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A B S T R A C T   

Cerebral microbleeds (CMBs) are a recognised biomarker of traumatic axonal injury (TAI). Their number and 
location provide valuable information in the long-term prognosis of patients who sustained a traumatic brain 
injury (TBI). 

Accurate detection of CMBs is necessary for both research and clinical applications. CMBs appear as small 
hypointense lesions on susceptibility-weighted magnetic resonance imaging (SWI). Their size and shape vary 
markedly in cases of TBI. Manual annotation of CMBs is a difficult, error-prone, and time-consuming task. 

Several studies addressed the detection of CMBs in other neuropathologies with convolutional neural networks 
(CNNs). In this study, we developed and contrasted a classification (Patch-CNN) and two segmentation (Seg-
mentation-CNN, U-Net) approaches for the detection of CMBs in TBI cases. The models were trained using 45 
datasets, and the best models were chosen according to 16 validation sets. Finally, the models were evaluated on 
10 TBI and healthy control cases, respectively. 

Our three models outperform the current status quo in the detection of traumatic CMBs, achieving higher 
sensitivity at low false positive (FP) counts. Furthermore, using a segmentation approach allows for better 
precision. The best model, the U-Net, achieves a detection rate of 90% at FP counts of 17.1 in TBI patients and 3.4 
in healthy controls.   

1. Introduction 

Traumatic brain injury (TBI) is a major cause of death and disability 
among all age groups across the world (Maas et al., 2017). Injury 
severity ranges from mild TBI, sometimes referred to as concussions, to 
severe TBI, which includes comatose states. Severity is commonly 
determined using the Glasgow Coma Scale (GCS), a neurological 
assessment describing the level of consciousness (13–15: mild, 9–12: 
moderate, ⩽8: severe) of a patient based on their eye-opening, verbal, 
and motor responses (Teasdale and Jennett, 1974). GCS assessment is 
used in the initial triage and diagnosis of TBI patients, but is also 
considered a predictor of a patient’s long-term outcome (King et al., 
2005; McNett, 2007). However, due to its nature as an assessment of 
symptoms without inclusion of underlying neuropathological injury 
mechanisms like traumatic axonal injury (TAI), its prognostic value is 
limited. 

TAI, also referred to as diffuse axonal injury when distributed 

diffusely over the brain, describes damage to the axons. It can occur as 
acute ruptures due to inertial forces, or as the result of axon degenera-
tion after the initial shear injury (Hill et al., 2016). This damage is nearly 
impossible to visualize with current neuroimaging methods because 
axons are microscopic in size. However, axonal injury is often accom-
panied by damage to the surrounding vasculature which may result in 
cerebral microbleeds (CMBs) (Nandigam et al., 2009; Liu et al., 2014). 

CMBs are small hemosiderin deposits found in the brain paren-
chyma. Greenberg et al. (2009) presents the seminal definition and 
description of CMBs. They can be visualized with magnetic resonance 
imaging (MRI), either on gradient-recalled echo (GRE) T2∗-weighted or 
susceptibility-weighted images (SWI). CMBs appear as spherical hypo- 
intense lesions of ≤ 10mm in size. The magnetic properties of hemo-
siderin cause a signal void whose size depends on the MRI sequence and 
its parameters (Haacke et al., 2004). Thus, lesions will appear larger on 
MRI compared to their actual histopathological dimension. This is called 
the blooming effect. There are other tissues (e.g., veins, calcium and iron 
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deposits) which may mimic the appearance of CMBs. It is important to 
note that while Greenberg et al. (2009) provides the most commonly 
cited definition in the research of traumatic CMBs, this seminal work 
draws a distinction between CMBs of vascular and traumatic origin, and 
recommends to treat a clinical history of TBI as an exclusion criterion for 
its guidelines on CMB interpretation. 

While the majority of traumatic CMBs are consistent with Green-
berg’s criteria, they may also appear curvi-linear in shape (Izzy et al., 
2017). The size constraint of 10 mm diameter does not apply to curvi- 
linear CMBs. Furthermore, numerous traumatic CMBs may occur 
together in a cluster (Iwamura et al., 2012), closer in appearance to a 
macrobleed. There is no formal definition given in the literature that 
specifically addresses the variability and complexity of traumatic CMBs 
and their detection, although (Izzy et al., 2017) applies a more 
comprehensive definition. 

Clinically, CMBs occur also in healthy individuals of advancing age 
(Vernooij et al., 2007), patients with stroke (Charidimou and Werring, 
2012; Charidimou et al., 2013), Cerebral Amyloid Angiopathy (CAA) 
(Chao et al., 2006), patients who have undergone radiation therapy 
(Passos et al., 2017), and patients who have sustained a TBI (Scheid 
et al., 2003). In TBI, they are assumed to co-occur with axonal damage 
and are therefore considered a biomarker of TAI (Nandigam et al., 2009; 
Liu et al., 2014). In the absence of imaging methods that can capture the 
extent of TAI directly, CMBs may provide insight into severity, pro-
gression and outcome of TBI-patients. 

