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Abstract: Exercise can ameliorate cardiovascular dysfunctions in the diabetes condition, but its
precise molecular mechanisms have not been entirely understood. The aim of the present study was
to determine the impact of endurance training on expression of angiogenesis-related genes in cardiac
tissue of diabetic rats. Thirty adults male Wistar rats were randomly divided into three groups
(N = 10) including diabetic training (DT), sedentary diabetes (SD), and sedentary healthy (SH), in
which diabetes was induced by a single dose of streptozotocin (50 mg/kg). Endurance training (ET)
with moderate-intensity was performed on a motorized treadmill for six weeks. Training duration
and treadmill speed were increased during five weeks, but they were kept constant at the final week,
and slope was zero at all stages. Real-time polymerase chain reaction (RT-PCR) analysis was used to
measure the expression of myocyte enhancer factor-2C (MEF2C), histone deacetylase-4 (HDAC4)
and Calmodulin-dependent protein kinase II (CaMKII) in cardiac tissues of the rats. Our results
demonstrated that six weeks of ET increased gene expression of MEF2C significantly (p < 0.05), and
caused a significant reduction in HDAC4 and CaMKII gene expression in the DT rats compared
to the SD rats (p < 0.05). We concluded that moderate-intensity ET could play a critical role in
ameliorating cardiovascular dysfunction in a diabetes condition by regulating the expression of some
angiogenesis-related genes in cardiac tissues.

Keywords: endurance training; angiogenesis; cardiac tissue

1. Introduction

Diabetes Mellitus (DM), with an estimated worldwide prevalence of 285 million pa-
tients, is an increasingly prevalent metabolic disorder [1] that is characterized by persistent
hyperglycemia caused by insulin resistance or a lack of insulin [2,3]. It has been docu-
mented that patients with DM are at a higher risk of central and peripheral cardiovascular
diseases, because DM harms structure and function of micro vessels [4,5]. Among the
others, abnormal angiogenesis and collateral vessel formation are the most prevalent
cardiovascular manifestations seen in DM patients [6,7].
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Angiogenesis, as a multilevel and complex process of a new capillary formation, is
controlled by angiostatic and angiogenic factors [8,9]. In the recent years, researchers
found new players in the angiogenesis process that are regulated by a complex network of
transcriptional factors including myocyte enhancer factor-2C (MEF2C), histone deacetylase-
4 (HDAC4), and Calmodulin-dependent protein kinase II (CaMKII) [10]. MEF2C is a direct
transcriptional target of endothelial transcription factors that play an important role in
angiogenesis and vasculogenesis during vascular development [11]. Previous studies
have revealed that MEF2C was significantly down-regulated in cardiac tissue of diabetic
rats [12,13]. HDACs control biological processes by de-acetylation of histone and regulating
accessibility of transcription factors to the gene promoter [14]. Among all HDACs, HDAC4
plays an important role in mediating cardiovascular diseases [15]. This transcription factor
is phosphorylated and activated by CaMKII, a central culprit in the development of heart
failure and cardiac arrhythmia [16], and negatively interacts with MEF2C to control its
repressive activity [17]. The activities of HDAC4 and CaMKII (representatives of histone
acetylation) are increased in the diabetic condition [18,19].

More recently, researchers have introduced testosterone as another influencing factor
on angiogenesis mainly in cardiovascular system of diabetic patients [20]. Some stud-
ies have demonstrated that androgens paucity are common in men with diabetes, and
testosterone deficiency may modulate endothelial angiogenesis [21,22]. The other com-
ponent of diabetics is insulin resistance, which is also associated with an increased risk
of the premature development of coronary artery disease. Therefore, it seems that the
combination of testosterone deficiency and impaired glucose tolerance increases the risk of
cardiovascular disease in patients with DM [21,22]. The recent studies have demonstrated
that physiological testosterone therapy could improve insulin resistance [23].

Sedentary lifestyle and poor diet are common in patients with DM that worsen the
patient’s condition [24]. Lifestyle modifiers as well as medication are considered as helpful
approaches to tackle this problem. As a lifestyle modifier, exercise training could play an
inevitable role in glycemic control [25–28]. Endurance training (ET), as the most popular
type of exercise training, is considered as the most effective for DM patients [29,30]. There
are also no reports on ET side effects in DM patients, highlighting its safety for DM
treatment [27,28,31,32]. In addition, it has been suggested that ET could lead to vascular
modifications associated with capillary density and angiogenesis [3,33–35] and result in
cardiac remolding. For example, Ardakanizade et al. [36] examined the effects of long-
term and mid-term ET on angiogenesis and reported higher gene expression of vascular
endothelial growth factor B (VEGF-B), MEF2C, and matrix metalloproteinase-2 (MMP-2),
and lower gene expression of HDAC4 and ANGPT-1 in the long- than mid-term ET.

