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Aims Deep neural network artificial intelligence (DNN-AI)–based Heart Age estimations have been presented and used to show 
that the difference between an electrocardiogram (ECG)-estimated Heart Age and chronological age is associated with 
prognosis. An accurate ECG Heart Age, without DNNs, has been developed using explainable advanced ECG (A-ECG) 
methods. We aimed to evaluate the prognostic value of the explainable A-ECG Heart Age and compare its performance 
to a DNN-AI Heart Age.

Methods 
and results

Both A-ECG and DNN-AI Heart Age were applied to patients who had undergone clinical cardiovascular magnetic reson-
ance imaging. The association between A-ECG or DNN-AI Heart Age Gap and cardiovascular risk factors was evaluated 
using logistic regression. The association between Heart Age Gaps and death or heart failure (HF) hospitalization was eval-
uated using Cox regression adjusted for clinical covariates/comorbidities. Among patients [n = 731, 103 (14.1%) deaths, 52 
(7.1%) HF hospitalizations, median (interquartile range) follow-up 5.7 (4.7–6.7) years], A-ECG Heart Age Gap was asso-
ciated with risk factors and outcomes [unadjusted hazard ratio (HR) (95% confidence interval) (5 year increments): 1.23 
(1.13–1.34) and adjusted HR 1.11 (1.01–1.22)]. DNN-AI Heart Age Gap was associated with risk factors and outcomes after 
adjustments [HR (5 year increments): 1.11 (1.01–1.21)], but not in unadjusted analyses [HR 1.00 (0.93–1.08)], making it less 
easily applicable in clinical practice.

Conclusion A-ECG Heart Age Gap is associated with cardiovascular risk factors and HF hospitalization or death. Explainable A-ECG 
Heart Age Gap has the potential for improving clinical adoption and prognostic performance compared with existing 
DNN-AI-type methods.
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Background
Age is the strongest determinant of cardiovascular mortality, yet the 
ageing process, i.e. the complex physiological degeneration at molecu-
lar, cellular, or organ levels, occurs at a different pace in different indi-
viduals.1,2 Therefore, several attempts have been made to describe this 
process, i.e. to develop a measure that can adjust the chronological age 
for the individual rate of the ageing process, presenting it as vascular age 
or a Heart Age.1,3–5 The electrocardiogram (ECG) is an excellent tool 
for this purpose, since several electrocardiographic parameters change 
with age but also with cardiovascular disease.6–11 By estimating an indi-
vidual’s biological age through ECG data, the resulting Heart Age can be 
contrasted to the individual’s chronological age. Beyond its potential 
prognostic value, it has great potential in being used to convey cardio-
vascular risk to a patient, a cornerstone of the preventive medicine con-
versation in the patient–physician relationship. Several deep neural 
network (DNN)-based Heart Age estimations have been presented, 
with the difference between the ECG estimate and chronological age 
(Heart Age Gap) in some of them associating with prognosis.12–16

Although the results of these studies are promising, artificial intelligence 
(AI) techniques based on DNNs lack transparency regarding which spe-
cific characteristics of the ECG contribute to the prediction models. 
This is sometimes frustratingly referred to as the ‘black box’ of AI. If 
similar or better risk predictions can be made with more transparent 
methods, this would increase physicians’ understanding of the results, 
yielding greater trust and an improved possibility of convincingly com-
municating the results to the patient.

An accurate and transparent ECG Heart Age has been developed 
using explainable advanced ECG (A-ECG) methods without DNNs.17

In healthy subjects, the A-ECG Heart Age Gap was zero. When second-
arily applied to patients at risk of cardiovascular disease, the A-ECG 
Heart Age Gap was on average 7 years, and in patients with overt heart 
disease, it was 14 years. However, the prognostic value of the A-ECG 
Heart Age Gap and its association with traditional cardiovascular risk 
factors remains unknown. In this study, we therefore aimed to evaluate 
the prognostic value of the A-ECG Heart Age Gap and to study its as-
sociation with several cardiovascular risk factors. We also aimed to 
compare the performance of a publicly available DNN-AI ECG Heart 
Age Gap applied to the same population.