In the last decade, various computer-aided detection (CAD) systems 
were proposed to aid researchers and physicians in the complex task of 
detecting CMBs, for a variety of neurological diseases (Barnes et al., 
2011; Kuijf et al., 2012). Van den Heuvel et al. (2016) developed the first 
automated system for detecting CMBs in moderate to severe TBI, still 
using traditional feature-based machine learning methods. To date, this 
method represents the state-of-the-art in traumatic CMB detection. With 
the advent of deep learning, medical image analysis now usually em-
ploys convolutional neural networks (CNNs) (Krizhevsky et al., 2012; 
Litjens et al., 2017). The first deep learning based method for the 
detection of CMBs was presented by Dou et al. (2016). This study 
focused on stroke patients. Liu et al. (2019) trained and evaluated a 
system for a variety of CMB populations, including a cohort of mild TBI 
patients. Standvoss et al. (2018) investigated the use of CNNs in mod-
erate to severe TBI cases in a smaller cohort. 

The common aspect of all these CNN solutions is that they treat the 
detection of CMBs as a classification problem, i.e., they address the 
question whether a partial MR image volume contains a CMB. For 
neurological diseases that largely present with low numbers or sparse 
distribution of CMBs, this approach is without issue. In the case of TBI, 
however, such an approach would prove complicated. The number of 
CMBs can be very high depending on severity, e.g. ⩾100 can be found in 
a single severe TBI patient. Additionally, CMB shapes are variable and 
they may occur in clusters. Thus, to accurately detect, count, and locate 
CMBs a segmentation approach might prove beneficial as it allows a 
more fine-grained segregation of individual CMBs. In this paper, we 
present a classification CNN (Patch-CNN) and two segmentation CNNs 
(Segmentation-CNN, U-Net) and compare their ability to detect and 
count CMBs both with each other, and with a previously published 
baseline in traumatic CMB detection (Van den Heuvel et al., 2016). 

2. Material and methods 

2.1. Materials 

2.1.1. Patient data 
The data for this study was collected at the Radboud University 

Medical Center, Nijmegen, The Netherlands. Its use was approved by the 
institutional ethics committee and informed consent was waived due to 
its retrospective nature. 

The dataset consisted of brain MR imaging studies from 45 patients 

with moderate (GCS 9-12) to severe (GCS 3-8) TBI. For 20 of these pa-
tients, studies were available at two different timepoints. Furthermore, 
the studies of 18 healthy volunteers were included as controls resulting 
in a total of 81 MR studies (see Table 1). Studies included an SWI scan 
and T1 MP-RAGE scan, detailed in Table 21. All scans were collected on a 
3T MRI Scanner (Siemens Magnetom Trio). 2 

2.1.2. Annotations 
Training and evaluation of any CAD system requires expert-level 

annotations. Manual annotation of CMBs in TBI patients is a chal-
lenging and laborious task, especially when the observer is asked to 
manually segment the extent of the blooming effect which represents the 
CMB on the SWI image. 

Fig. 1 illustrates the difficulty of detecting CMBs. It is challenging to 
precisely count the lesions in a cluster (Definite CMB 3)(Iwamura et al., 
2012). Curvi-linear lesions (Definite CMB 4)(Iwamura et al., 2012; Izzy 
et al., 2017) and vessels (Negative CMB 2) can be hard to differentiate. 
Hypo-intense foci close to the brain boundary, vessels or artifacts can be 
problematic to discern. (The heterogeneous morphology of the CMBs is 
further illustrated in the Supplementary Material 6.2. These difficulties 
apply both to human observers as well as CAD systems. Due to these 
challenges, Cordonnier et al. (2009) suggests to separate CMB classifi-
cation into a “definite” and “possible” category. 

Consequently, manual annotations, especially from multiple ob-
servers, are often difficult to obtain in sufficient volume. Therefore, this 
study employed different types of annotations for training and evalua-
tion. Full segmentation of the blooming effect was used for training and 
validation. For evaluation, we used a majority vote constructed auto-
matically from point annotations by six independent observers. see 
Fig. 2. 

Full Segmentations (CAD-assisted). CAD-assisted full segmentations 
were used for training and validation of the CNNs. They were generated 
with the CAD system developed in Van den Heuvel et al. (2016). Points 
predicted by the trained system were evaluated by an experienced 
neuroradiologist (AWvdE) into three categories: definite CMB, possible 
CMB, and false positive (FP). Furthermore, the neuroradiologist 
(AWvdE) added points she considered obviously missed CMBs. Finally, a 
medical student (MMP) manually segmented the full blooming effect of 
all these predictions under the supervision of the neuroradiologist 
(AWvdE). 

Table 1 
Characteristics of the 81 studies from 46 TBI and 18 control subjects.  

