blue

Fig. 6 Regular (left panel) and random grid (right panel) generation. Residential address P in orange and three nearest hospitals Q1, Q2, Q3 in
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Fig. 7 Regular (left panel) and random grid (right panel) generation with assignment of random numbers. Residential address in orange and three

r <- 30000
distl <- spDistsN1(gridPts, P)
dist2 <- spDistsN1(gridPts, Q1)
hashl <- which(distl < r)

hash2 <- which(dist2 < r)

Step 9: Computations of the approximate distance

This is the only step necessary for a research group inter-

ested in the distances. The Dice coefficient [cf. Sect. 2,
g- (2)] of the two sets of grid points enclosed by the two

circles can be computed directly:

The Dice coefficients for P and Qj, Qz, Q3 are shown in
Table 1.

The remaining problem is the computation of the
approximated distance given the already computed simi-
larity of the two sets of grid points. Regardless which
kind of grid is being used, the area of intersection A
between the two circles with radius r around the consid-
ered points can be estimated by the command.

A_hat <- dice * pi * r"2

[cf. Sect. 2, Eq. (3)]. As described in Sect. 2, Eq. (1), the
area of intersection depends on d and we can approxi-
mate the distance between P and Q by solving Eq. (1).
The R package stats provides the function uniroot,
which searches the interval from lower to upper (the

dice <-,2 * length(intersect(hashl,hash2))/
(length(hashl) + length(hash2))
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Table 1 Dice coefficients by grid type

Geo-locations Dice regular Dice random
grid grid

{P,Q1} 0.234 0.154

{P,Q2} 0179 0.217

{P,Q3) 0.132 0.112

closed interval [0, 2r]) for a root (i.e., zero) of the con-
sidered function (A(d) — 21) with respect to its first argu-
ment (d) and with accuracy tol (1-107°%). To use the
function uniroot the function to estimate the area of
the intersection has to be defined with the command

AFunction <- function(d, r){

return(res)

}

res <- 2 *x r"2 x acos(d / (2 * r)) - 0.5 * d * sqrt(4 * r"2 - d°2)

Table 2 Results of distance approximations

Set of Original d (m) Approximated d (m) Relative error Approximated d (m) Relative error
addresses regular grid regular grid random grid random grid
{P,Q1} 38,539 39,081 —0.014 44,326 —0.131
{P,Q2} 42,883 42,573 0.007 40,108 0.069
{P,Qz} 45,367 45918 —0.012 47,358 —0.042
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Finally, the desired approximations of the distances can
be computed with the following command:

lower

distances <- uniroot(function(d) AFunction(d, r) - A_hat,

0, upper

2 x r, tol = 1e-09)$root

Please note, that only 2 _hat (estimated area of intersec-
tion) and the parameter r are needed as input.

For the example given, the original distances, the
approximated distances, and relative errors for both, reg-
ular and random grids, are shown in Table 2.

Thus, in the example given, the absolute relative error
is about 1% for the approximations using the regular
grid and varies between 4% and 13% for the random
grid. However, these are just a few numerical examples.
In general, the size of the errors depends on the radius
and the number of grid points used. For a fixed radius,
the number of common grid points of the circles around
P and Q strongly depends on the number of grid points
sampled from the area of intersection. In contrast, there
is nearly the same number of grid points enclosed by

the area of intersection between the two circles in each
run for the regular grids (the two plots illustrate this
in Fig. 8). Accordingly, more accurate results can be
expected using regular grids. Therefore, only the regular
grid is considered in the following simulation. Moreover,
the mean error of random grids will approach the mean
error of regular grids with increasing radius since more
grid points will be in the intersect.

Results

We systematically studied the effect of different choices
of numbers of grid points and radii on the quality of
the approximations in a full factorial simulation experi-
ment (number of grid points, radius). Therefore, the
data described in Sect. 2 is used. For each residential
address, the distances to its nearest three hospitals were
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approximated. As parameters, radii between 10-100 km
by steps of 10 km and number of grid points between
50,000-100,000 by steps of 10,000 were used. A large
number of grid points is required due to enlarging the
original geographic area to avoid empty intersects.