Methods
Data were included from a prospectively acquired database of patients 
undergoing clinical cardiovascular magnetic resonance (CMR) imaging at 
University of Pittsburgh Medical Center (UPMC, Pittsburgh, PA, USA) 
who had an ECG recorded within 30 days of the CMR exam. The study 
was approved by the UPMC Institutional Review Board, and all participants 
provided written informed consent. The cohort has been presented in de-
tail previously.18,19 For the purposes of this study, the following exclusion 
criteria were applied: missing follow-up data, heart rate ≥100/min, com-
plete bundle branch blocks (QRS duration ≥130 ms), atrial fibrillation or 
flutter, or digoxin use. Of note, for the original cohort, patients with pace-
makers or hypertrophic cardiomyopathy were excluded. Indications for the 
CMR exam are presented in Table S1, see Supplementary material online, 
Supplements.

Heart Age was determined for all patients by applying dedicated A-ECG 
software that has been described in detail elsewhere.19,20 When A-ECG is 
applied to standard 10 s 12-lead ECG recordings, multiple measures of 
ECG are considered including (i) conventional ECG measures, such as heart 
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rate, waveform durations (P, PR, QRS, QT, JT, and TQ) including rate- 
corrected versions (QTc and JTc), as well as frontal plane QRS- and 
T-wave axes, and amplitude-based criteria such as the Cornell or 
Sokolow–Lyon indices19; (ii) spatial information from transformation of 
the 12-lead ECG to a derived vectorcardiogram,21 including the spatial 
mean and maximum QRS-T angles, spatial azimuths and elevations, and 
the spatial ventricular gradient and its components; and (iii) measures of 
waveform complexity of the QRS and T derived by singular value 
decomposition.

Beyond the patient’s age and sex, the following measures within a 10 s 
12-lead ECG are included in the estimation of Heart Age by A-ECG, based 
on a previous study:17 conventional ECG measures including P-wave dur-
ation (ms), QT interval (ms), heart rate (min−1), and frontal plane QRS 
axis (in sine radians) and VCG measures including the maximum QRS amp-
litude in VCG lead Y (mV), spatial ventricular gradient minus spatial mean 
QRS (mV*s), root mean square of the QRS vector magnitude (mV), QRS 
average spatial velocity in the VCG vector magnitude (mV/s), the portion 
of the QRS loop in the posterior superior quadrant of the left sagittal plane 
by VCG (%), and T-wave complexity measures from singular value decom-
position [ln (∑third to eighth Eigenvector)/(first T-wave Eigenvector minus 
second T-wave Eigenvector), unitless]. The intercept and coefficients for 
the respective measures are presented in Table 1. A-ECG Heart Age Gap 
was determined by subtracting the patient’s chronological age from the 
A-ECG Heart Age.

Statistical analysis
Continuous variables were described using mean and standard deviation 
(SD) or median and interquartile range (IQR). Time-to-event analysis was 
performed using Kaplan–Meier curves with censoring at study end. The as-
sociation between the Heart Age Gap and hospitalization for heart failure 
(HF) or death was analysed using multivariable Cox proportional hazard re-
gression. We considered both models that were unadjusted and models ad-
justed for age, sex, hypertension, hyperlipidaemia, smoking, family history of 
ischaemic heart disease, body mass index, and diabetes. These covariates 
were chosen to be included in the final model, since they are often included 
in risk assessments.5 The effect of age on the association between Heart 
Age Gap and outcomes was evaluated by studying interaction effects of 

age by analysing the final model with and without an interaction term for 
age (Heart Age Gap × age). These models were then compared using the 
likelihood ratio test.

In addition to analysing Heart Age Gap as a continuous variable, we per-
formed a Cox regression analysis after categorizing patients within three 
groups: (i) patients with an A-ECG Heart Age Gap ≤0; (ii) patients with 
an A-ECG Heart Age Gap between 0 and 10 years, approximating two 
standard deviations of the Heart Age Gap occurring in healthy volunteers 
(11.6 years);17 and (iii) patients with an A-ECG Heart Age Gap exceeding 
10 years. Hazard ratios (HRs) are presented with 95% confidence intervals 
(CIs). The assumption of proportional hazards was confirmed using 
Schoenfeld’s residuals. We also explored the association between Heart 
Age Gap and cardiovascular risk factors or diseases and CMR-based imaging 
risk markers using logistic regression. Odds ratios (OR) are presented for 
each 5 year increment in Heart Age Gap with 95% CI.