Datasets TBI CMBs/scan2 Control     

FS RS (scans)   

Training 24 / 41 30.0 
(18.0 − 67.0)

– 4   

Validation 12 / 12 15.5 (8.5 − 53.0) – 4   
Testing 10 / 10 34.5 

(26.3 − 41.8) 
18.0 
(6.5 − 23.5)

10   

1 Values indicate number of TBI Subjects/ Studies. Scans refers to the total 
number of MRI studies available in the listed dataset. For the training dataset, 
scans from multiple timepoints were included for a single patient. 
2 Values presented as median (interquartile range). TBI: Traumatic Brain Injury, 
CMB: Cerebral Microbleed, FS: Full Segmentation (CAD-assisted), RS: Reference 
Standard. 

1 The T1 sequence is detailed because it was used to create part of the feature 
vectors in Van den Heuvel et al. (2016). It is not used in the proposed deep 
learning models.  

2 MRI data (excluding the test set) will be made available on Zenodo 
(10.5281/zenodo.6535523) in preparation of a medical image analysis chal-
lenge at https://traumatic-cmb.grand-challenge.org/ All other relevant data are 
included within the paper and its Supporting Information files. 
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CAD-assisted full segmentations are used for the development, 
training and validation of the models. 

Reference Standard. Six medical observers of varying expertise in the 
detection of traumatic CMBs determined point annotations of CMBs for a 
subset of 10 studies. Each point could mark a definite or possible CMB. 
Using these points as seeds, region growing was employed to determine 
the extent of their blooming effect. The resulting maps were then algo-
rithmically compared to determine definite and possible CMBs for 
evaluation. 

The reference standard is used to evaluate the developed models. All 
results are generated on the reference standard. 

In Van den Heuvel et al. (2016), the model was compared with each 
observer individually based on a majority vote of the five remaining 
observers. For this study, we opted for a single majority vote of all six 
observers as our reference standard to evaluate the models, while still 
evaluating individual observers against the majority vote of the other 5. 
Furthermore, we manually corrected the region-grown results when 
they encompassed multiple lesions. For detailed information on the 
majority vote calculation for both studies, i.e., how definite and possible 
lesions were determined, see the Supplementary Material Section 6.8. 

2.2. Methods 

2.2.1. Preprocessing 
Brain masking. By definition, CMBs only occur in the brain paren-

chyma (Greenberg et al., 2009; Gregoire et al., 2009; Cordonnier et al., 
2009). Therefore, we calculated brain masks using the HD-BET software 
package (Isensee et al., 2019). This tool was not developed for SWI scans 

specifically, but visual inspection showed that for the described SWI 
sequence the tool achieved excellent brain masks. 

Bias field correction. A potential confounder in various image analysis 
tasks is the presence of a low frequency intensity non-uniformity present 
in the image data also known as bias, inhomogeneity, illumination non- 
uniformity, or gain field. We used the N4-ITK bias field correction to 
correct these inhomogeneities as implemented in the SimpleITK 
framework (Tustison et al., 2010). 

Normalization. The intensity with which tissue is recorded and pre-
sented is not normalized in MRI and can be subject to large variation. 
This variation occurs between patients, and even more so between 
different scanners. Therefore, the SWI scans were normalized by taking 
the peak value of the intensity histogram (brain masked to exclude the 
initial peak at 0) and defining this point as − 0.5. The intensity histo-
gram was then normalized to the range [ − 1.0, ) (see Supplementary 
Material 6.8). The histogram peaks correspond the brain parenchyma in 
SWI scans. 

2.3. Models 

Many previously proposed methods for CMB detection employ a two- 
stage approach (Chen et al., 2015). First, candidate detection identifies 
hypo-intense foci as potential CMBs. Candidate detection must be highly 
sensitive, thus generates a large amount of FPs. In the case of CMBs, 
there have been initial candidate detections with simple thresholding 
(Barnes et al., 2011), radial symmetry transforms (Kuijf et al., 2012), or 
an initial machine learning algorithm trained on voxel-wise features 
(Van den Heuvel et al., 2016). 

Table 2 
MRI sequence parameters. The same settings were used for all studies.  

Sequence TR TE Flip BW Voxel size       
(ms) (ms) angle (Hz/pixel) (mm × mm × mm)      

T1 2300 2.98 9◦ 240 1.00 × 1.00 × 1.00      
SWI 27 20 15◦ 120 0.98 × 0.98 × 1.00      

TR: Repetition time, TE: Echo time, BW: Bandwidth. 

Fig. 1. Examples of definite CMBs (green), possible CMBs (yellow), and potential FPs/mimics (red). From top to bottom: contextual axial view (97 mm × 97 mm), 
close-up axial, close-up sagittal and close-up coronal view (33 mm × 33 mm). Definite CMB 1: comparatively large, clearly defined lesion – Definite CMB 2: typical 
small ovoid lesion – Definite CMB 3: lesion within CMB cluster – Definite CMB 4: curvi-linear lesion, – Possible CMB 1: hypo-intense spot, close to transverse fissure – 
Possible CMB 2: hypo-intense spot, close to nasal cavity noise artifacts – Negative 1: hypo-intense spot, part of a linear phase artifact – Negative 2: vessel mimicking 
an ovoid lesion in some orientations (here axial and sagittal). 
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Second, a feature vector for each candidate is computed and true 
lesion likelihood determined by a machine learning classifier. A variety 
of classifiers have been used in the detection of CMBs, e.g., Random 
Forest Classifiers (Van den Heuvel et al., 2016), Support Vector Ma-
chines (Barnes et al., 2011), or CNNs (Chen et al., 2015). 