Although exercise training and DM result in cardiac remodeling [34], the effect of
moderate-intensity ET on expression of MEF2C, HDAC4, and CaMKII has not been entirely
understood in DM. Therefore, our study was aimed to indicate whether a moderate-
intensity ET can change the gene expression of MEF2C, HDAC4, and CaMKII in the cardiac
tissue of diabetic rats.

2. Materials and Methods
2.1. Animal Models and Ethical Statement

The present study was in accordance with the guidelines for the care and use of labora-
tory animals approved by the Ethics Committee on the use of animal of Ardabil University
of Medical Sciences (IR.ARUMS.REC.1398.251). In this experimental study, 30 male Wistar
rats (249 ± 8.3 g) were obtained from the Iran Pasteur Institute (Tehran, Iran). Animals
were kept under controlled in Plexiglas cages with a stable temperature of 23 ± 5 ◦C
and humidity of 35 ± 5% on a cycle of 12-h light/dark. All animals had free access to
standard food and water throughout the study with no difference in accessibility. Rats
were randomly divided into three groups: Diabetic training (DT), sedentary diabetic (SD),
and sedentary healthy (SH). Familiarization to treadmill was conducted for two weeks
at the speed of ten meters per mins for 10–15 min, five days a week in all groups. At the
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end of familiarization and following an overnight fast, diabetes was induced to DT and
SD groups by single intraperitoneal injection of Streptozotocin (STZ) at a dosage of 50
mg/kg (Sigma, St. Louis MO, USA). STZ was prepared in a fresh citrate buffer (0.5 M with
pH 4.5), as described previously [37]. The same volume of citrate solution was injected into
the SH group to simulate the stress of injection. Serum glucose level was measured 72 h
after STZ injection using a portable glucometer (Roche Diagnostics K.K., Tokyo, Japan).
Serum glucose higher than 250 mg/dL was considered as the benchmark to identify the
diabetic rats [38], which was met by all rats in DT and SD groups. To eliminate the effects
of food consumption, all blood samples were taken after 12-h of fasting. While the DT
group rats conducted six-week ET, the SD and SH groups did not participate in exercise
training program during the experiment period.

2.2. ET Protocol

Animals in the ET group performed an exercise protocol five days a week, for
six weeks as shown in Table 1. Before and after each exercise training session, three-min
warm-up and cool-down were carried out, respectively, and the treadmill slope was zero at
all stages. Treadmill speed and training duration were kept constant during the final week
(sixth week) to conserve the adaptations that resulted from 6 weeks ET [39]. All training
sessions were conducted between 08:00–12:00 AM.

Table 1. Endurance training protocol in different weeks.

Weeks First Week Second Week Third Week Forth Week Fifth Week Sixth Week

Duration (minutes) 10 20 20 30 30 30
Speed (m/minutes)

Slope
10
0

10
0

15
0

15
0

17–18
0

17–18
0

2.3. Biochemical Assays

Twenty-four hours after the last ET session, all animals were sacrificed by intraperi-
toneal injection of ketamine (75 mg/kg) and xylazine (5 mg/kg) following a 12-h fasting
to measure testosterone concentration, and blood samples were taken from the animals’
heart and centrifuged for 15 min at 3000 rpm to obtain serum. Serums were kept at −20 ◦C
until analysis. Testosterone concentration was measured using an ELISA kit (Monobind,
Accubind, Costa Mesa, CA, USA) in a multiple ELISA reader (Bio Tek, Winooski, VT, USA)
based on the recommended protocol by the manufacturer.