Heart Age and Heart Age Gap estimation using a DNN have been pub-
lished, and the code has been made openly available.13 This DNN-AI-based 
Heart Age was also applied to all ECGs in our study population, i.e. both the 
A-ECG Heart Age and the DNN-AI ECG Heart Age were tested in the 
same population, and none of the ECGs in this population were used to 
train either of the Heart Ages. The DNN-AI ECG Heart Age Gap was sub-
sequently also evaluated regarding its association with risk factors and its 
prognostic strength using Cox regression both as a continuous variable 
and by the same stratification applied to the A-ECG Heart Age Gap (≤0, 
0–10, and >10 years). Furthermore, two sensitivity analyses were per-
formed. First, since heart rate is included in the Heart Age estimation, we 
also performed a survival analysis after additional adjustment for beta- 
blocker use. Second, a Kaplan–Meier graph was constructed using the strati-
fication suggested by the authors and originators of the DNN (<−8, −8 to 
8, and  > 8 years) and is presented in Figure S1, see Supplementary material 
online, Supplements.13 In summary, neither of these sensitivity analyses 
changed the results in a meaningful way.

Sample size estimation
A power analysis was performed based on prior knowledge of the study 
population. The complete database consisted of 804 patients with com-
plete follow-up data, with an overall event rate at 20% (death or hospital-
ization for HF). If 40% of the patients in this clinical cohort, with high 
prevalence of cardiovascular disease, were assumed to have an abnormal 
A-ECG Heart Age Gap (i.e. exceeding 10 years),17 678 subjects would be 
needed to detect a HR at 1.6, for those with an abnormal Heart Age 
Gap vs. normal A-ECG Heart Age Gap, given an expected event rate at 
10% over 2 years in the reference group, with a power of 0.8 and a 95% 
level of significance.

A two-sided P-value of 0.05 was used to define statistical significance. 
Statistical analysis was performed using R version 3.5.3, packages: Survival 
v. 3.1-12 and Survminer v. 0.4.6, among others.

Findings
In total, 731 patients with a median follow-up of 5.7 (4.7–6.7) years 
were included [103 patients died (14.1%), and 52 patients (7.1%) 
were hospitalized due to HF]. A flowchart of patient inclusion and ex-
clusion is presented in Figure 1. Baseline characteristics are presented in 
Table 2. For the entire population, A-ECG Heart Age Gap was 14.4 ±  
9.5 years, DNN-AI ECG Heart Age Gap was 7.9 ± 11.9 years, and nu-
merical results differed in head-to-head comparison (difference 6.3 ±  
13.6 years, R2 = 0.03, P < 0.001). The relation between Heart Age 
and chronological age is presented in Figure 1.

A-ECG Heart Age Gap was associated with incident HF hospitaliza-
tion or death [unadjusted HR per 5 year increments 1.23 (1.13–1.34), 
C statistic 0.62, adjusted HR per 5 year increments 1.11 (1.01–1.22)] 
(Figure 2). Similar results were found after adjustment for beta-blocker 
use [adjusted HR per 5 year increments 1.09 (1.00–1.20)]. Patients with 
an abnormal A-ECG Heart Age Gap had higher risk of future HF hos-
pitalization or death, in reference to those with a normal or low gap 
[unadjusted HR: 2.07 (1.38–3.11), adjusted HR: 1.64 (1.08–2.50)]. 
DNN-AI ECG Heart Age Gap was not associated with outcomes in 
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Table 1 Measures included in the A-ECG Heart Age for 
males and females

Males Females
Measure Coefficient Coefficient

Age, years 0.820 0.850

P-wave duration, ms 0.288 0.331

Spatial QT interval, ms 0.081 0.095
Heart rate, min−1 0.242 0.281

QRS max amplitude in VCG lead Y, µV −0.007 −0.009

Frontal plane QRS axis, sine radians −5.834 −6.354
T-wave complexity, Ln ∑(EV3:8)/(EV1– 

EV2), unitless

2.152 2.359

Spatial ventricular gradient minus spatial 
mean QRS, mV*s

−55.841 −67.642

QRS RMS in VCG vector magnitude lead, mV 10.315 11.701

QRS average spatial velocity in VCG vector 
magnitude lead, mV/s

0.106 0.116

Portion of QRS loop in posterior superior 

quadrant of left sagittal plane by VCG, %

0.033 0.034

(Intercept) −58.579 −70.477

Ln, natural logarithm; EV, eigenvalues; VCG, vectocardiographic; RMS, root mean 
square.
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unadjusted analysis [HR per 5 year increments 1.00 (0.93–1.08)] but 
was associated with outcomes in adjusted analysis [HR per 5 year incre-
ments 1.11 (1.01–1.21)] (Figure 2). Similar results were found after ad-
justment for beta-blocker use [adjusted HR per 5 year increments 1.09 
(1.00–1.19)]. In the fully adjusted model, the interaction between Heart 
Age Gap and age for the prediction of future cardiovascular events was 
not statistically significant, neither for A-ECG Heart Age Gap (P = 0.13) 
nor for DNN-AI ECG Heart Age Gap (P = 0.15).