Variants of this approach are used in most CMB detection systems 
Van den Heuvel et al. (2016); Dou et al., 2016; Liu et al., 2019. Seg-
mentation models, detailed below, do not require a candidate detection 
step. 

2.3.1. Baseline model 
As a baseline for comparison of the deep learning models described 

in this study we used the predictions produced by Van den Heuvel et al. 
(2016). They presented a two-stage approach employing non-deep 
learning machine learning classifiers. In this study, results for the 
same test set are provided. We did not retrain the system, but re- 
evaluated the prediction maps obtained during the initial study with 
the refined majority vote. 

2.3.2. Model 1: Patch-CNN – classification 
For the initial detection of CMB candidates, we implemented the 3D 

fast radial symmetry transform (3D-FRST) (Loy and Zelinsky, 2003; 
Kuijf et al., 2012). The 3D-FRST is a technique that estimates local radial 
symmetry to highlight spherical points of interest in an image. This al-
gorithm has been successfully applied in the detection of CMBs in other 
pathologies (Kuijf et al., 2012; Liu et al., 2019). As mentioned, traumatic 
CMBs can be more variable in shape and are not always spherical. This 
had to be considered in the selection of hyperparameters for the 3D- 
FRST. 

The resulting candidates are used as center points for 3D-Patches of 
size 21× 21× 21. A classification Patch-CNN was trained to determine 
true lesions from FPs. The Patch-CNN is a fully-convolutional CNN 
(architecture detailed in Supplementary Material Table 5). 

2.3.3. Model 2: segmentation-CNN 
The Segmentation-CNN model is equivalent to the Patch-CNN model 

in its architecture. Number of convolution layers, kernel size and feature 
volumes of its filters are identical (detailed in Supplementary Material 
Table 4 and 5). The only difference in architecture was the removal of 
the dropout layer because dropout is unnecessary to improve general-
ization in a segmentation task. Major distinction between the models is 
the size of the input and output layers (and subsequently, the effective 
size of intermediate layers), but in terms of parameters they are 
identical. 

2.3.4. Model 3: U-Net 
This model is based on the 3D-UNet proposed by (Çiçek et al., 2016). 

The original 3D-UNet was designed for the task of large scale volume 
segmentation, while our task is aimed at segmenting small structures, i. 
e., CMBs. Therefore, the input and output dimensions, as well as the 
network structure, were adjusted. The 3D-UNet receives an input sub-
volume of 683 voxel size. The output layer is 203 in size, which allows 
for a meaningful distinction of positive and negative samples in batch 
preparation. Compared to the original 3D-UNet, our model has two 
pooling and upsampling layers, respectively, instead of three. We also 
added an intermediate layer with a 1 × 1 × 1 kernel into our skip con-
nections. They aid in adjusting the activations between the encoder and 
decoder layers. 

2.3.5. Post-processing during inference 
As can be seen in Fig. 1 as ”Definite CMB 3”, traumatic CMBs often 

occur in clusters. A segmentation network will predict a confidence 
distribution akin to a heatmap. Although this distribution may contain 
multiple peaks, corresponding to individual lesions, a simple threshold 
and connected component analysis could result in a faulty single lesion 
prediction. 

To accurately count individual lesions, we identify clustered com-
ponents within the heatmap and subsequently assess whether a 
component is multi-modal, i.e., the heatmap contains 2 or more peaks in 

Fig. 2. Overview of proposed models. a) Inputs are 3D patches of model-dependent size, e.g. in case of Patch-CNN the size is 21 mm3. b) Architecture schematics of 
proposed models. Patch-CNN: fully convolutional classification CNN. Segmentation-CNN: fully convolutional segmentation CNN. U-Net: segmentation CNN with 
down- and upsampling path, and skip connections. c) Outputs are a scalar for the Patch-CNN, and probability distributions for the Segmentation-CNN and U-Net. 
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confidence which would suggest multiple underlying lesions. If the 
component is multi-modal, we separate it into its modes and derive 
multiple predicted components. 

2.4. Training 

The task of detecting or segmenting CMBs is complicated by severe 
class imbalance, with far more negative samples for both classification 
and segmentation approaches. There are several ways to address class 
imbalance. One is selective sampling, the other a proper choice in loss 
function. 

2.4.1. Selective sampling 
We set a desired ratio of positive and negative samples in batch 

preparation to ensure the model encounters a sufficient amount of 
positive samples during training. 

Whether a sample is considered positive or negative depends on the 
presence or absence of definite CMB voxels within its center. The size of 
the center in consideration varies between the classification (3× 3× 3) 
and segmentation (11× 11× 11) pipelines. The partial volumes are 
sampled according to the 3D-FRST in the Patch-CNN pipeline, and at 
stride 8 in the segmentation pipelines. 