2.4. qRT-PCR Analysis

Cardiac tissues were removed, submerged in liquid nitrogen, and kept at −70 ◦C until
further analysis. The extraction of RNAs was performed by RNXTM reagent according
to the manufacturer’s procedure (Sina Clon Bioscience, Tehran, Iran). Concentration of
RNA, and its purity were calculated by measuring the ratio of 260/280 nm optical density
using Nanodrop spectrophotometry (Eppendorf, cologne, Germany), and values between
1.8–2 were defined as an acceptable purity. The cDNA synthesis was performed using
qPCRTM Green Master Kit for SYBR Green I® (Yekta Tajhiz, Tehran, Iran) according to the
instructions of the manufacturer. Real-time PCR was performed in Roche Light-Cycler
detection system (Basel, Switzerland) with the following steps: Initial denaturation for
5 min at 95 ◦C and 45 cycles of denaturation for 15 s at 95 ◦C, annealing for 30 s at 60 ◦C, an
extension for 20 s at 72 ◦C followed by melt curve analysis (50–99 ◦C) [40]. Glyceraldehyde-
3-phosphate dehydrogenase (GAPDH) was used as the reference gene to measure relative
gene expression. The results were evaluated by using 2−∆∆Ct comparative method and
Light Cycler SW1.1 software. The sequence of the primers is shown in Table 2.
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Table 2. The sequence of primers for quantitative real-time polymerase chain reaction (RT-PCR).

Genes Forward Reverse Amplicon Size (bp)

GAPDH AGTTCAACGGCACAGTCAAG TACTCAGCACCAGCATCACC 119
MEF-2C CTTCAACAGCACCAACAAGC TCAATGCCTCCACAATGTCC 125
HDAC4 CTCTGCCAAATGTTTCGGGT CAAGCTCATTTCCCAGCAGA 149
CaMKII AGTGACACCTGAAGCCAAAG GTCAAGATGGCACCCTTCAA 198

2.5. Statistical Analysis

Data were analyzed using Statistical Package for Social Sciences (SPSS) version 23.
Shapiro–Wilk normality test and one-way ANOVA were used to determine the normal
distribution of variables and to compare changes between three groups, respectively. Tukey
was also used as a post hoc test. The significance level was set at p < 0.05.

3. Results

Blood glucose and body weight changes are shown in Figure 1. Blood glucose levels
increased significantly in the second week compared to before exercise in DT and SD
groups, and this increase continued until the sixth week (p < 0.001). In addition, blood
glucose levels were significantly reduced in the DT group compared to the SD group at the
sixth week (p < 0.001). There was no significant change in blood glucose levels during the
experimental period in the SH group (Figure 1A). STZ-treated animals (SD and DT groups)
showed a decrease in body weight compared to the SH group in the fourth and sixth weeks
(p < 0.005). DT group showed higher weights than SD in the fourth and sixth weeks, but
this difference was not significant (Figure 1B).
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Figure 1. (A) Weight change during and after ET. *; Significant difference between the SH group with DT and SD groups in
4th week and AE. (B) Changes in the serum levels of glucose during six weeks ET period. *; significant difference (p < 0.001)
between DT and SH groups in 2nd week, 4th week, and AE with SH group.**; significant difference (p < 0.001) between SD
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As displayed in Figure 2, the SD group showed a significantly lower testosterone
levels compared to the DT and SH groups (p < 0.001). In addition, the DT group showed
significantly lower testosterone levels compared to the SH group (p < 0.001) (Figure 2).
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both diabetic groups compared to the SH group (Figure 3B,C).
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4. Discussion

This is the first study that examined the effect of moderate-intensity ET on MEF2C,
HDAC4, and CaMKII gene expression and testosterone levels in diabetic hearts. It has
been shown that exercise training improves glucose control and could affect both the
structure and function of the myocardium, which could improve cardiovascular health in
DM patients [41]. The results of the current study show significant weight loss in diabetic
groups due to frequent urination, dehydration, and skeletal muscle atrophy. Researchers
showed that exposure to high levels of glucose resulted in expression of muscle atrophy–
related genes like Atrogin1 and Murf1 [20]. It should be noted that weight loss was lower
in the DT group, because exercise training can stimulate muscle hypertrophy and inhibit
muscle atrophy [42]. In the SH group, the weight gain process occurred naturally due to
sufficient calorie intake. In addition, our results showed that ET controlled serum levels
of glucose, increased MEF2C, and decreased HDAC4 and CaMKII gene expression and
rose serum testosterone levels in diabetic rats. A study by Grossmann et al. [42] showed
that testosterone levels are lower in STZ-induced diabetic rats compared to non-diabetes.
Lower testosterone was also documented in diabetic men compared to non-diabetics [43,44].
Changes in the serum levels of testosterone could improve insulin sensitivity and oxidative
capacity, as well as trigger anti-inflammatory processes and capillarization [45]. It has
also been suggested that the regulatory effects of exercise on glucose metabolism and
angiogenesis genes expression are facilitated by increased testosterone levels [46], which is
in line with our results. Testosterone could probably increase expression of its target genes
(Spred-1 and PI3KR2), which stimulate proliferation of vascular cells that are required for
vessel angiogenesis [40]. In fact, testosterone is the principal masculine gonadal androgen
hormone that modulates angiogenesis and endothelial functions [40]. While testosterone
deficiency is predominant in STZ-induced diabetic rats, it seems that exercise constitutes
this deficiency, leading to increased angiogenesis genes expression.