A-ECG Heart Age Gap was associated with risk factors and cardiac 
MRI findings both unadjusted and after adjustment for age and sex. By 
comparison, DNN-AI ECG Heart Gap showed no association with 
hypertension, coronary artery disease, or diabetes unless adjusted for 
age and sex and was associated with cardiac MRI findings both unadjust-
ed and after adjustment for age and sex (Tables 3 and 4).

Discussion
An increased A-ECG Heart Age Gap was associated with increased risk 
of future hospitalization for HF or death, even after adjusting for cardio-
vascular risk factors often incorporated into cardiovascular risk scores 
(sex, hypertension, hyperlipidaemia, diabetes, BMI, and family history of 
ischaemic heart disease). In addition, we showed that A-ECG Heart Age 
Gap was associated with increased risk of having hypertension, ischae-
mic heart disease, diabetes, or HF. Moreover, A-ECG Heart Age Gap 
was associated with increased likelihood of CMR-based pathological 
findings such as reduced left ventricular ejection fraction or presence 
of either increased extracellular volume fraction or late gadolinium en-
hancement. These results provide external validation of Heart Age es-
timation based on explainable A-ECG measures.

Conveying risk
Cardiovascular disease often develops and progresses silently for many 
years.22 Fortunately, several risk factors can be modified, and cardiovas-
cular risk can therefore be reduced, for example, by dietary changes, 
increased physical activity, reduced alcohol consumption, or smoking 
cessation.23 Understanding the risk may incentivize lifestyle changes 
as well as adherence to any needed medications. Several pedagogical 

ways of expressing cardiovascular or cardiopulmonary risk to patients 
have been proposed, for example, by presenting a lung age,24 a vascular 
age,25 or a heart age.3,5 When smokers were presented with their lung 
age based on forced expiratory volumes at 1 s (FEV1), the chance of 
smoking cessation increased.24 Furthermore, by translating the 
Framingham risk score into the age corresponding to someone with 
the same risk score but without known modifiable risk factors, an im-
provement in metabolic parameters has been achieved.5 Apparently, 
years of healthy human ageing is an intuitive unit of measure in this 
setting.

In a randomized controlled study, pictorial presentation of athero-
sclerotic changes in carotid wall thickness to the patient and the phys-
ician also improved cardiovascular risk in patients.25 Such methods have 
the advantage of being easily understood by the patient and thereby 
provide strong incentives for lifestyle changes and/or increasing thera-
peutic compliance.26 Both FEV1 and carotid intima thickness provide an 
individualized assessment of risk and reflect actual pathological changes 
in the patient, moving one step beyond risk factor calculators, such as 
the Framingham risk score. However, both pulmonary function testing 
and carotid ultrasound depend on specialized equipment and staffing, 
such tools not being implemented in routine care for most patients 
with hypertension or diabetes. However, the opposite is true for the 
ECG. The presentation of an ECG-based Heart Age, or the Heart 
Age Gap, can be an intuitive way to express cardiovascular risk to a pa-
tient. This is important, since not adhering to needed medication, or not 
sustaining healthy lifestyle choices, may be caused by a discrepancy in 
the perceived and actual risk.27 For a patient, and possibly also for 
the physician, it may be easier to understand the risk expressed as an 
excessively aged heart in healthy human ageing years, rather than po-
tentially more esoteric numerical values for blood pressure or choles-
terol levels or scores expressed in risk for a particular event in percent 
per year.5 Our results show that A-ECG Heart Age Gap is strongly as-
sociated with cardiovascular risk factors and disease. Further, it also as-
sociated with outcomes in this dataset, including after adjusting for 
information often applied in traditional risk scores. This strengthens 
the potential of A-ECG Heart Age Gap to be used as an inexpensive, 
non-invasive complementary method to conventional advice and man-
agement using an instrument (ECG) that is readily available and 

Figure 1 Flowchart of patient inclusion and exclusion. DNN-AI ECG, deep neural network artificial intelligence electrocardiogram.
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Table 2 Baseline characteristics

A-ECG Heart Age Gap (years)