Furthermore, we do not limit this sampling method to one negative 
sample class. Instead we employ hard mining after each epoch and 
separate the negative samples into “easy” and “hard” negative samples, 
i.e., samples that are correctly predicted and samples that contain FP 
voxels. The “hard” negative samples are more likely to be drawn from 
the dataset in the following epoch. 

The ratios used were 1 : 7 for positive and negative samples during 
the first epoch, and 1 : 1 : 6 for positive, “hard” negative, and “easy” 
negative samples in all following epochs. 

Loss functions. There are a variety of loss functions available for the 
training of deep learning models. In classification tasks, cross-entropy 
loss is usually employed. This was also used in previous works on 
CMB detection (Dou et al., 2016; Standvoss et al., 2018; Liu et al., 2019). 
Both cross-entropy (CE) and Dice loss are commonly used for training 
segmentation networks. However, these standard loss functions are not 
well-equipped to deal with large class imbalances as present in the 
voxel-wise segmentation of CMBs where healthy tissue is 106 times more 
common than CMBs. 

All three models (Patch-CNN, Segmentation-CNN, U-Net) were 
trained with CE-loss. In addition to our selective sampling approach, we 
assigned class weights to account for the imbalance. This approach is 
sufficient for the 3D-FRST-CNN because the CMB classification problem 
is less imbalanced. Additionally, training samples are limited to candi-
dates detected with 3D-FRST. 

For segmentation models, the imbalance is more egregious and the 
CE-loss is not sufficient for optimal training. Therefore we introduced a 
second loss function for training the Segmentation-CNN and 3D-UNet, 
namely boundary loss (BL) (Kervadec et al., 2018). BL was specifically 
developed for use cases with high class imbalance. While CE-loss is 
distribution based, and Dice loss is region-based, BL is designed to 
minimize the distance between the prediction and ground truth. This has 
two beneficial effects on the models: it reduces the number of total FPs 
and improves delineation of predictions in clusters of CMBs. 

The combination of these losses is weighted at 0.95 for CE-loss and 
0.05 for BE-loss, and they are respectively decreased and increased by 
0.05 with each epoch. The idea is to first opt for high sensitivity and then 
refine the model over epochs. Also, we limit the maximum distance for 
BL-loss computation to 10mm. This improves the synergy of CE- and BL- 
loss for this task, otherwise the CE-loss tended to increase. 

2.4.2. Data augmentation 
Data augmentation is a valuable tool in increasing the variety of the 

dataset and achieve more robust results and better generalization. We 
employed several data augmentation techniques. Random flipping was 

performed exclusively in the axial plane. Given the larger context pro-
vided to the segmentation models, flipping of the other planes would 
generate samples incongruous with actual brain anatomy. Random 
affine transformations, including scaling, shearing and rotation were 
applied within a small range. To limit void information appearing at the 
boundaries of the sample, a larger subvolume was transformed and then 
cropped to input size. Furthermore, we randomly shifted and scaled 
image intensity by minor amounts to account for the variations in tissue 
intensity that are inherent to MR imaging. 

2.5. Evaluation 

Expert performance was evaluated for each observer on a majority 
vote of the other five observers, while the models were evaluated on a 
single majority vote of all observers. The results for the individual ob-
servers differ from the reported numbers in Van den Heuvel et al. (2016) 
because of our manual adjustments (described in Supplementary Ma-
terial 6.3). 

On a detection task with multiple lesions per case, the established 
method to evaluate detection performance is the Free-response Receiver 
Operating Characteristic (FROC) (Miller, 1969). It compares a model’s 
detection sensitivity to the number of FP predictions at a continuous 
scale of operating points. We report results specifically at two operating 
points. The first is derived from a desired detection rate of 90%. This 
corresponds to the best sensitivity achieved by one of our observers. The 
other operating point is derived from an averaged FP count of 10 per TBI 
case. Most of the observers score below this FP count on the test set, and 
it represents a number of FPs that could reasonably be checked by a 
human observer and lead to a major reduction in reading effort. 

Additionally, we report FPs over the number of CMBs. This is a better 
indicator of model performance when comparing models across 
different pathologies than the average number of FPs per case, as CMB 
counts vary significantly between pathologies. Also, we report the mean 
absolute error (MAE) and the normalized mean absolute error (nMAE) of 
CMB counts, comparing the reference with the prediction count. MAE is 
averaged over cases, nMAE is averaged over the amount of CMBs in the 
dataset. 

MAE = 1
n
∑

|(FPp + FNp) − defp|

nMAE =

∑
|FPp+FNp)− defp |∑

defp 

In an idealised version, the model would not require a second reader 
and could predict the CMB counts. MAE and nMAE give an indication of 
the workload for a second reader to correct initial model predictions, 
both FPs and missing CMB predictions. 