To elucidate the effect of ET on the cardiac angiogenesis process, we studied gene
expression of MEF2C, HDAC4, and CaMKII in the diabetic heart, and our results showed
a higher gene expression of MEF2C and lower gene expression of HDAC4 and CaMKII
in DT than another diabetic group. It seems that down-regulation and deacetylation of
HDAC4 allowing MEF2C to activate angiogenesis process [47,48]. We believe that lower
expression of HDAC4 in the DT group is accompanied by higher expression of the MEF2C.
These results are in line with the previous research findings on the role of HDAC4 in the
angiogenesis process [47,48]. On the other hand, ET induced an increase in the antioxidant
potential, which could be another explanation for changes in MEF2C and HDAC4 gene
expression because it has been reported that oxidative stress, as a novel phosphorylation-
independent post-translational modification, regulates subcellular localization of MEF2C
in cardiomyocytes [49]. It has been indicated that increased MEF2C gene expression can
up-regulate vascular endothelial growth factor (VEGF)-B, which is a key regulator of
angiogenesis [11]. Although the amount of VEGF-B has not been measured in the current
study, due to financial limitations, based on the previous studies [36], we hypothesize
that ET could increase the gene expression of VEGF-B. It is observed that HDAC4 down-
regulation increases angiogenesis through stimulation of VEGF-B gene expression [50], and
it has also been reported in the cerebral ischemia that higher expression of the HIF-VEGF
signaling gene has be seen through the phosphorylation of the HDAC4 protein [51].

Another finding of the present study was down-regulation of CaMKII gene expression
by ET, which is in accordance with other studies [52,53]. Stolen et al. [53] has shown
that in diabetic rats with reduced cardiomyocyte contractile function, Ca2+ handling and
chronically increased cardiac CaMKII aerobic interval exercise training resulted in reduced
CaMKII levels. It has been demonstrated that CaMKII is capable of regulating the angiogen-
esis factors [19], and stimulates glucose uptake, sarcolemma ion fluxes, energy production,
sarcoplasmic reticulum Ca2+ release/reuptake, and myocyte contraction/relaxation during
acute activation [54]. Contrary to physiological condition, in a disease condition such as di-
abetes, CaMKII leads to mitochondrial dysfunction, cell fibrosis, remodeling of ion channel,
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inefficient substrate utilization, impaired intracellular Ca2+ handling, inflammation, and a
contractile dysfunction leading to increased risk of arrhythmias [55]. CaMKII activity was
up-regulated in the heart of diabetic rats in our study. CaMKII modulates transcription of
HDAC4 at multiple levels [56], as we see higher HDAC4 gene expression in diabetic rats
but both of them were controlled by ET. Therefore, ET-induced decrease in CaMKII gene
expression may leads to decrease of HDAC4 as well. It seems that inhibition of CaMKII
expression could possibly be a therapeutic strategy for DM by remodeling and promote
angiogenesis in cardiac tissue. Beyond, it is possible that a decrease in CaMKII gene expres-
sion attenuates HDAC4 gene expression [56], but paradoxically lead to a greater increase
in MEF2C. Thus, we provide support for the hypothesis that MEF2C regulation is under
the control of HDAC4 and CaMKII during the regulatory adaptation to moderate-intensity
ET in diabetic myocardium. However, more studies is needed to prove these results and
shed light on the exact it’s signaling pathways.

5. Conclusions

Taken together, the results of this study indicated that six weeks of moderate-intensity
ET allowed more effective control of glucose homeostasis, increased testosterone levels, and
induced up-regulation of MEF2C and down-regulation of HDAC4 and CaMKII in cardiac
tissue of diabetic rats. These results suggest improvements in managing the diabetic-
induced cardiac dysfunction. However, future studies should cover our limitation by
analyzing angiogenesis markers as well.
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