First, we report the results comparing the original dis-
tances and the corresponding absolute relative error for
each approximation individually for each of the three
nearest hospitals. For a more concise presentation we
restricted Figs. 9, 10 and 11 to radii of 20, 40, 60, 80,
and 100 km and to 60,000, 80,000, and and 100,000 grid
points.

All three Figures show the same pattern. Smaller origi-
nal distances have larger absolute relative errors, which
decrease with increasing original distances. The largest
absolute relative errors resulted for the nearest hospital
with smaller radii and fewer grid points. However, the
absolute relative error does not exceed 5% for the near-
est hospital. Hence, the absolute relative errors for the
second and third nearest hospitals are below 5%. With
an increasing number of grid points and increasing radii

size, the quality of the approximations increases since the
absolute relative errors are decreasing.

Despite the small error in the approximations, about
11% of the orders of precedence in the hospitals were not
preserved. This is mainly due to the small differences in
distances between nearest and second nearest hospital.

Second, we report aggregated results based on the
entire parameter space (see Fig. 12). Here, the mean
absolute error by radii and the number of grid points for
each of the three nearest hospitals are shown.

The largest mean absolute relative error of about 8%
is observed for 50,000 grid points and a radius of 10 km.
The effect of the number of grid points on the quality of
the approximations decreases with the size of the radius.
Further, the effect of the number of grid points on the
quality of the approximations also vanishes with larger
distances. With a radius size of about 30 km or more,
no major differences in the errors remain. With the data
used, mean absolute relative errors < 1% can be achieved
using a radius of > 30km and > 60,000 grid points.
Table 3 shows the errors (in meters) for two parameter
sets. For the suboptimal parameter set, the errors (in
meter) are already small. With an optimal parameter set,
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minor errors of about 100m can be achieved and are neg-
ligible in practical applications.

Hence, higher numbers of grid points on a regular grid
will yield small errors. The choice of the radius is crucial
for small numbers of grid points. Furthermore, it should
be noted that the variances of errors of approximated dis-
tances for fixed radii and fixed numbers of grid points are
very small.

Of course, the choice of radii is critical: for unsuitable
radii, the mean error gets unsustainable high. However,
the radius (7) is a user-defined parameter. For many prac-
tical applications, distances above a certain threshold
are considered as irrelevant. Often points in the upper
tail of the distribution of distances can be censored (for
example: all distances over 100 km), and this could be
considered the maximum distance of interest. In general,
the radius should be at least half the maximum distance
of interest. ISGP allows distance calculations for points
separated by a distance less than 2r. For points separated
by more than 2r, only the fact that the distance is "2r or

greater’ can be stated. Since r is user-defined, this is not
an issue.

The runtime needed for the computation of the dis-
tance approximation is a linear function of the number of
grid points (see Fig. 13). The runtime is unrelated to the
radii. Overall, currently about 10,000 approximations can
be computed within less than 5 min for regular grids. An
advantage of the method is that even with large numbers
of grid points, storage is no limitation because 10,000
points can be stored in less than 20 kB.

Discussion and conclusion
In this paper, we have introduced ISGP as a method for
the calculation of the distance between masked geo-
graphical data. ISGP guarantees high security since an
adversary could only uncover sets of random numbers,
but not the original locations.

In principle, all geo-masking methods can be attacked
with a graph-theoretical approach, if a distance matrix
and restricting additional information is available [18,
29]. If the elements of the distance matrix are censored,
such approaches become more difficult. Since distances
above 2r will result in empty intersections, only distances
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Table 3 Results of distance approximations by radius and .
. . Regular grid
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Fig. 13 Elapsed time in seconds depending on the number of grid
smaller than 2r can be computed. Therefore, given a data- points

set with # observations, only distances smaller than 27 of
a n x n distance matrix can be recovered. Hence, graph-
theoretical attacks on distance matrices of randomly
labeled grid points should be much more difficult than on
uncensored distance matrices. However, a detailed secu-
rity analysis of ISGP will be the topic of future research.
We have demonstrated that the method provides
acceptable results. For the intended applications, relative
errors between a minimum of approximately 1 % and a

maximum of 10 % are acceptable. The effect of approxi-
mately 10 % random measurement error on correlations
is negligible for most practical applications. If we are
interested in the correlation between true distances and a
criterion variable (for example medical outcomes), but
we observe only approximated distances, the reliability of
the true (x) and approximated (x) distances will be
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Fig. 14 Area of intersection between two circles with the same radius r, whose centres P and Q have distance d