Fig. 3 illustrates how true positives (TPs) and FPs were counted for 
the FROC given the presence of possible CMBs in the reference standard, 
and in the case of multiple model predictions within a single reference 

Fig. 3. Conceptual visualization illustrating how predictions are evaluated. The 
reference standard contains two definite and one possible CMB. The model 
predicts four lesion locations and confidences. The panel labeled ‘Outcome’ 
details how individual predictions are scored. Only the highest prediction 
within the mask of a definite CMB counts towards the TPs. Additional pre-
dictions as well as predictions that fall within the mask of possible CMBs are 
disregarded for evaluation purposes. D: definite CMB, P: Possible CMB, TP: true 
positive, FP: false positive, FN: false negative, ign: disregarded dur-
ing evaluation. 
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lesion mask. Gregoire et al. (2009) found that the inter-rater reliability is 
significantly lower for possible CMBs than for definite CMBs. Therefore, 
we opted to exclude model predictions that occurred in the mask of 
possible CMBs, i.e., they neither counted as TPs nor as FPs for sensitivity 
and FPs metrics. (Other approaches to evaluating possible CMB are 
presented with their results in the Supplementary Material 6.8) If mul-
tiple predictions were clustered within a single reference lesion, only the 
most confident prediction was considered the TP; lower confidence 
predictions were ignored. 

We calculated the performance metrics in Table 3 on a single sample 
of the test set, while the FROC curves in Fig. 4 are bootstrapped over 
1000 random 10-samples of the TBI test cases. We also report notable 
findings from visual inspection of the results. 

3. Results 

Observer variability. Van den Heuvel et al. (2016) reported a Fleiss’ 
kappa of 0.24 on the given test set. Since we adapted thew majority 
voting procedure and manually separated individual lesions in the 
reference standard, we calculated the inter-rater reliability anew, 
arriving at a Fleiss’ kappa value of 0.19. 

Model performance. Table 3 shows that at an operating point of 10 FPs 
averaged in TBI patients, the Baseline model detects 80.3% of CMBs. If 
we choose 90% sensitivity to determine the operating point, the system 
produces an average number of 32.1 FPs in TBI patients and 29.3 FPs in 
healthy controls. The FROC graphs in Fig. 4 show that the detection rate 
at low FP counts is consistently lower than the proposed CNN models. 
The count error for TBI cases reached an average of 52.1, while for the 
entire test set it averages to 40.7. 

Visual inspection shows that the Baseline fails to identify all indi-
vidual lesions within a cluster more often than the DL models (Fig. 5, 
Ex.5). It is also more prone to predict FPs in the case of calcifications 
(Fig. 6, Example 3) and vessels (Fig. 6, Example 4). 

The Patch-CNN model predicts an average of 87.7% of CMBs at an 
operating point of 10 FPs. At 90% sensitivity, it produces 20.6 FPs in TBI 
patients and 6.9 FPs in healthy controls. The count error averages 61.2 
for TBI patients, and 34.1 for all patients. 

In conjunction with the FP-results from both the Baseline and Patch- 
CNN model, this points to a sub-optimal candidate detection which 
proposes multiple candidates within single definite lesions. This can be 
observed in several examples of Fig. 5, Examples 2 & 4, and Fig. 6, 
Examples 2 & 7. The Segmentation-CNN achieves an average of 91.0% 
of CMBs at an operating point of 10 FPs. At 90% sensitivity, it produces 
19.2 FPs in TBI patients and 5.5 FPs in healthy controls. The count error 
averages to 35.1 in TBI patients and 20.3 in all patients. 

The U-Net3 accurately predicts an average of 92.2% of CMBs in TBI 
patients. At 90% sensitivity, it produces 17.1 FPs in TBI patients and 3.4 
FPs in healthy controls. The count error averages to 31.2 in TBI patients 
and 17.3 in all patients. 

Both segmentation models show superior behavior in the prediction 
of CMB clusters to the classification models. They are less likely to miss 
CMBs (Fig. 5, Example 5) or predict single lesions doubly. 

With regard to the FP counts of all models, it is important to note that 
a substantial amount of FPs corresponds to locations which are desig-
nated as CMBs in the full segmentation, i.e. the manually corrected re-
sults of the Baseline model. In Fig. 6, Examples 6 and 7 show predictions 
that were neither definite nor possible in the reference standard, but are 
considered definite CMBs in the full segmentation. Visual analysis of the 
results showed between 90–110 such FPs for each model. 

The MAE results for all models may seem abnormally high given the 
other results, however it has to be considered that they do account for 

ignored predictions as described in Fig. 3. 
Post-processing. The applied post-processing makes a major difference 

to the performance of the proposed segmentation models (Segmenta-
tion-CNN, U-Net). Without post-processing many individual lesions are 
missed or miscounted due to connected predictions of clusters and other 
neighbouring lesions. As a result, the segmentation models would 
perform on the same level as the Baseline model. This can be seen in the 
Supplementary Material 6.7.Possible CMBs. Fig. 3 details how possible 
CMBs in the reference standard were counted towards the metrics. There 
are other approaches to their in- or exclusion from metrics which we 
detail in the Supplementary Material 6.8. Option 1 is to treat possible 
CMBs as background; Option 2 is to consider them definite CMBs. 