Overall ≤0 years 0–10 >10

n 731 40 217 474

Age, years 53.4 ± 15.2 45.2 ± 15.5 48.9 ± 16.5 56.2 ± 13.9
Male sex, n (%) 401 (56.4) 25 (62.5) 132 (60.8) 255 (53.8)

Body mass index, kg/m2 30.0 ± 7.8 26.0 ± 4.5 28.5 ± 7.5 31.1 ± 8.0

Systolic BP, mmHg 125 ± 19 122 ± 20 121 ± 18 128 ± 20
Diastolic BP, mmHg 75 ± 15 75 ± 12 72 ± 14 77 ± 15

NT-proBNP, ng/L 64 (26–184) 36 (18–64) 39 (19–116) 85 (33–240)

eGFR, mL/min/1.73m2 89 ± 25 96 ± 19 94 ± 23 86 ± 26
Hypertension, n (%) 374 (51.2) 10 (25.0) 75 (34.6) 289 (61.0)

Diabetes, n (%) 156 (21.3) 0 (0.0) 28 (12.9) 128 (27.0)

Hyperlipidaemia, n (%) 294 (40.2) 11 (27.5) 70 (32.3) 213 (44.9)
Smoker, n (%) 116 (15.9) 5 (12.5) 37 (17.1) 74 (15.6)

CABG, n (%) 56 (7.7) 0 (0.0) 13 (6.0) 43 (9.1)

PCI, n (%) 94 (12.9) 2 (5.0) 21 (9.7) 71 (15.0)
Family history of CAD, n (%) 104 (14.2) 5 (12.5) 31 (14.3) 68 (14.3)

Prior MI (known), n (%) 110 (15.0) 6 (15.0) 24 (11.1) 80 (16.9)

Heart failure, n (%) 166 (22.7) 3 (7.5) 21 (9.7) 142 (30.0)
HFpEF 50 (6.8) 2 (5.0) 8 (3.7) 40 (8.4)

HFrEF or HFmrEF 116 (15.9) 1 (2.5) 13 (6.0) 102 (21.5)

Cardiovascular magnetic resonance imaging measures

LVEF, % 55 ± 14 60 ± 7 58 ± 11 53 ± 16

GLS, % −16 ± 5 −18 ± 2 −17 ± 3 −15 ± 5
Presence of LGE, n (%) 266 (36.4) 11 (27.5) 62 (28.6) 193 (40.7)
MI, n (%) 163 (22.3) 4 (10.0) 33 (15.2) 124 (26.5)

Obstructive CAD, n (%) 136 (18.6) 1 (2.5) 30 (13.8) 105 (22.2)

Myocarditis, n (%) 15 (2.1) 1 (2.5) 4 (1.8) 10 (2.1)
Extracellular volume, % 28 ± 4 27 ± 3 27 ± 4 28 ± 4
End-diastolic LV volume, mL 172 ± 70 156 ± 46 161 ± 52 178 ± 69

End-systolic LV volume, mL 83 ± 58 63 ± 25 70 ± 43 91 ± 65
LV mass, g 120 ± 46 103 ± 27 109 ± 37 127 ± 50

Medications

No medication, n (%) 136 (19.0) 15 (37.5) 68 (31.3) 53 (11.2)
Anti-platelets, n (%) 380 (52.0) 13 (32.5) 99 (45.6) 268 (56.5)

ACE inhibitors, n (%) 295 (40.4) 9 (22.5) 63 (29.0) 223 (47.0)

Beta-blockers, n (%) 363 (49.7) 9 (22.5) 76 (35.0) 278 (58.6)
Loop diuretics, n (%) 142 (19.4) 3 (7.5) 22 (10.0) 117 (24.7)

Calcium antagonist, n (%) 54 (7.4) 4 (10.0) 10 (4.6) 40 (8.4)

Hydrochlorthiazide, n (%) 63 (8.6) 2 (5.0) 16 (7.1) 45 (9.5)
Nitroglycerin, n (%) 26 (3.7) 0 (0.0) 7 (3.2) 19 (4.0)

Anti-arrhythmic, n (%) 46 (6.3) 3 (7.5) 12 (5.5) 31 (6.5)

Statins, n (%) 304 (41.6) 9 (22.5) 74 (34.1) 221 (46.6)
Insulin, n (%) 107 (14.6) 0 (0.0) 19 (8.8) 88 (18.6)

Oral hypoglycaemics, n (%) 49 (6.7) 0 (0.0) 9 (4.6) 40 (8.4)