2
o(x,%) = % Using this reliability value with an expected

error of 10 %, even after correction for attenuation, the
decrease in correlations is negligible for most practical
applications. The amount of attenuation due to the
approximation will be smaller than that. However, in the
area of non-emergency medical care, variations in the
travel of less than thirty minutes in general do not cause
serious complications [30].

A further advantage of the described approach is the
prospect to use IGSP encoded geographical informa-
tion for privacy preserving record-linkage (PPRL) appli-
cations (for a review, see [31]). Similar to the ordinality
preserving mapping of numerical values described by
[13], the resulting set of grid numbers of IGSP could be
mapped to Bloom-filters [32]. Bloom-filters are increas-
ingly used in PPRL [11, 33, 34] and could be enhanced
with ordinal encoded geographical data by ISGP [14].
Bloom-filter encoded IGSP are currently the only PPRL
method, which can efficiently utilize geographical infor-
mation. A detailed study on this application will be the
topic of a forthcoming paper.

To sum up, we discussed a new method for privacy
protection of geographical information in microdata.
The use of intersecting sets of randomly labeled points
permits fast distance approximations with errors below

10 %, where larger errors are due to unsuitable param-
eter choices. With appropriately chosen radii, about 99 %
accuracy can be achieved. However, a systematic com-
parative study of the accuracy and privacy of geomask-
ing methods, in general, is lacking in the literature and
subject of ongoing research. Furthermore, the technique
as described here is limited to Euclidean distances. To
account for differences between actual driving time and
driving time according to the Euclidean distance, we are
working on mapping these differences by using more
than two dimensions of the random grid. This technique
will be the subject of a forthcoming paper.

ISGP neither requires unduly computational effort nor
excessive storage. The method will be useful for research
using geo-located sensitive data.?

Appendix: equation for the intersection of two
circles

In this appendix we provide a geometrical proof of the
formula of the area of intersection of two similar cir-
cles. As mentioned, the area depends on the distance d
between the centres P and Q, cf. Sect. 3, Eq. (1).

% We used the proposed method in a first real-world application in a study of
regional disparities of educational opportunities [12]. However, that publica-
tion does not contain any technical details which we provided in this paper.
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Let r € R be the respective radius of two circles and
d € [0, 2r] the distance between their centers. The area of
intersection of the two circles can be calculated by

A(d) = 2r® - cos! <d> _a Var? —d2.

2r 2

Proof

The area of the shaded segment .~ BDC is the area of the
sector <y PBDC minus the area of the triangle A PBEC (see
Fig. 14). To determine these areas, we need the enclosed
angle 6, which is by definition:

0 PE d
COS— = — = —,
2 PB 2r
Hence
% d
— =cos™ ! —. (4)
2 2r

For the area APBEC we need the length BC. Since
BC/2 = EB, we can use the triangle A PBE and the theo-
rem of Pythagoras to get

and finally

1 d hd
area(APBEC) = —(2h-— | = —.
2 2 2

Using radiants, a full circle has an angle of 27 and an area
of 7 - 2. Since a sector is a slice with an angle of 6, the
sector has an area proportional to the angle 6

area(<oPBDC) = 2T =g
This gives
area(BDC) = area(<PBDC) — area(APBEC)
_ 20 _hd
2 2

Inserting Eq. (4) for 6 and eq. (5) for / gives

d
r? cos™! <) —
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The area of overlap A(d) is twice the area of the segment:

A(d) =2-area(>BDC)

=2r?cos™! <d> - gll\/ 4r2 — 2.

2r 2
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