Given Option 1, sensitivity of all models decreases by 5–8% at the 
operating point of 10 FPs due to the increase in FPs re-aligning the 
prediction confidence threshold. The U-Net is less prone to identifying 
possible CMBs (with high confidence). Of note, there is no measurable 
difference for the segmentation models at 15 FPs between the regular 
evaluation method and Option 1. Metrics for the observers are changed 
as well: loss of sensitivity ranges from 1–6% with an increase of 3–6 FPs 
(except for one outlier). 

Assuming Option 2, all models score 21–23% lower sensitivity. This 
shows that all models tend to predict possible CMBs with lower confi-
dence. FP counts of observers are unaffected in this case, but their 
sensitivity is 5-11% lower compared to our regular method (with the 
previous outlier only losing 2.9%). 

4. Discussion 

In this work, we presented several deep learning based approaches 
for the detection of CMBs in TBI patients. We evaluated and compared 
the individual systems with each other and with the best system in the 
literature for this specific task (Van den Heuvel et al., 2016). 

In the desired range of FP predictions, set at 10 FPs per scan, the 
segmentation models achieve the highest sensitivities. Considering all 
shown FP and MAE counts, the U-Net has a slight edge over the 
Segmentation-CNN and clearly outperforms the other two methods. It is 
important to note that the Baseline experiment could not be repeated, 
and was originally performed with a smaller dataset. Therefore, we can 
not definitively argue whether its potential performance would be closer 
to the presented deep learning models. Given the insights gained in the 
medical imaging and deep learning communities in the last decade 
(Litjens et al., 2017), it can be assumed that the results would still 
support our conclusions. 

We demonstrated that CNNs which are designed to segment the full 
extent of the blooming effect of CMBs can achieve a higher sensitivity at 
a lower FP rate than direct classification approaches. Classification re-
quires hyper sensitive candidate detection which results in large amount 
of FPs to exclude. While the Patch-CNN performs better at excluding FPs, 
both it and the Baseline fail to exclude multiple candidates in single 
lesions or clusters, which results in their large MAEs. 

The segmentation approaches do not require candidate detection, 
instead rely on meaningful post-processing to separate the predicted 
probability distributions into single lesion predictions. A lesion’s prob-
ability distribution often has a high confidence center and lower confi-
dence outline. This enables easy separation of lesions, and is largely 
independent of CMB shape. The results show that the segmentation 
approach is superior. Both the Segmentation-CNN and U-Net outperform 
the classification models in every metric. 

The purpose of CAD systems is to aid researchers and clinicians in 
their daily duties, either by reducing their required efforts or by 
relieving them of a task completely. The latter is a high bar to achieve 
because the CAD system would have to be proven to reliably achieve 
human expert level or superior performance. The presented models are 
close in performance to the experts who contributed to the study, with 
similar performance to 3 and outperforming 3 considering the FROC 
curves in Fig. 4. However, we would not deem the models sufficiently 

3 The U-Net algorithm will be made available on https://grand-challenge. 
org/algorithms/traumatic–cerebral-microbleed-detection-in-swi-mr upon 
acceptance. 
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accurate for stand-alone application given the MAE results and our 
evaluation criteria detailed in Fig. 3. 

However, use of these models may significantly reduce the workload 
of any observer. Van den Heuvel et al. (2016) showed a significant 
decrease in annotation time given the Baseline results. The improved 
performance of our presented models in this study could further reduce 
the amount of decisions an observer would have to make. This could 
enable a routine and consistent investigation of CMBs in clinical use, 
which to date is not a common step taken in the diagnosis and prognosis 
of TBI. 

Furthermore, CMB detection currently suffers from low inter-rater 
reliability. Van den Heuvel et al. (2016) reported a Fleiss’ kappa of 
0.24 on our test set, and with our manual separations of individual lesion 
the inter-rater reliability is even lower at 0.19. This issue is exacerbated 
when considering possible CMBs (Gregoire et al., 2009). All the models 
show relative improvement compared to the observers (despite reduc-
tion in numerical performance), when possible CMBs are considered as 
background. This indicates that the models could aid in discriminating 

these difficult-to-judge lesions. If a single model would be employed by 
several research groups, this would help in improving the inter-rater 
reliability both within their own group and the larger research 
community. 

There are a number of CMB detection systems proposed in the 
research literature for other pathologies than TBI, e.g., stroke (Dou et al., 
2016). A comparison to these systems is difficult. Most other neuropa-
thologies rarely present with the CMB counts occurring in moderate to 
severe trauma, although severe CAA can present with a large amount of 
CMBs as well (Chao et al., 2006). More importantly, the morphology of 
CMBs varies between traumatic and vascular causes, with traumatic 
CMBs presenting with a more varied morphology (Iwamura et al., 2012; 
Izzy et al., 2017). Therefore, consensus on a CMB detection is more 
difficult to reach. Reported statistics would not allow for a meaningful 
comparison and a system developed for non-traumatic CMB detection 
would unlikely be usable in the alternate use case, or vice versa. 