Coumadin, n (%) 44 (6.0) 2 (5.0) 14 (6.5) 28 (5.9)

Values are presented as mean ± standard deviation, median (interquartile range), or n (%). 
ACE, angiotensin-converting enzyme; BP, blood pressure; CABG, coronary artery bypass grafting; NT-proBNP, N-terminal prohormone of brain natriuretic peptide; CAD, coronary 
artery disease; eGFR, estimated glomerular filtration rate; GLS, global longitudinal strain; HFpEF, heart failure with preserved ejection fraction; HFmrEF, heart failure with mildly 
reduced ejection fraction; HFrEF, heart failure with reduced ejection fraction; LGE, late gadolinium enhancement; LV, left ventricular; LVEF, left ventricular ejection fraction; MI, 
myocardial infarction; PCI, percutaneous coronary intervention.
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commonly included in the routine assessment of patients. Indeed, 
A-ECG analysis can be performed on the digital raw data of a standard 
resting 12-lead ECG from any modern ECG machine that makes that 
data accessible, as is the case for the overwhelming majority of ECG ma-
chine vendors. Future studies are justified to evaluate whether the pres-
entation of Heart Age Gap to patients can improve clinical outcome.

A-ECG vs. DNN-AI ECG
AI methods using neural networks have also been used to estimate 
Heart Age.5,12–14,16 Despite several studies describing AI-derived 
prediction models, there has yet to be any large-scale clinical implemen-
tation of DNN-based methods.14,15,28,29 One reason may be the lack of 
transparency of the steps between ECG input and clinical output of the 
DNN algorithms, often referred to as ‘black box’ models.30,31

Moreover, secondary use of so-called saliency methods or ‘heat 
maps’ might have limited effect in making these models more interpret-
able.32 Without the ability to have insight into which components of or 
measures from the ECG are most important when generating an output, 
it is effectively impossible to detect potential errors at human over- 
reading and difficult to detect any relevant bias when critically evaluating 
research on medical diagnostics based on such methods.33 In contrast, 
the measures included in the A-ECG Heart Age are fully transparent,17

and the individual values for each can be presented in conjunction with 
the estimated Heart Age. Therefore, A-ECG Heart Age Gap is explainable 
in the sense of allowing the physician to understand which ECG measures 
impacted the final result.34 A more profound explainability, however, 
would require an understanding of which physiological or biological 
changes gave rise to the ECG measures of interest. Some of the more im-
portant measures in the A-ECG Heart Age score, e.g. P-wave duration, 
QT interval, heart rate, and QRS axis, are intuitive in this matter, since 

they commonly change not only with age, but even more so in the pres-
ence of cardiac disease. Vectorcardiographic changes and measures of 
T-wave complexity, on the other hand, are somewhat less conventional, 
but are nonetheless, strongly associated with increased cardiovascular 
risk.35–39 Consequently, when compared with a DNN-AI ECG Heart 
Age, the A-ECG Heart Age is, inherently by design and through its in-
cluded ECG measures, explainable to and by the clinician.

After adjusting for age and cardiovascular risk factors, the DNN-AI 
ECG Heart Age Gap was associated with future events. However, in con-
trast to the A-ECG Heart Age Gap, the unadjusted DNN-AI ECG Heart 
Age gap did not provide a prognostic association in the Kaplan–Meier 
survival curves (Figure 2). For the A-ECG Heart Age Gap, HRs were 
somewhat lower after adjustment for age and cardiovascular risk factors. 
Importantly, when applied in clinical practice, an unadjusted increased 
A-ECG Heart Age Gap is associated with increased cardiovascular risk 
without the need to take either age or other risk factors into account. 
A similar pattern was observed regarding association with risk factors. 
While A-ECG Heart Age Gap was associated with risk factors both un-
adjusted, and after adjustment for age and sex, the DNN-AI ECG Heart 
Gap showed no association with hypertension, coronary artery disease, 
or diabetes unless adjusted for age and sex.

It is important to note that the patient’s chronological age is pur-
posely included in the estimation of A-ECG Heart Age. A-ECG Heart 
Age estimations were originally derived from classical Bayesian statistic-
al models incorporating results from ∼5 min ECG 12-lead ECGs.4 Such 
models were not developed to predict a patient’s chronological age but 
instead to estimate the ‘electrical age’ of the heart and specifically how 
the Heart Age differs from chronological age. The Bayesian statistical 
approach is thus focused on adjusting the known chronological age 
on the basis of electrocardiographic characteristics and sex with knowl-
edge of the patient’s chronological age. Equally important, the A-ECG 

Figure 2 Time-to-event analysis for A-ECG Heart Age Gap (left panel) and DNN-AI ECG Heart Age Gap (right panel) regarding death or heart 
failure hospitalization among 731 patients who were referred for a clinical CMR imaging study. For both the A-ECG Heart Age and for the 
DNN-AI ECG Heart Age, patients are divided into three groups based on the difference between the Heart Age and their chronological age. In 
blue solid lines, patients with a Heart Age Gap ≤0; in green dotted lines, patients with a Heart Age Gap within 0 to 10 years; and in red dashed lines, 
patients with a Heart Age Gap exceeding 10 years. The log rank and P-values presented refer to the difference between Heart Age Gap >10 years (red, 
dashed lines) and the other two groups combined (blue solid lines and green dotted lines). Note that the survival graph above shows the survival in 
different heart gap groups. Although the unadjusted DNN-AI ECG Heart Age Gap shows no association with survival as depicted above, it is significantly 
associated with survival after adjusting for age (see text). A-ECG, advanced electrocardiography; DNN-AI, deep neural network artificial intelligence.
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Heart Age was trained to accurately estimate Heart Age using only 
healthy individuals, who, indeed, had an average heart age gap of 0 
among healthy individuals. This is in contrast to current DNN-AI 
ECG approaches, wherein no knowledge of the patient’s chronological 
age is assumed or included nor any rigorous acknowledgement of the 
patient’s health or disease status. But the task of estimating Heart 
Age without such knowledge is more challenging than commonly as-
sumed, with its road to clinical implementation also being less clear, un-
less the higher prevalence of cardiovascular disease in older ages can be 
used as a factor within the given DNN’s prediction of chronological age. 
And attempting to predict chronological age, rather than Heart Age, 
also thwarts one main purpose of Heart Age estimations, which is to 
reflect any excess heart ageing across all age groups, something that 
must take the increased prevalence of cardiovascular disease with age-
ing into account. This difference in methodology is also evident from 
our results, in which the Heart Age estimations from the DNN-AI 
ECG Heart Age more closely followed the chronological age, as ex-
pected (Figure 3), while the A-ECG Heart Age deviated especially in old-
er patients, who would also be expected to have a higher prevalence of 
disease. Further, as with other DNN-AI ECG Heart Age meth-
ods,5,12,14,16 the DNN method tested in this study13 was similarly not 
trained on purely heart-healthy individuals. This is important, since ar-
guably, it is the ECG-based deviation from normal ageing that should be 
focused on in risk prediction. Notably, the A-ECG Heart Age was 
trained on healthy volunteers of a wide age range. This is a key differ-
ence in design compared with existing DNN-AI ECG Heart Age ap-
proaches, ensuring that the A-ECG Heart Age corresponds to years 
of healthy human ageing, without influence by cardiovascular risk fac-
tors or overt heart disease. Further, when very large numbers of 
ECGs (tens to hundreds of thousands or more) are included, as in 
the DNN-AI ECG Heart Age methods,5,12–14,16 performing quality 
control of each individual ECG is often not feasible, and findings influ-
enced by reduced signal quality (noise, missing leads, lead reversals, 
etc.) may be incorporated into the algorithms. By comparison, when 
applied in a clinical situation, ECG quality is apparent to the reader 
and poor quality or invalid ECGs may be discarded and the recording 
repeated. Therefore, including any data for which it has been impossible 
to comprehensively verify data quality is unwise. In contrast to the 

DNN-AI ECG Heart Age, in the derivation of the A-ECG Heart Age, 
ECGs with tachycardia, bundle branch blocks, and atrial fibrillation 
were also excluded. Therefore, the comparison between the A-ECG 
and DNN-AI ECG methods in the current study is only applicable to 
patients without these ECG findings. In future studies, development 
of dedicated A-ECG Heart Age scores specific to the settings of bundle 
branch blocks and/or atrial fibrillation may be of value.