This is also a concern for using our CAD system on mild TBI studies, 
because high counts of CMBs, curvi-linear, and clustered lesions are less 

Table 3 
Model performance.  

Model Sensitivity1 FPTBI
2 FPhealthy2 FPall

2 / CMBRS MAETBI nMAETBI MAEall nMAEall   

Baseline 80.3% (13.7%) 32.1 (10.2) 29.3 (17.1) 3.31 52.1 (17.9) 2.89 40.7 (20.5) 4.52   
Patch-CNN 87.7% (9.9%) 20.6 (9.8) 6.9 (3.8) 1.51 61.2 (30.8) 3.4 34.1 (34.9) 3.78   
Segmentation-CNN 91.0% (8.1%) 19.2 (6.1) 5.5 (3.1) 1.27 35.1 (10.7) 1.95 20.3 (16.8) 2.26   
U-Net 92.2% (8.3%) 17.1 (4.7) 3.4 (2.1) 1.08 31.2 (8.6) 1.73 17.3 (15.2) 1.92   

All values are presented as mean (standard deviation) on the test set (not bootstrapped). 
1 Sensitivity is calculated an operating point of 10 FPs averaged per TBI patient. 
2 FP count is calculated at an operating point of 90% average sensitivity. 
FP: False positive, TBI: Traumatic Brain Injury, CMB: Cerebral Microbleed, RS: Reference Standard (manually corrected majority vote), MAE: Mean Absolute Error, 
nMAE: normalized Mean Absolute Error.  

Fig. 4. Performance (bootstrapped at 1000 random samples of the available test set) of individual models in comparison with observers using FROC curve of 
Sensitivity over average FPs per TBI case. 1) Comparison of all models. 2) Comparison of the classification models. 3) Comparison of classification and segmentation 
CNN with equivalent architecture. 4) Comparison of the segmentation models. 
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likely to occur. An average FP count of 10 would present a significant aid 
if the actual count is high, but in cases with single lesions the work 
reduction might be negligible. Thus, the inclusion of only moderate to 
severe cases presents a limitation of this study. A complete CAD system 
for detecting traumatic CMBs has to be able of reliably deal with TBI 
cases of all severities. 

Recently, at the MICCAI conference the VALDO challenge was hosted 
4. One of the assigned tasks was CMB detection and segmentation. The 
challenge was won by an implementation of the nnUnet (Kuijf, 2021). 
The nnUnet is a self-organizing approach to deep learning often suc-
cessfully removing the need for bespoke solutions in medical imaging 
(Isensee et al., 2018; Isensee et al., 2019). A direct comparison between 
our models and the nnUnet is not sensible because we matched the 
complexity of all proposed models for fair comparison and the nnUnet is 
larger by a factor of 10 for a single fold. Nonetheless, we performed 
initial tests with very promising results (Supplementary Material 6.9). 
The nnUnet could the next step in CMB detection in moderate and severe 
TBI if combined with more engineered methods, e.g. boundary loss. 

A universally usable CAD system for CMB detection will have to 
account for a large variety of MRI scanners and SWI and other high- 
sensitivity T2*-weighted sequences. As mentioned, magnetic field 
strength and certain sequence parameters influence the size of the 
blooming effect of CMBs, and thus their observability (Greenberg et al., 
2009). In this work, development and evaluation was limited to a single 
scanner and SWI sequence type. However, the task of CMB detection 
across scanners and sequences is not trivial. Unlike long established 
sequences like T1 and T2, SWI is less harmonized across scanners and 
sites (Haacke et al., 2009). Subsequently, the visual appearance of 
CMBs, in addition to their natural heterogeneity, can vary due to the 
susceptibility of the blooming effect to parameters like magnetic field 
strength, image resolution, and echo time as well as repetition time 
(Nandigam et al., 2009; Haacke et al., 2009). We are planning to address 
both shortcomings in our next steps in this research. 

Despite promising results, these systems have not reached a level of 
sensitivity and precision to allow for independent usage. In a clinical 
setting, we would suggest employing an operating point of approxi-
mately 10 FPs as an initial screening. A medical observer could then 
check all predictions to exclude the remaining FPs with reasonable 
effort. 

Fig. 5. True positive predictions compared between individual models at operating point of 90% sensitivity. SWI: Close-up axial patch of size 49x49mm2. 
Ref. Standard: Majority vote. White bounding boxes show individual definite lesions. Grayed areas are possible lesions. Models: Baseline (Van den Heuvel et al., 
2016), Patch-CNN, Segmentation-CNN, U-Net. Colored bounding boxes show predicted lesions (after post-processing). Color corresponds to prediction confidence. 
Dots at bottom-right of bounding boxes signify evaluation results, i.e. whether a predicted lesions is considered a TP (green), FP (red), or i.gnored (yellow). 

4 Challenge information can be found on the following website: https:// 
valdo.grand-challenge.org/ 
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We presented a deep learning approach to detecting traumatic CMBs 
by segmenting their blooming effect. Our best model achieves human- 
level performance and presents a fundamental step in the proliferation 
of CMB research, and potentially clinical employment. 
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