Although A-ECG Heart Age Gap predicted increased risk for mor-
tality and HF hospitalization in this study, other A-ECG scores more 
specifically tailored to predict events rather than Heart Age per se 
can also be constructed to further optimize predictive performance. 
And several well-validated electrocardiographic and other predictors 
of future cardiovascular events in patients with known cardiovascular 
disease already exist.18,40–44 Moreover, other A-ECG scores dedicated 
towards predicting events in the context of any given clinical (e.g. HF 
and post-infarction) or ECG (e.g. bundle branch block and atrial fibril-
lation) scenario wherein prediction is specifically desired will be better 
tailored for such a task. That said, A-ECG Heart Age Gap is arguably 
most suited for use in patients with no or few known risk factors or 
symptoms of heart disease, for whom lifestyle or other changes may 
lessen progression to overt cardiovascular disease. Nonetheless, in or-
der for the A-ECG Heart Age Gap to be useful for conveying risk to 
patients, it needs to be a measure that is ideally also closely associated 
with future adverse events, as demonstrated in the current study.

Study limitations
The patients included in this study came from a clinical cohort with a rela-
tively high prevalence of cardiovascular disease. This is a limitation since 
these findings may not be generalizable to populations with a lower 
prevalence of established cardiovascular disease, i.e. populations in which 
Heart Age Gap is likely most optimally used. Future studies are justified 
to determine the prognostic value, as well as the clinical impact, of Heart 
Age Gap in such populations. Nonetheless, the cardiovascular conditions 
present in the cohort of the current study are typical examples of con-
ditions that early preventive measures aim to avoid. Since both the 
A-ECG and DNN-AI ECG Heart Ages were applied to the same cohort, 
this limitation does not affect the comparison of the methods.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table 4 Association between 5 year increments of 
A-ECG Heart Age Gap or DNN-AI ECG Heart Age Gap 
and presence of pathological findings on cardiovascular 
magnetic resonance imaging expressed as odds ratios 
with 95% confidence limits

Odds ratio (95%CI)

Unadjusted Adjusted for age and sex

Heart Age Gap Presence of late gadolinium enhancement
A-ECG 1.15 (1.07–1.26) 1.16 (1.03–1.55)

DNN-AI 1.08 (1.01–1.15) 1.19 (1.10–1.28)

Reduced left ventricular ejection fraction 
(<50%)

A-ECG 1.33 (1.22–1.46) 1.39 (1.26–1.41)

DNN-AI 1.15 (1.08–1.24) 1.23 (1.14–1.34)
Left ventricular dilatation

A-ECG 1.45 (1.28–1.66) 1.54 (1.34–1.79)

DNN-AI 1.11 (1.00–1.22) 1.14 (1.03–1.27)
Increased left ventricular mass

A-ECG 1.40 (1.26–1.57) 1.42 (1.27–1.60)

DNN-AI 1.14 (1.06–1.25) 1.22 (1.11–1.35)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table 3 Association between 5 year increments of 
A-ECG Heart Age Gap or DNN-AI ECG Heart Age Gap 
and presence of cardiovascular comorbidities expressed 
as odds ratios with 95% confidence limits

Odds ratio (95% CI)

Unadjusted Adjusted for age and sex

Heart Age Gap Hypertension
A-ECG 1.33 (1.22–1.45) 1.22 (1.05–1.27)

DNN-AI 0.97 (0.92–1.04) 1.01 (1.02–102)
Diabetes

A-ECG 1.34 (1.21–1.47) 1.27 (1.15–1.41)

DNN-AI 1.05 (0.98–1.13) 1.20 (1.10–1.31)
Obstructive coronary heart disease

A-ECG 1.19 (1.08–1.31) 1.12 (1.00–1.25)

DNN-AI 0.95 (0.88–1.03) 1.14 (1.03–1.27)
Heart failure

A-ECG 1.46 (1.33–1.62) 1.45 (1.31–1.62)

DNN-AI 1.10 (1.02–1.18) 1.21 (1.11–1.32)
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Another limitation is the retrospective nature of this analysis. 
However, one purpose of the current study was to pursue further ex-
ternal validation of both the A-ECG and DNN-AI ECG Heart Age 
Gaps. Lastly, few patients had zero or a negative Heart Age Gap, which 
may affect the predictions made in this study. However, this can also be 
considered further evidence of the strong association between an ele-
vated A-ECG Heart Age Gap and future risk, given the high prevalence 
of disease in this cohort.

Conclusion
A-ECG Heart Age Gap is a transparent, explainable, and intuitive meas-
ure associated with increased risk of having cardiovascular risk factors 
or disease as well as incident HF hospitalization and death. Explainable 
A-ECG methods for Heart Age Gap have the potential for improving 
clinical adoption and prognostic performance compared with existing 
DNN-AI-type methods.
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